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Abstract: As the navigation solution of exclusion-based RAIM follows from a combination of
least-squares estimation and a statistically based exclusion-process, the computation of the integrity
of the navigation solution has to take the propagated uncertainty of the combined estimation-testing
procedure into account. In this contribution, we analyse, theoretically as well as empirically, the effect
that this combination has on the first statistical moment, i.e., the mean, of the computed navigation
solution. It will be shown, although statistical testing is intended to remove biases from the data,
that biases will always remain under the alternative hypothesis, even when the correct alternative
hypothesis is properly identified. The a posteriori exclusion of a biased satellite range from the
position solution will therefore never remove the bias in the position solution completely.
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1. Introduction

Statistical inference principles as estimation and testing play a fundamental role in the broad
spectrum of navigation applications. Estimation is then usually aimed at finding unbiased estimators
having the best possible precision, while testing is used to safeguard against incorrect modeling and
its consequences. In the safety-critical navigation application of aviation, the concept of Receiver
Autonomous Integrity Monitoring (RAIM) was specifically developed to safeguard the navigation
integrity by means of self-contained fault detection at the GNSS navigation receiver [1,2]. With
RAIM, the use of statistical hypothesis testing is commonplace. One may test the validity of the
assumed working hypothesis by means of a chi-square distributed sum-of-squared-residuals [3,4],
or more specifically, test the working hypothesis against specified alternatives (e.g., single satellite
faults) through Gaussian distributed test-statistics [5,6]. Depending on the parametrization of the
underlying model, many different implementations of these test-statistics exist [7–11]. Next to aviation,
RAIM-testing finds its application also in a broad range of other applications (see, e.g., [12–19]).

In RAIM, estimation and testing are combined, which results in an overall estimator that is more
complex than when one would treat estimation and testing separately. That is, the navigation solution
of exclusion-based RAIM is the result of a combination of least-squares estimation and a statistical
pseudorange ’inclusion–exclusion’ process. This combination of estimation and testing implies that
one cannot assign the properties of the estimators under the different hypotheses to the actual estimator
computed. In RAIM without exclusion, this is not an issue as one is then only working with one single
estimator, namely with the one computed under the null hypothesis in case of acceptance, while in case
of rejection, no estimator is computed as the solution is then said to be unavailable. Hence, in RAIM
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without exclusion, the distributional properties of the estimator are known, which can then directly be
used to compute and evaluate the probability of hazardous misleading information. This situation
changes however when exclusion is included in the process. In that case, one is not dealing with
one single estimator, but actually with a combination of multiple estimators, one for each hypothesis
specified. Hence, to obtain a probabilistic description of this combination, one will have to take the
uncertainty of the combined estimation-testing procedure into account and perform the propagation
of uncertainty accordingly. In this contribution, we explain the mechanism of this interplay and study
its effect on the first moment of the distribution. We analyse, theoretically as well as empirically, how
the mean of the computed estimator is affected by this interplay.

This contribution is organized as follows. We start in Section 2 with a brief review of the
necessary estimation and testing results of linear model theory. We then make the case in Section 3
that, although estimation and testing are often treated separately and independently, in actual
practice, they are usually combined, thus the navigation solution of exclusion-based RAIM is the
product of a least-squares estimation that is applied to pseudoranges that already underwent a
statistical ’inclusion–exclusion’ process. In Section 3, we identify the consequences of the combined
estimation-testing procedure has for the distribution of the estimators involved and in particular we
show that the estimators remain biased even if the correct alternative hypothesis has been identified.
These results are then generalized in Section 4 for the case of having multiple alternative hypotheses,
for which the events of correct detection and correct identification then need to be separated out.
In Section 5, we apply the theoretical results and demonstrate the presence of said biases in the
single-receiver pseudorange GNSS positioning results of exclusion-based RAIM. This shows that the
a posteriori exclusion of a biased satellite range will never remove the bias in the position solution
completely. The size of such remaining biases depends on the strength of the underlying model, the
chosen false alarm rate, and the size and type of the actual input bias. We show how these biases
can be computed and that an increased model strength and larger levels of significance allow for a
reduction of the bias. The contribution is finally concluded with a summary in Section 6.

2. Estimation and Testing

In this section, we briefly review some necessary estimation and testing results of linear
model theory.

2.1. Estimation

Consider the linear observation model

H0 : E(y) = Ax , D(y) = Qyy, (1)

with E(.) the expectation operator, y ∈ Rm the normally distributed random vector of observables,
A ∈ Rm×n the given design matrix of rank n, and x ∈ Rn the to-be-estimated unknown parameter
vector, D(.) the dispersion operator and Qyy ∈ Rm×m the given positive-definite variance matrix of y.
The linear model (1) will be referred to as our null-hypothesisH0.

UnderH0, the best linear unbiased estimator (BLUE) of x is given as

x̂0 = A+y, (2)

with least-squares (LS) inverse A+ = Qx̂0 x̂0 ATQ−1
yy , in which Qx̂0 x̂0 = D(x̂0) = (ATQ−1

yy A)−1 is the
dispersion or variance matrix of x̂0.

As the BLUE’s property of x̂0 depends on the validity of H0, it is important that one has
sufficient confidence in the assumptions underlying the null-hypothesis. Although every part of
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the null-hypothesis can be wrong of course, we assume here that if a misspecification occurred, it is
confined to an under-parametrization of the mean of y, in which case

Ha : E(y) = Ax + Cb , D(y) = Qyy (3)

for some vector by = Cb. Experience has shown that these types of misspecifications are by and
large the most common errors that occur when formulating the model. Note that formulation (3)
is general in the sense that, through the choice of matrix C, it allows one to capture any type of
additive mismodelling in the observation equations.Through by = Cb, one may model, for instance,
the presence of one or more blunders (outliers) in the data, cycle-slips in phase data, satellite failures,
antenna-height errors, erroneous neglecting of atmospheric delays, or any other systematic effect that
one failed to take into account underH0.

In the following, we assume matrix [A, C] ∈ Rm×(n+q) to be known of rank n + q and
the parameter vector b ∈ Rq to be unknown. The linear model (3) will be referred to as the
alternative-hypothesisHa.

UnderHa, the BLUE of x is given as

x̂a = Ā+y, (4)

with LS-inverse Ā+ = Qx̂a x̂a ĀTQ−1
yy , Ā = P⊥C A, P⊥C = Im − C(CTQ−1

yy C)−1CTQ−1
yy , and Qx̂a x̂a =

D(x̂a) = (ĀTQ−1
yy Ā)−1. As this BLUE is based on a model with more parameters, its precision will

never be better than that of x̂0, i.e., D(x̂0) ≤ D(x̂a).

2.2. Testing

The estimation of x would not pose a problem if we would know which of the two models would
be true. In the case ofH0, we would use x̂0 to estimate x, but if we would know thatHa is true, then
we would use x̂a instead. Using the estimator x̂0 when knowing thatHa is true should be avoided, as
this would result in a biased solution, since

E(x̂0|Ha) = x + A+Cb. (5)

The problem in practice of course is that we do not know which of the models are true. Even if
we have taken the utmost care in formulating a model which we believe to be true, misspecifications
could still be present, thus invalidating the model. Methods of statistical testing have therefore been
developed that allow us to decide with some confidence which of the models to work with. In the
case of the above H0 and Ha, it seems reasonable to decide in favour of H0 if the BLUE of b can be
considered ’insignificant’. With the BLUE of b underHa given as

b̂ = C̄+y, (6)

with LS-inverse C̄+ = (C̄TQ−1
yy C̄)−1C̄TQ−1

yy , C̄ = P⊥A C and variance matrix Qb̂b̂ = (C̄TQ−1
yy C̄)−1, the

decision in favour ofH0 is therefore taken when b̂ lies in the acceptance region A,

b̂ ∈ A = {b ∈ Rq | ||b||2Qb̂b̂
≤ χ2

α(q, 0)} (7)

with ||.||2Qb̂b̂
= (.)TQ−1

b̂b̂
(.) and χ2

α(q, 0) the critical value computed from the central chi-square
distribution with q degrees of freedom and chosen level of significance α. This test is known to
be a uniformly most powerful invariant (UMPI) test for testingH0 againstHa [7,20]. Note that test (7)
should not be confused with the sum-of-squared-residuals test. The two are only the same in the special
case that the least-squares residual under the alternative becomes identically zero (cf. (8)). To give
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further meaning to the statistic ||b̂||2Qb̂b̂
, we note that it can be written in different ways ([7], p. 79), two

of which are
||b̂||2Qb̂b̂

= ||ŷ0 − ŷa||2Qyy

= ||ê0||2Qyy
− ||êa||2Qyy

,
(8)

with ŷ0 = Ax̂0, ŷa = Ax̂a + Cb̂, ê0 = y− ŷ0, and êa = y− ŷa. The first equality of (8) states that the
statistic is equal to the squared norm of the solution separation in the observation domain. Thus, if
this solution separation is small enough, one has no reason for rejectingH0. The second equality of (8)
states that the statistic is also equal to the difference of the squared norm residuals underH0 andHa.
Thus, again, if this difference is small enough, the decision is that there is no reason for mistrustingH0.
Although we will be using the first expression of (8) for the test statistic, linkage to the other two will
be made when we discuss multiple hypothesis testing in Section 4.

If the outcome of testing is to reject H0 in favour of Ha, then not x̂0, but x̂a is provided as the
estimator for x. The three estimators, x̂0 (cf. (2)), x̂a (cf. (4)) and b̂ (cf. (6)) are related as

x̂a = x̂0 − A+Cb̂. (9)

Thus, ifH0 is rejected in favour ofHa, then A+Cb̂ is the correction, which is aimed at removing
the bias A+Cb (cf. (5)) from x̂0. Whether or not this is actually achieved is discussed in the
following sections.

3. Estimation Bias Due to Testing

3.1. The Estimator Revisited

As mentioned above, estimation and testing are combined, so one cannot assign the properties of
x̂0 or x̂a to the actual estimator that is computed. That is, the actual estimator that is produced is not x̂0

nor x̂a, but in fact (see Figure 1).

x̄ =

{
x̂0, if b̂ ∈ A,
x̂a, if b̂ /∈ A.

(10)

Figure 1. (left) H0 known: x̂0 is BLUE of x; (middle) Ha known: x̂a is BLUE of x; (right) H0 and Ha

selected under chance: x̄ not a BLUE of x (cf. (10), (12) and (13)).

Hence, it is the quality of x̄, rather than that of x̂0 or x̂a, that determines the quality of the produced
results. Since ideally the goal of testing is to be able to have the bias A+Cb removed from x̂0 whenHa

is true (cf. (5)), it is relevant to know what the mean of the actual estimator x̄ is. By making use of the
relation (9), the expectation of x̄ can be determined as
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E(x̄|H0) = x− A+C
∫

/∈A βpb̂(β|H0)dβ,
E(x̄|Ha) = x + A+C

∫
∈A βpb̂(β|Ha)dβ,

(11)

with pb̂(β|H0) and pb̂(β|Ha) being the probability density function (PDF) of b̂ under resp. H0 andHa.
The result (11) shows that the estimator x̄ is biased in general. This in contrast to x̂0 under

H0 and x̂a under Ha. The cause for the presence of these biases is the nonlinearity involved in the
mapping of (10). Thus, although x̂0 and x̂a are both individually linear functions of y, the actually
produced estimator x̄ is not. It is this nonlinearity that prohibits the unbiasedness of x̂0 and x̂a, under,
respectively,H0 andHa, to be passed on to x̄.

Although (11) indicates that x̄ is generally biased under both H0 and Ha, we have in our case∫
/∈A βpb̂(β|H0)dβ = 0, due to the symmetry with respect to the origin of both the acceptance region A

and the PDF pb̂(β|H0). Hence, in our case, the estimator x̄ is fortunately always unbiased underH0:

E(x̄|H0) = x. (12)

This is not true, however, for x̄ underHa. We have

E(x̄|Ha) = x + bx̄, (13)

with the bias given as

bx̄ = A+CbA with bA =
∫
∈A

βpb̂(β|Ha)dβ. (14)

This shows that the bias in x̄ is driven by the vector bA and its propagation into the parameter
space. The vector bA itself is governed by the acceptance region A and through the PDF pb̂(β|Ha),
by the actual bias b and the precision with which it can be estimated, Qb̂b̂. Generally, pb̂(β|Ha) is not
symmetric over region A.

To see the effect testing has, one can compare the testing-induced bias (14), with the bias one
otherwise would have when using x̂0 underHa (cf. (5)),

bx̂0 = E(x̂0 − x|Ha) = A+Cb. (15)

It follows from comparing (14) with (15), since b = E(b̂|Ha) =
∫
Rq βpb̂(β|Ha)dβ, that through

testing, it is the component of this integral over the acceptance region A that is retained. We thus have
bx̄ = bx̂0 if A = Rq, which corresponds to the case of always acceptingH0.

A summary overview of the means of the random vectors x̂0, x̂a and x̄ is given in Table 1. Note
that over-parametrization, i.e., using model (3) rather than (1), delivers unbiased results: E(x̂a|H0) = x.

Figure 2. Orthogonal decomposition of cbA into range space of A and its orthogonal complement:
cbA = (PAc + P⊥A c)bA [7].
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Table 1. The mean of the random parameters vectors x̂0, x̂a and x̄ underH0 andHa, respectively.

H0 Ha
x̂0 E(x̂0|H0) = x E(x̂0|Ha) = x + bx̂0

x̂a E(x̂a|H0) = x E(x̂a|Ha) = x
x̄ E(x̄|H0) = x E(x̄|Ha) = x + bx̄

3.2. The One-Dimensional Case

As mentioned above, the testing induced-bias bx̄ is driven by bA and its propagation into the
parameter space. To describe its significance, we will work with the dimensionless bias-to-noise ratio
(BNR) ||bx̄||Qx̂0 x̂0

and study its behaviour for the one-dimensional case. If q = 1, then matrix C becomes
a vector, C = c, and b becomes a scalar. For this case the BNR works out as

||bx̄||Qx̂0 x̂0
=
|bA|
σb̂

tan θ, (16)

with θ being the angle that vector c makes with the range space of the orthogonal complement of
A, i.e., tan θ = ||PAc||Qyy /||P⊥A c||Qyy [7], p. 111. Here, PA = AA+ and P⊥A = Im − AA+. In the
decomposition (16), |bA|/σb̂ describes the significance of bA, while tan θ shows how it gets propagated
into the parameter space (Figure 2).

There are two cases for which bA will be ’small’. It will be small when the PDF pb̂(β|Ha) has only
a small portion of its probability mass over A, and it will be small when it differs only a little from the
PDF underH0. To quantify this behaviour, we make use of the one-dimensional integral (cf. (14))

bA =
1√

2πσb̂

∫ χα(1,0)σb̂

−χα(1,0)σb̂

β exp{−1
2

(
β− b

σb̂

)2
}dβ, (17)

from which it can be worked out that, with χα(1, 0) =
√

χ2
α(1, 0),

bA
σb̂

= F(χα(1, 0))− F(−χα(1, 0)), (18)

in which F(x) = φ
(

b
σb̂

+ x
)
+ b

σb̂
Φ
(

b
σb̂

+ x
)

with φ(x) = 1√
2π

exp{− 1
2 x2} and Φ(x) =

∫ x
−∞ φ(v)dv.

Figure 3 shows bA/σb̂ as a function of b/σb̂ for different values of α (here, and in the following,
we consider b ≥ 0). The straight line in the figure describes the bias one would have in case no testing
would be performed (i.e., A = R). As bA ≤ b for every value of b, the figure clearly shows the benefit
of testing: the bias that remains after testing is always smaller than the original bias. Note that this
benefit, i.e., the difference between b and bA, only kicks in after the bias b has become large enough.
The difference is small, when b is small, and it gets larger for larger b, with bA approaching zero in the
limit. Also note that for smaller levels of significance α, the difference between b and bA stays small for
a larger range of b-values. This is understandable as a smaller α corresponds with a larger acceptance
interval A, as a consequence of which one would have for a larger range of b-values an outcome of
testing that does not differ from the no-testing scenario.



Sensors 2017, 17, 1508 7 of 16

Figure 3. Bias bA/σb̂ as function of b/σb̂ for different values of α.

3.3. The Conditional Mean

We have shown that the combination of estimation and testing always produces a biased estimator
underHa, that is, a fraction of the original bias b will always be passed on to the estimator x̄ whenHa

is true. However, the mean considered so far is an unconditional mean, i.e., one that does not take
the outcome of testing into account. We therefore now consider the mean of x̄ under the condition
of either incorrect acceptance or correct rejection ofH0, i.e., under the condition that b̂ ∈ A or b̂ /∈ A
whileHa is true.

It follows from (10) and (15) and the independence of b̂ and x̂0 that

E(x̄|b̂ ∈ A,Ha) = E(x̂0|Ha) = x + bx̂0 . (19)

Thus, in case of wrongful acceptance, the bias of x̄ is that of x̂0.
We now consider the case of correct rejection, i.e., b̂ /∈ A whileHa is true. In that case, we have

for the mean
E(x̄|b̂ /∈ A,Ha) = E(x̂a|b̂ /∈ A,Ha) = x + bx̄|b̂/∈A, (20)

with
bx̄|b̂/∈A = A+C

(
bA − P(b̂∈A|Ha)

P(b̂/∈A|Ha)
(b− bA)

)
= A+C

(
b− b−bA

1−P(b̂∈A|Ha)

)
= A+CbA|b̂/∈A.

(21)

This result is obtained as follows. From taking the conditional expectation of (9) and noting that
x̂0 and b̂ are independent, we obtain E(x̂a|b̂ /∈ A,Ha) = E(x̂0|Ha)− A+CE(b̂|b̂ /∈ A,Ha), from which
the result follows by using (15). Note how the two expressions of (21) show how the bias compares to
that of x̄ (cf. (14)) and to that of x̂0 (cf. (15)). Also note that the above provided general formula (21)
allows one to evaluate the parameter effect bx̄|b̂/∈A for any size and any type of bias. A summary
overview of the conditional means of x̄ is given in Table 2.
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Table 2. The conditional means of x̄ underH0 andHa.

H0 Ha
x̄|b̂∈A E(x̄|b̂ ∈ A,H0) = x E(x̄|b̂ ∈ A,Ha) = x + bx̂0

x̄|b̂/∈A E(x̄|b̂ /∈ A,H0) = x E(x̄|b̂ /∈ A,Ha) = x + bx̄|b̂/∈A

Figure 4. Bias, for correct rejection ofH0, bA|b̂/∈A/σb̂ as function of b/σb̂ for different values of α, where

bA|b̂/∈A = b− (b− bA)/(1− P(b̂ ∈ A|Ha)).

Figure 4 shows bA|b̂/∈A/σb̂ as a function of b/σb̂ for different values of α. Note, since

bA|b̂/∈A = b− E(b̂|b̂ /∈ A,Ha) ≤ 0, that the testing induced bias-correction overcompensates for the bias
b. This can be explained by the shape of the conditional PDF pb̂|b̂/∈A(x|Ha). As the probability mass
of the unconditional PDF over the origin centred acceptance interval A has been distributed over its
complement, the conditional PDF has more probability mass on the right side of b than on the left side
of b, as a consequence of which its mean value will be larger than b. Furthermore, since the probability
mass that gets distributed over the complement of A increases for a smaller α, the overcompensation
also gets larger for smaller α.

The results shown in the Figures 3 and 4 are linked by the probability of correct detection, i.e., the
power of the test. It follows from (21) that

[b− bA] = P(b̂ /∈ A|Ha)[b− bA|b̂/∈A]. (22)

Hence, particularly when the probability of correct detection is small, there will be large differences
between bA and bA|b̂/∈A. Furthermore, since the probability of detection gets smaller for smaller α,
in particular for not too large b, also the differences between bA and bA|b̂/∈A get larger for smaller α.

Note that where in the unconditional case the remaining bias bA is smaller than b in absolute value
(see Figure 3), this is not the case with the conditional bias bA|b̂/∈A (see Figure 4). In the conditional
case of correct detection, the size of the bias remaining after testing can even be larger than the original
bias. This may come as a surprise, but is a direct consequence of the fact that in this conditional case,
the samples of b̂ that come from the distribution underHa, but lie in the acceptance region A, are not
considered. If for one’s application, the size of the bias bA|b̂/∈A is considered too large, one has the
following remedy available: one can either design a stronger model, thus giving a smaller σb̂, or one
can decide to work with a larger level of significance α, thereby accepting more false rejections ofH0.
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4. Multiple Alternative Hypotheses

4.1. Test Procedure

Up to now, we have been working with only one single alternative hypothesis Ha. In actual
practice, however, one typically works with many more such hypotheses, namely with one for every
misspecification that one believes has sufficient potential of occurrence. Hence, one will then have a
set of, say m, alternative hypotheses,

Hai : E(y) = Ax + Cibi , D(y) = Qyy, (23)

in which each Cibi, i = 1, . . . , m, is assumed to take care of one of the potential misspecifications.
Also in this case, biases will remain in the computed results of the combined estimation and testing
process [21]. We will show this by means of one of the most commonly used multiple hypothesis
testing problems, namely the screening of observations for possible outliers. As we consider one
outlier at a time, matrix Ci = ci becomes the canonical unit vector having 1 as its ith entry, with bi
being the scalar outlier and i indicating the potentially outlier-affected observation. In total, m tests are
carried out. The applied decision rule is then to accept the null hypothesis, unless

max
i∈{1,...,m}

|b̂i|
kiσb̂i

> 1 with ki = χα(1, 0), (24)

in which case the corresponding hypothesis is selected. Once a hypothesis, say Haj , is selected, the
parameter vector is estimated as

x̂aj = Ā+
(j)y = x̂0 − A+cj b̂j, (25)

in which Ā(j) = P⊥cj
A. Note that in case of uncorrelated observations, i.e., Qyy = diag(σ2

1 , . . . , σ2
m), the

adapted design matrix Ā(j) = P⊥cj
A is the original design matrix with its jth row replaced by zeros.

Hence, x̂aj is then the estimator with the jth observable excluded.
Note that in (24), no preference is given to the contributions of any of the m individual statistics

|b̂i|/σb̂i
, i.e., ki is the same for all i. Although this is a common usage that we will follow in this

contribution, it is not necessary, as one could also weigh the contributions of the individual statistics in
dependence of their importance for the computed results, i.e., by testing more stringently for biases
cibi that have a larger impact on the parameters of interest.

Figure 5. Orthogonal decomposition of solution separation statistics: ||ci b̂i||2Qyy
= ||ŷ0 − ŷi||2Qyy

+

||x̂0 − x̂i||2Qx̂0 x̂0
.
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4.2. Alternative Statistics

With reference to our earlier alternative expressions of the test statistic (cf. (8)), we note that
instead of maximizing |b̂i|/σb̂i

to identify the alternative hypothesis, one may also do this by finding
the minimizing ||êi||2Qyy

[2] and then use the difference ||ê0||2Qyy
− ||êi||2Qyy

as a test statistic.

b/σb̂
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bx̄/σb̂
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Figure 6. Three types of biases with m = 10 for model (29). (top left): unconditional bias bx̄ = E(x̄−
x|H1). (top right): correct detection bias bx̄|CD = E(x̄− x|CD,H1). (bottom): correct identification bias
bx̄|CI = E(x̄− x|CI,H1) (C is the correct identification area for b̂). The black straight line corresponds
with the ’no-testing’ bias bx̂0 =

1
m b.

Similarly, we noted (cf. (8)) that one may use the solution separation statistic in the observation
domain ||ŷ0 − ŷi||2Qyy

= ||P⊥A Ci b̂i||2Qyy
, instead of ||b̂||2Qb̂b̂

. By using the Pythagorean rule (see Figure 5),
we therefore have in the scalar case, when Ci = ci, for the corresponding solution separation statistic
in the parameter domain the relation

||x̂0 − x̂i||2Qx̂0 x̂0
= ||ŷ0 − ŷi||2Qyy

tan2 θi, (26)

with tan2 θi = ||PAci||2Qyy
/||P⊥A ci||2Qyy

. Thus, if one would like to perform the test procedure (24)
using (26), then the maximum of ||x̂0 − x̂i||Qx̂0 x̂0

/(ki| tan θi|) is sought for. Likewise, if ki in (24) would
be set as ki = k/| tan θi|, with k chosen such that the overall false-alarm rate remains the same, one
would be using maxi∈{1,...,m} ||x̂0 − x̂i||Qx̂0 x̂0

> k as the decision rule. In this case, one would thus be
testing less stringently for model biases cibi that have a small influence on the parameter solution, i.e.,
for which the θi are small.

Finally, note that in the scalar case, when Ci = ci, one may also use any linear function of the
parameter solution separation as a test statistic. As it follows from (25) that f T(x̂0 − x̂i) = ( f T A+ci)b̂i,
we have

|b̂i|
σb̂i

=
| f T(x̂0 − x̂i)|

σf T(x̂0−x̂i)
, (27)

for every nonzero f ∈ Rn. Hence, the choice of f is in this case of no consequence for the outcome
of testing.
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4.3. Biases

We will now examine how the combined estimation and multiple testing affects the mean of the
computed parameters. As we now have with (3) more than one alternative hypothesis, the correct
detection of a mismodeledH0 is not the same anymore as the correct identification of an alternative
hypothesis. For correct detection (CD), assuming Ha1 to be true, the occurrence |b̂j|/σb̂j

> χα(1, 0),

with j = arg max
i

(|b̂i|/σb̂i
), needs to happen for some j ∈ {1, . . . , m}, while for correct identification

(CI), the occurrence needs to happen for j = 1 only. We therefore now consider the following three
biases underHa1 : the unconditional bias bx̄ = E(x̄− x|Ha1), the bias conditioned on correct detection,
bx̄|CD = E(x̄− x|CD,Ha1), and the bias conditioned on correct identification, bx̄|CI = E(x̄− x|CI,Ha1).
These three biases will be first illustrated by means of a simple example.
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Figure 7. Skyplot for Delft, the Netherlands, showing satellite IDs of nominal GPS (blue) and planned
Galileo (red) for the 3rd January 2001 at 2:00 a.m.
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Figure 8. Estimation-testing bias in up-component of GPS+Galileo model (31) due to pseudorange
bias in GPS PRN 1 (case (a), σb̂ = 1.36m) or in Galileo PRN 64 (case (b), σb̂ = 1.45m). Clockwise:
unconditional bias bx̄, correct detection bias bx̄|CD, and correct identification bias bx̄|CI, with C the correct
identification area for b̂. The black straight lines correspond with the ’no-testing’ bias bx̂0 = A+cb.

Example: Averaging

In this example, the data are generated from a model of the form

Ha1 : E(y) = Ax + c1b , D(y) = Im, (28)

in which
A = [1, . . . , 1]T and c1 = [1, 0, . . . , 0]T . (29)

Thus, the data are generated such that the first observation is corrupted with the only outlier b.
Since A+ = 1

m [1, . . . , 1], the LS-estimators of x underH0 andHai are then

x̂0 =
1
m

m

∑
j=1

yj and x̂ai = x̂0 −
1
m

b̂i, (30)

with b̂i =
m

m−1 (yi − x̂0). The data are generated for different values of b and to each such generated
data set the above described testing procedure (cf. (24)) is applied. Figure 6 shows the three types
of biases bx̄, bx̄|CD and bx̄|CI that remain after testing. Note that bx̄ and bx̄|CI behave similarly as their
one-dimensional counterparts (see Figures 3 and 4). However, the behaviour of bx̄|CD is different. Here,
in contrast to bx̄|CI, the bias still follows in the beginning for small b the ’no-testing’ bias bx̂0 = 1

m b.
This difference in behaviour between bx̄|CD and bx̄|CI is due to the multivariate nature of the testing,
and it is driven by two multi-dimensional effects. First note, since the multiple testing (24) has used
the same critical value as used for the single test in section 3, that, in actual fact, due to the increase in
dimensions, the false alarm probability of the current multiple testing problem is larger than α. The
probability mass over the acceptance region that needs to be redistributed to account for the correct
detection conditioning is therefore smaller than 1− α. Secondly, since in the multivariate case, correct
detection admits incorrect identifications, such outcomes make the conditional mean be not larger than
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b, in particular when b is still small. This is why the steep decrease, which is present in bx̄|CI, is absent
in bx̄|CD.

5. Testing Bias in RAIM

As the above revealed and discussed biases are present in any inference procedure that combines
estimation with testing, such biases are also present in, for instance, the navigation solution of
exclusion-based RAIM. This will be demonstrated by applying the theory of the previous sections
to the case of single-receiver pseudorange GNSS positioning. We consider GPS+Galileo with a
receiver-satellite geometry as depicted in Figure 7. For a single system, GPS or Galileo, the m× 4
design matrix A and pseudorange variance matrix Qyy are structured as

A =

 1 uT
1

...
...

1 uT
m

 , Qyy = diag(σ2
1 , . . . , σ2

m), (31)

with ui being the ith receiver-satellite unit direction vector. The unknown parameter vector
x = (dt, dE, dN, dU)T consists of the receiver clock offset and the increments to the three position
coordinates. Thus, here the ECEF (Earth-Centred, Earth-Fixed) coordinates have already been
transformed into the local datum ENU (East-North-Up) coordinates, as these are the coordinates
that a practical user in his/her local/national datum will use. Note that if the position coordinates
would be known, the GNSS design matrix (31) reduces to that of the example in the previous section.
The stochastic model is based on ionosphere-free observations (from dual frequency L1 and L5), with
the entries of the diagonal variance matrix in (31) constructed according to Chapter 7 of [21]. For the
design matrix of the dual-system GPS+Galileo, an additional column is added to the design matrix
above to take care of the inter-system bias or system-specific receiver clock offset.
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Figure 9. Horizontal position biases, bx̄|MD, bx̄|CD, bx̄|CI and bx̄, for GPS-only pseudorange bias of size
b5 = 2.5σb̂5

in GPS PRN 5 (a) and GPS+Galileo pseudorange bias of size b64 = 2.5σb̂64
in Galileo PRN

64 (b).

First, we consider the estimation-testing bias in the up-component of the GPS+Galileo model.
Figure 8 shows this effect as a result of a pseudorange bias in either PRN 1 (top row) or PRN 64 (bottom
row). Note that the behaviour of the three types of biases, bx̄, bx̄|CD, and bx̄|CI, is similar to that shown
for the previous models. Also note that the impact of the pseudorange outlier in PRN 64 is much
smaller than that of the poorer controlled pseudorange outlier in PRN 1 (see Figure 7). To further
illustrate the importance of redundancy, Figure 9 shows the horizontal position scatter plots for the
GPS-only (top) and GPS + Galileo (bottom) case. The GNSS data were simulated according to (31) but
with a single pseudorange outlier included, in PRN 5 for the GPS-only case and in PRN 64 for the GPS
+ Galileo case (see Figure 7). The same testing procedure as before was applied. The four panels show,
for each case, the scatter plots for missed detection (MD), correct detection (CD), correct identification
(CI) and the unconditional (UN) case. The scatters of MD and CD together form that of UN, and the
scatter of CI is a subset of that of CD. The effect of the increased strength in the GNSS model when
using GPS + Galileo instead of GPS-only is clearly visible. In the GPS-only case, as opposed to the
GPS + Galileo case, the CD-scatter still contains some quite incorrect identifications due to significant
correlations between some of the test statistics. Thus, although the null hypothesis is correctly rejected,
these correlations can then still result in incorrect satellite exclusion. Furthermore, even with correct
identification (CI), the GPS-only position is in this case off, on average, by more than half a meter.
This example has thus illustrated that the a posteriori exclusion of a biased satellite range from the
position solution will not remove the bias in the position solution completely and therefore needs to be
accounted for in the calculation of the probability of hazardous misleading information.

6. Conclusions

In this contribution, we have studied the bias propagation in exclusion-based RAIM. Although
statistical testing is intended to remove biases from the data through exclusion, we have shown that
biases will always remain under the alternative hypothesis, even in the case that such hypothesis is
correctly identified. The usage of estimators that are unbiased under their respective hypotheses is
therefore no guarantee that the finally computed solution is unbiased as well. We have shown that
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the presence of such biases in the final solution can be explained by the nonlinearity created by the
combination of estimation and testing. The size of these remaining biases depends on the strength
of the underlying model, the chosen false alarm rate, and the size and type of the actual input bias.
The size of the remaining bias will get smaller with increasing model strength and larger levels of
significance. Despite the presence of these biases, the benefit of testing was demonstrated by showing
that the remaining bias is always smaller than the biased one otherwise would have been in the
absence of testing. However, it was also shown that this is not the case when conditioned solutions
are considered. The remaining biases in correctly identified solutions, for instance, can be larger than
the original input bias. They are small, however, when the input biases are either small or sufficiently
large. As the unbiasedness property of the applied estimators is undone when used in combination
with testing, one may question whether or not other estimators exist or can be constructed that do
a better job in dealing with the discussed bias propagation. In this vein, one may think of relaxing
the constraint of using unbiased estimators so that a larger class of estimators can be used to increase
flexibility for further improvements of the probability of hazardous misleading information. This is an
open question for future research and one that is somewhat similar in spirit to the search for ’integrity
optimized estimators’.
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