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ABSTRACT

This contribution presents and discusses practical re-
sults of kinematic GPS that can typically be achieved.
The results are based on a kinematic experiment using
a mobile receiver on a van and two stationary receivers.
The van is driven from one of the stationary teceivers
to a distance of over 10 k. Highlighted are the gual-
ity of the positioning results, the system’s ability to test
for outliers in the code data and cycle slips in the phase
data, and the numerical and statistical performance of
ambiguity resolution. The results are given for different
measurement scenarios, such as satellite redundancy and
single versus dual frequency data

1 INTRODUCTION

When linking the mathematical model to the data, care
has to be excercized in formulating the observations
equations (functional model) and the covariance matrix
of the observables (stochastic model}. In case of GPS,
the set of observables that can be used consists of carrier
phases and pseudoranges (code) on L; and L. These
observables can be linked to the baseline coordinates
and the carrier phase ambiguities. Apart from these un-
known parameters, the observation equations may also
include additional parameters, such as those needed for
ionospheric and troposheric refraction, or for the (re-
ceiver and/or satellite) clock errors, o1 for the signal de-

lays in the hardware or for multipath [1-4] Whether
o1 not all these parameters need to be included as well,
depends very much on the hardware used, the circum-
stances of measurement and the particular application
at hand

For kinematic GPS, fast and reliable ambiguity reso-
lution is a prerequisite [5-7]. This is feasible when the
uncertainty in the atmospheric delays, in particular the
ionospheric delays, can be sufficiently bounded. Short
baseline applications are therefore the first applications
that come in mind when thinking of kinematic GPS [8-
12]. In this contribution we therefore restrict our atten-
tion to the short baseline case and analyse, on the basis
of an experiment, the performance of kinematic GPS us-
ing the simplest mathematical model possible.

For the undifferenced code observables, the standard
deviation was set at ¢, = (0.3 m, and for the undiffer-
enced phase observables, it was set at oy = 0.003 m
Time-correlation was assumed absent. The differential
atmospheric delays were also assumed absent, because of
the relatively short baselines The only unknown param-
eters in the double differenced (DD) observation equa-
tions were therefore the DD carrier phase ambiguities
and the components of the three dimensional baselines.
The data were processed in the single-baseline mode. For
the kinematic case, the linear(ized) system of DD obser-
vation equations of epoch i 1eads then

y(i) = Aa+ B(b(3) +e(i) for i=1, .k (1)

where the vector y(¢) consists of the observed minus com-
puted single or dual frequency phase and code observa-
tions of epoch %, a is the time-invariant vector of un-
known integer DD ambiguities, #(¢) is the unknown in-
crement of the nonstationary baseline at epoch i, e(7)
contains the measurement noises and remaining unmod-
elled effects, and A and B(#) are the appropriate design
matrices.

The above system of observation equations was solved
using the recursive least-squares algorithm. Since the
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ambiguities are time-invariant (in the absence of cycle
slips) and the baselines are unconnected in time, the
time-update has a rather simple form Only the (float)
least-squares estimate of the ambiguity vector needs to
be passed on in time. The actual filter step is performed
in the measurement-update. In this step the incoming
data is adjusted together with the results provided by
the time-update

After a brief description of the experiment in Sect. 2,
we consider in Sect 3 the system’s ability to test for,
respectively, outliers in the code data and cycle slips in
the phase data Since the data processing is based on
the recursive least-squares algorithm, it are the so-called
predicted residuals that contain all the necessary infor-
mation to perform the three steps of detection, identifica-
tion and adaptation {13]. The minimal detectable biases
are given for the case the ambiguities are still floated and
for the case the ambiguities are fixed

In Sect. 4 we consider the problem of ambiguity reso-
lution. It consists of the integer estimation step and the
validation step The estumation step is solved using the
least-squares ambiguity decorrelation adjustment. For
validation we fizst consider the ambiguity dilution of pre-
cision to infer the system’s potential strength for a suc-
cessful fixing of the ambiguities. This is followed with
an analysis of the actual performance of ambignity res-
olution. In the last section, Sect. 5, we concentrate on
the positioning performance itself and show results of
baseline 1epeatibility

2 THE EXPERIMENT

15 39 28
i pen= i
< 12.7 km —

Figure 1: Two stationary receivers 15 and 28, with rov-
ing receiver 39.

In this section we will describe the experiment on which
our data analysis is based. The experiment took place
on December 2274, 1996, about 80 km North-East from
Delft, on the Qostvaardersdijk from Almere to Lelystad,
along the Markermeer. Three dual frequency geodetic
receivers wete used (Trimble 4000 S51 Geodetic Sur-
veyor). Two of the receivers were placed stationary on
parking-lots (points 15 and 28), about 12.7 km apart
The antenna of the third receiver was rigidly mounted
on the roof of the faculty’s van {point 39), see figure 1

The data used was collected during a 40 minute ses-
sion, at a one second sampling rate, when the van drove
from point 15 to point 28 and back again. During the
whole session, the same 7 satellites (PRN’s 04, 10, 18,
19, 24, 27 and 18) were continuously tracked, all at an el-
evation angle larger than 15 degrees. The corresponding
skyplot is shown in figure 2 We also consider configura-
tions with less than seven satellites They were obtained
by removing, respectively, PRN’s 24, 19 and 27. The cir-
cumstances during the session concerned typical weather
for this season of the year: open sky, temperature a few
degrees below 0 Celsius and a strong wind blowing from
the North-East The Sun Spot Number was low, about
20-30, and the (absolute) ionospheric delay was small
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Figure 2: Skyplot (12-22-'96, 08:30 UTC, ¢ = 52°26'N,
X = 5°14'E), with PRN’s 04, 10, 16, 18, 19, 24, 27

3 SPIKES AND SLIPS

It will be clear that the results of an adjustment rely
heavily on the validity of the functional and stochastic
model used. Frrors in one of the two, or in both, will
invalidate these results. Apart from the adjustment it-
self, one therefore also needs to make use of methods
that allow one to check the validity of the assumptions
undeilying the model These methods are based on the
theory of statistical testing

3.1 DIA PROCEDURE

One way of structuring a testing procedure for the han-
dling of different model errors is provided by the DIA-
procedure [13-15). It consists of the following three steps:

1. Detection: An overall model test is performed to di-
agnose whether an unspecified model error ocurred

2 Identification: After deteciion of a model error,
identification of the potential source of model error
18 needed.




3. Adaptation' After identification of a model error,
adaptation of the null hypothesis is needed to elim-
inate the presence of biases in the solution.

The DIA-procedure can be applied locally or globally
In the latter case, a time window is used such that the
data within the window is used for the testing, The
global tests, which can also be computed recursively,
have the advantage of a higher detection power than the
local tests. Paired with this advantage goes the disad-
vantage of a possible delay in detection. In the present
contribution only the local DIA-procedure was used

When using the recursive least-sqnares algorithm, the
so-called predicied residuals come available at every
epoch with almost no extra effort. The predicted resid-
nal vector of epoch i, v(¢), is defined as the difference
between the vector of cbservables of that epoch and its
prediction. It can be shown that the predicted residu-
als, together with their variance matrices, contain all the
information necessary to perform the statistical testing

For detection purposes, first a local overall model
(LOM) test is applied The corresponding test statis-
tic is given as

(k) Q;&:)”("C)

T =—20

(2)

where m(k) denotes the number of observations that en-
ter at epoch £. When the data are normally distributed
(which is assumed throughout this contribution), this
test statistic has a central Chi-square distribution di-
vided by its degrees of freedom m(k). Note that in case
of the overall model test, no specification of the type of
model etror is needed yet For identification however,
one needs to specify explicitly the type of model error
that is likely to occur. In case of GPS theie are in par-
ticular two type of model errors that are worth testing
for. They are the outliers (spikes) in the code data and
the slips in the phase data For both these potential
model errors, the appropriate test statistic, which has a
standard normal distribution under the null hypothesis,
takes the form
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where the c-vector still needs to be specified In case of
local testing this vector equals the DD matrix operator
times a canonical unit vector For an outlier, the nonzero
entry of the unit vector corresponds with the suspected
single differenced code observable For a slip, its nonzero
entry corresponds with the suspected single differenced
phase observable,

k) = (3)

3.2 MINIMAL DETECTABLE BIASES

Internal reliability as represented by the Minimal De-
tectable Biases (MDB'’s), describes the size of the model
errors which can just be detected with the appropriate
test statistics. For the test statistic (3), the MDB is
given as

Ap

T -1
¢ Qv(k)c

where Ay is the reference value of the noncentrality pa-
rameter. It depends on the chosen level of significance
and on the chosen power The level of significance was
set at 0.001 and the power at 0.80.

For the current experiment, we computed both the
code-MDB’s and the phase-MDB’s. Values which are
considered representative for these MDB’s are shown
in figures 3, 4, 5 and 6 as function of the number
of satellites tracked  The first two figures refer to
the code-MDB’s (ambigunity-float and ambiguity-fixed)
and the last two refer to the phase-MDB’s (ambiguity-
float and ambiguity-fixed). Al the code-MDB’s and
the ambiguity-fixed phase-MDB’s which are shown, are
based on the use of a single epoch of data

Figure 3 shows the code-MDB’s for the single-
frequency case and for the dual-frequency case. The
MDB’s get clearly larger as the number of satellites de-
creases. In case of four satellites (no satellite redun-
dancy) the MDB even goes to infinity in the single-
frequency case. In the dual-frequency case, the MDB’s
are somewhat smaller and they also increase less rapidly
as the number of satellites decreases.

MDB = (4)

dual frequency
PRNM4

single frequency

Figure 3: Ambiguity-float code-MDB’s (m) of PRN 04
versus number of satellites; single frequency case (left)
and dual-frequency case (right).

Figure 4 shows the case when the ambiguities are as-
sumed known In this case there is practically no dif-
ference between the single-fequency case and the dual-
frequency case. This is due to the very high precision
of the phase observables as compared to the precision of
the code observables. In fact, when the ambiguity-fixed
phase observables would be known exactly, the corre-




sponding baseline would be known exactly and the L
and L, single differenced code observables would then
only have their clock errors as unknown parameters The
results of figure 4 follow therefore to a good approxima-
tion the simple rule

Qm/\g
m—1

MDB =0, (5)

where m.denotes the number of satellites.

Figure 4: Ambiguity-fixed code-MDB’s (m) of PRN 04
versus number of satellites.

Figure 5 shows the ambiguity-float phase-MDB'’s, ex-
pressed in L, phase cycles They are shown for the case
only 2 epochs of data are used (gray) and for the case 31
epochs of data are used (white). In the single-frequency
case all but one of the MDB’s are at the level of a few
tenths of cycle. However when only four satellites are
tracked, the MDB’s blow up to an unacceptable level
of over ten cycles. This does not happen in the dual-
fiequency case In that case all MDB’s stay at the level
of a few tenths of a cycle.

dual frequency
PRN04

single frequenc
15.0

Figure 5: Ambiguity-float phase-MDB’s (cycle) of PRN
04 versus number of satellites; single frequency case (left)
and dual-frequency case (right).

Figure 6 shows the ambiguity-fixed phase-MDRB’s.
Again only one epoch of data was used A compari-
son between this figure and the previous one shows that
the ambiguity-fixed MDB’s using only a single epoch of
data come close to the ambiguity-float MDB’s based on
the 31 epochs of data. And indeed one can show that
these two type of MDB’s are related through the scaling

factor
1
T
where & denotes the number of epochs used.

The above results are based on the assumption that
op = 0.3 m and oy = 0.003 m. It can be shown however
that the precision of phase has (practically) no influence
on the code-MDB’s and that the precision of code has
(practically) no influence on the phase- MDB’s. This im-
plies that the above results can easily be modified when
different values for the standard deviations are used. For
instance when the standard deviation of code is changed
from 0.3 m to .1 m, the corresponding code-MDB’s need
to be divided by a factor of 3 as well The same holds
true for the phase-MDB’s when changing the precision
of phase.

single frequency dual frequency

PRNOM 106 PRN04
0,3
0,2
0 - "
7 6 5 4

Figure 6: Ambiguity-fixed phase-MDB’s (cycle) of PRN
04 versus number of satellites; single frequency case (left)
and dual-frequency case (right).

4 AMBIGUITY RESOLUTION

GPS ambiguity 1esolution is the process of resolving the
unknown cycle ambiguities of the double difference car-
rier phase data as infegers. It is the key to high precision
relative GPS positioning, when only short observation
time spans are used. In this section we will investigate
the system’s ability to resolve the integer ambiguities
when using the kinematic mode of operation. Ambigu-
ity resolution is composed of two parts, the estimation
part and the validation part.

4.1 ESTIMATION

When solving the system of observation equations (1),
without the integer constraints included, one obtains the
so-called float solution for the ambiguities When using
k epochs of data we thus have available the real-valued
least-squares ambiguity vector a(k) and its variance ma-
trix Qax) This result is then used as input for the in-
teger estimation step. It amounts to solving the integer




least-squares problem

min [a(k) - G}TQ;(L)[‘&(A’) —d

a integer

(6)

Due to the integer constraint this problem cannot be
solved by means of standard least-squares algorithms.
Instead a search is needed for computing the integer min-
imizer @ With (near) real-time applications in mind it
is of course of importance to keep the cycle- time needed
to perform the necessary computations, at a minimum.
The method of the Least-squares AMBiguity Decorre-
lation Adjustment (LAMBDA) has been developed to
meet, this requirement [16]. The steps involved in this
method can briefly be described as follows (for more de-
tails, the reader is referred to [17, 18]). The global search
space of integers is first replaced by a local one, the so-
called ambiguity search space. It is defined as [19]

[a(k) — a)? @y a(k) — a] < X (1)

It is a multivariate ellipsoidal region, which is centred at
a(k). Its shape is governed by the ambiguity variance
matrix and its size can be controlled by choosing an ap-
propriate value for the positive constant x?, see [20]. A
two dimensional example of the search space is shown in
figure 7.

|

Figure 7: Two dimensional example of DI search space

Although the search for the integer least-squares am-
biguities can in principle be based on the DD ambiguity
search space (7), this is usually not an efficient approach
because of the high correlation between the DD ambi-
guities, see [7]. The LAMBDA method therefore first
transforms the DD ambiguities by means of a decorre-
lating ambiguity transformation z = Z¥a. As a result
one obtains an equivalent, but transformed search space

[3(k) — A7 Q3 [2(k) - 2] < X2 ®)

In contrast to the original DD ambiguities, the trans-
formed ambiguities have the property that they are

largely decorrelated and of a high precision. Also the
original DD search space has been moulded into a more
spherical search space. A two dimensional example of
the decorrelation process is shown in figure 8.

Due to the properties of the transformed ambiguities,
the search for the integer least-squares ambiguities can
now be performed in a very efficient manner The search
is based on scalar bounds which follow from applying
a sequential conditional least-squares adjustment. How
the actual search is executed is described in [18] As a
result of the search one obtains the integer least-squares
solution z, which if needed, can be back-transformed to
the integer least-squares solution of the original DD am-
biguities, a = 2Tz

Figute 8: Two dimensional example of search space
transformation through ambiguity decorrelation

4.2 VALIDATION

Estimation of the integer ambiguities is one thing, their
validation however is quite another One can always
compute the integer least- squares ambiguities, whether
the data are of poor quality or not, or whether the model
used is adequate or not The importance of validation
is therefore to reduce the risk of accepting nonaccept-
able integer values for the ambiguities. In case of GPS
this requires great care since a bias of a single cycle in
the computed integer least-squares solution already can
result in an unacceptable large baseline bias.




Ambiguity dilution of precision

It will be intuitively clear that the risk of compuiing
an incorrect integer ambiguity solution must be related
to the precision with which the real- valued least-squares
ambiguities can be computed Hence, if both the func-
tional and stochastic model were specified correctly, the
ambiguity variance matrix Qa(x) must in some way con-
tain information on one’s expectation of being able to
compute the correct integer ambiguities. The risk of
having computed a wrong integer solution increases the
poorer the ambignity precision becomes

To come up with a useful scalar measure for the am-
biguity precision is not trivial. First, we are not dealing
with a single ambiguity, but with a vector of ambigui-
ties They are correlated and their individual variances
will generally differ. Secondly, we also have to take the
arbitrariness into account by which the ambiguities are
defined. Already in case of the DD ambiguities, different
sets of DD ambiguities can be recognized when different
satellites are chosen as the reference satellite. Thus in
order to truely measure the intrinsic precision charac-
teristics of the ambiguities, one should have a measure
that is invariant for the arbitrary cholice one has in defin-
ing integer ambiguities. Such an ambiguity dilution of
precision (ADOP) measure was introduced in [6] as

L
ADOP = /det Qa(k)" (cycle)

where n is the order of the ambiguity variance matrix It
can be shown that the ADOP is indeed invariant for the
whole class of admissible ambiguity transformation It
can also be shown that it equals the geometric mean of
the sequential conditional standard deviations of the am-
biguities. Thus in case of the decorrelated ambiguities
obtained with the LAMBIA method, it approximates
the geometric mean of the unconditional standard devi-
ations of the transformed ambiguities. Ambiguity reso-
lution can therefore expected to be successful when the
ADOP is at the few tenths of a cycle level or smaller
Figute 9 shows some typical values that can be
achieved in case of single-epoch based ambiguity reso-
lution (& == 1). In this case (single or dual frequency)
code data are needed per se to be able to compute a
float solution Shown are, for both the single and dual
frequency case (phase and code}, the standard deviation
of one of the DD ambiguities and the ADOP, both as
function of the number of satellites used. The ambiguity
standard deviation gets of course poorer as the number
of satellites decreases and improves by a factor of /2
when one switches from the single-frequency case to the
dual-frequency case. In all cases the standard deviations
are far larger than the one cycle level But as it was
pointed out above, no inference can be made from these
individual ambiguity standard deviations, since they do

(9)

not take the presence of correlation into account and
because they are dependent on the arbitrary ambiguity
definition as well. This is not the case with the ADOP
As the figure shows for the ADOP’s, there is a significant
improvement in the single-frequency case when the num-
ber of satellites increases. Likewise there is a significant
improvement when switching from the single-frequency
case to the dual- frequency case, in particular when the
satellite redundancy is small Based on these results one
would expect instantaneous ambiguity resolution to be
feasible in the dual-frequency case, but problematic or
even impossible in the single-frequency case when the
number of satellites drops below six

single frequency
L1 18-10

ADOP

dual frequency
L1 18-10 ADOP
5
4
3
2
1
0 —_

Figure 9: Ambiguity precision: ambiguity standard de-
viation of D) ambiguity 18-10 (cycle) versus number of
satellites and ADOP (cycle) versus number of satellites;
single frequency (top), dual-frequency (bottom), ambi-
guity standard deviation (left), ADOP (right}

Testing the integer least-squares solution

The 1eal test for answering the question whether oz
not the computed integer least-squares solution can be
accepted, should of course be based on actual data. It
is customary to make a distinction between two type of
tests, the acceptance test and the discrimination test
Here we will follow [21] The acceptance and discrimi-
nation test respectively, read

55 < (G (10)
and a
=52 (o) (11)




where 62 and &% are the estimated variance factors of
unit weight based on, respectively, the float and fixed
solution, and where & 2 is the corresponding value based
on &', the second most-likely integer ambiguity solu-
tion. The second most-likely integer ambiguity vector
produces the last but one smallest value of the objec-
tive function of (8). The ’critical values’ were chosen as
Cl =5.0and Cz =12

Although the discrimination test (11} is formulated in
the DD ambigunities, it can be formulated in the trans-
formed ambiguities of the LAMBDA method as well
The test statistic is, as it should be, invariant for this
transformation

The first test infers the likelihood of the most-likely
integer solution. The most-likely solution is of course by
definition the integer least- squares solution. The second
test infers whether the second most-likely integer solu-
ticn differs sufficiently in likelihood from the most-likely
solution If both tests are passed successfully, the deci-
sion is made to accept the integer least-squares solution
as being correct. It is remarked that although the above
two tests seem to work satisfactorily in practice, a theo-
retical basis of these tests (e g knowledge of probability
density function) is still lacking,

In the following we will concentrate on the second test
for cases for which the first test was passed successfully.
From the full session of the nonstationary baseline 15-39
(the van is driven from about 2 km to over 12 km from
the reference and back again), all 2421 epochs of dual-
frequency data were first used to compute the overall
integer least-squares solution of the ambiguities. This
solhition provided our ’ground truth’, which we believe
to be acceptable due to the cleaness of the data and the
length of the observation time span Then the full ses-
sion was partitioned in 40 batches of half a minute, each
spaced by again a half minute This gave us 40 exper-
iments fo test for ambiguity resolution in a kinematic
mode

Based on previous experience [11], instantaneous am-
biguity resolution using seven satellites most often re-
sults in a successful fixing of the ambiguities. Having
figure 9 in mind, we therefore concentrated our compu-
tations on the use of only five satellites {(PRN’s 04, 10,
16, 27 and 18). For the dual-frequency case it was found
that all single-epoch integer solutions were in agreement
with the ’ground truth’. However, not all of these 40 so-
lutions passed the above discrimination test successfully
Four single-epoch solutions were rejected by this test. In
these four cases, additional epochs were needed to pass
the test The number of additional epochs needed varied
from only a few to more than thirty

The conclusion from these 40 experiments using five
satellites is thus that dual-frequency instantaneous am-
biguity resolution seems possible at & high success rate.
For the single-frequency case however a completely dif-

ferent result was obtained. In 7 percent of the 40 ex-
periments the discrimination test was not even passed
successfully after using all of the 31 epochs available per
experiment. In 55 percent of the cases the discrimination
test was declared accepted, although the corresponding
integer solution failed to agree with the ’ground truth’.
Thus only in 38 percent of the cases did the integer solu-
tion, that passed the discrimination test, agree with the
’ground truth’ And only four of them were obtained in-
stantaneously The conclusion is thus clearly that single-
frequency ambiguity resolution, based on only five satel-
lites, poses serious problems. A snapshot listing of the
single-frequency analysis is given in table 1

[ exp. | accepted by test | at epoch [ correct? |

13 Y 1 Y
14 Y 2 Y
15 Y 1 N
16 Y 1 N
17 Y 13 Y
18 Y 1 N
19 Y 1 N
20 Y 1 N
21 ? >31

22 Y 8 N
23 Y 1 N
24 Y 30 N

Table 1: Ambiguity resolution: single frequency phase

and code using five satellites

5 KINEMATIC POSITIONING

In this section we will describe the kinematic position-
ing performance of the experiment First however we
consider the effect of antenna rotation on the phase ob-
servations.

5.1 CARRIER PHASE WRAP-UP

Carrier phase wrap-up will occur when the antenna’s
are rotated while tracking the GPS signals [22-24]. This
will thus also happen when using the kinematic mode of
operation To get some insight into the effects involved a
small test was conducted. Two simuitaneously tracking
antenna’s were used, of which one was at rest while the
other was rotating The L; minus L, phase combination
(61 — ¢2), expressed in meters, for a single satellite is
shown in figure 10 for both antenna’s.
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Figure 10: lonosphere combination for antenna at rest
(top) and for a rotating antenna (bottom).

The values shown were multiplied with the factor 1.546
s0 as to obtain a (relative) estimate of the ionospheric
delay as it would be found for the L; code observable.
Note that the scale of the vertical axis of the top-figure
equals that of the bottom-figure. The horizontal axis
spans 4 minutes In the 1.546(¢; — ¢2) combination all
common effects, like the geometric range, the clock error
and the tropospheric range, are eliminated. The only
remaining effects are, respectively, the ionospheric de-
lay, the phase- ambiguities and the instrumental delays
Thus in case of a nonrotating antenna this combination
will show primarily the time behaviour of the ionosphere
In case of figure 10 (top) this effect is about 2 cm over 4
minutes. However when the antenna is rotated in about
30 seconds over a full 360 degrees, the *wrap-up’ effect
shows up and amounts to 1.546 x (.054 = 6.083 m. The
value 0 054 is the difference between the Ls and the L,
wavelength. The effect is thus about 8 cm, see figure
10 (bottom). This effect gets eliminated again when the
antenna is rotated back over the same angle (note: the
figure shows some overshooting, which is believed to be
due to internal filtering of the receiver).

The *wrap-up’ shown in the figure, by rotating the
antenna around the bore-sight axis, was found to be the
same on all channels. This has the fortunate consequence
that while adjusting for the kinematic model, the effect
gets lumped with the unknown clock error  Hence the ef-
fect gets eliminated when working with DD observables,
just like the double differencing gets rid of the clock er-
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Figure 11: Velocity profile (m/s) of van.

ror. The kinematic positioning results are therefore not

affected by the above 'wrap-up’

5.2 BASELINE REPEATIBILITY

For the baseline repeatibility, we first considered the
baseline 15 (stationary reference) to 39 (rover on van)
The van started at about 2 kin from the reference and
made a two-way trip with the turning point at about a
12 km distance. The velocity profile of the van during
the two- way trip is shown in figure 11. It was computed
from the displacement in three dimensions over one sec-
ond intervals. There are three static periods, one at the
beginning, one at the end and one halfway just before
the turn was made The van drove at slightly over 46

km/hr.
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Figure 12: LOM test-statistic T(4) divided by its critical
value.

Single-frequency phase and code data (2421 epochs,
one second sampling rate) of 7 satellites were used to
compute the van’s trajectory. The ambiguities could be
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Figure 13: Scatter plots: first static period of baseline
15-39 (top) and of baseline 28-39 (bottom)

fixed right away at the very first epoch. The results
that will be shown are therefore based on using single-
frequency ambiguity-fixed phase and code data The
code data is thus included, but it will be clear that their
contribution will be very marginal due to the relatively
poor precision of code

The samples of the LOM test-statistic T'(3) divided

by its critical value are shown in figure 12 as function of

time The values shown all stay well below the value of 1
In the model validation no outliers in the code data nor
cycle slips in the phase data were encountered The fact
that the mean of the test-statistic is significantly smaller
than its expectation may indicate that a too pessimistic
stochastic model was used. A dependence of the noise of
the observables on the receiver dynamics does not show
up in the graph, nor does it show a relation with the base-
line length. The results do make us suspect the presence
of some systematic time behaviour,

To get an impression of the empirical precision of po-
sitioning, the three static periods were considered. Since
all three static periods showed the same behaviour, only
the fizst scatter plot is shown in figure 13 (top). These
results show that the short-term repeatibility of the kine-
matic positioning is excellent (spread at the level 0.5-1
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Figure 14: Kinematic solution of stationary baseline 15-
28 in North (top) and East (bottom)

cm) However, these results will not show the presence of
any bias. We therefore repeated the same computations
but now with the use of the data of the stationary re-
ceiver at point 28. Since the baseline coordinates of the
stationary baseline 15-28 were known (independently de-
termined from long time span data), the scatter plot of
the kinematic baseline 28-39 can also be referenced with
respect to point 15. The results are shown in figure 13
(bottom). Compatison of the two scatter plots shows in-
deed the presence of some small bias (at the 1 cm level)

The same small level was found for the two other static
periods

Although the bias is sufficiently small for most sur-
veying applications, its presence indicates that our sim-
ple model is not capable yet of catching all systematic
effects. This is also apparant if one considers the kine-
matic solution of the stationary basline 15-28. Figure
14 shows the kinematic solution referenced with respect
to the reference coordinates of the baseline Although
the size of the bias is sufficiently small to be acceptable,
there is still clearly a systematic time behkaviour present
in the positioning results (e g. short and long periodic}
Qur analysis of the tropospheric delays, the ionospheric
delays and of multipath did not indicate a clear culprit.




although multipath was clearly present in the data from
satellite PRN 27 More analysis is therefore needed to
be able to trace the origin of the above systematic but
small time behaviour.
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