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ABSTRACT

The Horizontal Position Error (HPE) must be no greater ti@nconfidence bound, known as the Horizontal Protection
Level (HPL), beyond the specified probability (integritgk). The definition of protection levels is one of the keys
to integrity in Satellite Based Augmentation Systems (SBAS the Wide Area Augmentation System (WAAS) and
the European Geostationary Navigation Overlay ServiceNB6), with the main application of providing guidance to
aircraft during approach. In this contribution we show amglain, also by means of geometrical interpretation, that
of the two defined HPLs, theoretically — with the HPE as thaakelror in the two dimensional horizontal plane —
one provides a lowerbound (for the probability, and henaafe), but that the other one leads to an upperbound (hence
overestimating the probability contained within the HPL-are@hese effects are noticeable in the size of the integrity
risk. We present, as an alternative, @tactevaluation of the circular probability, and for completses@ve include the
Chebyshev inequality, which provides a lowerbound for ttabpbility regardless the actual distribution of the posit
error. The measures are mutually compared, and assumptioirelations are pointed out.

INTRODUCTION

Is the Horizontal Position Error (HPE) bounded by the HantabProtection Level (HPL), with the required and specified
probability? That is the central question of this contribat In operational circumstances the actual Position ER&)
can not be assessed, only in controlled experiments anategnound-truth for the position or trajectory can be aldd.

In practice a statistical measure on the position errormstead to represent (in part) navigational performance.

In satellite navigation, and with a Satellite Based Augragah System (SBAS) in particular, the use of the Protection
Level (PL) as a statistical bound to the Postion Error (PEQdsimon place. In one dimension, setting the interval
length that bounds the error in one component of the positioren the probability, is usually straightforward, once
the distribution of the position error is available. In twar fnore) dimensions, this may get complicated by statistica
dependence between the position components (and by diffeossibilities for the geometric area or volume to bound
the error).

In aviation typically the (one-dimensional) vertical coomgnt of the user position error is of primary concern; the
horizontal components are of secondary concern. Thist&tumay be just the other way around in other applications as
positioning and navigation on land and at sea. This formedribentive to the underlying study.

In general we would like to capture the two-dimensional fi@sierror in a measure or statement that relatesatial
error to probability, preferably by exact means. The adjectadial’ translates into a circle as the area that corgtde
position error in two dimensions. There is no distinctiotiEen the two components. When an exact assessment is not
possible, one should underbound the probability or comlgms/erbound the radius, in order to be ‘on the safe sideé Th
performance measure shall be conservative, as in the @adlliiabout ensuring user safety.

There exists a large amount of literature on scalar measor@gluate or bound multi-dimensional errors, see e.qg.
[1] for the two-dimensional case, and the topic is also askbd in [2]. In this contribution we review specifically
two measures that have been outlined explicitly in earlegsions of the Minimum Operational Performance Standards
(MOPS) for SBAS [3]. First, the probability contained in telipse just enclosed by the circle provides a lowerbound
for the circular probability (and hence is on the safe sid&cond, evaluation of the probability in only the worst case
direction (and neglecting the other) leads to upperbouwgithie desired circular probability (and thereby dne&represent
guaranteed navigational performance). Then we preseexactmeasure of probability on the horizontal position error
radius. To the authors’ knowledge this measure has not lrease yet in the context of SBAS. The basic assumption
for all three measures so far is a normally distributed pasierror. To put this assumption into perspective also the
multi-variate Chebyshev inequality is used, which progiddowerbound for the circular probability, irrespectivette
position error distribution. In the last section all four aseres are systematically compared in five numerical exasnpl
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This contribution ismotabout error modelling, as overbounding individual erramtcibutions to the total pseudorange
error, nor about Fault Detection and Exclusion (FDE), westaer nominal conditions, the so-called ‘fault or bias free
case’'Hy. This contributionis about translating the error distribution of a two dimensigposition into a single scalar
probabilistic measure that describes or bounds the error.

PRELIMINARIES

In this section we give a concise review of the mathematioatgdure that turns the pseudorange measurements (of a
single epoch) into the receiver position solution. Nextjmteduce the ellipse of concentration, and review theraigkie
decomposition of the variance matrix and finally we sumnesitiz computation of the Horizontal Protection Level (HPL).

M easurement M odel

We start from the following model ~ N (Az, Q. ), where vectoy contains the SBAS-corrected pseudorange measure-
ments (the underscore denotes the stochastic nature) atmt ¥@&lenotes the (unknown) parameter vector, with typically
three coordinates and the receiver clock offset. The alyimon-linear functional relations between the meas@rme
and the parameters have been approximated by linear ongslesign matrixA (full rank) represents the linearized
relations. The expectation (or mean)fs E(y) = Az. Matrix Q,, is the pseudoranges’ variance matrix (positive
definite, symmetric), typically a diagonal matrix; the eartes for the SBAS-corrected pseudoranges are specifigf in [
Stochastic vectoy is (assumed to be) normally distributed, indicated by tptab/V.

With y = Az + e, the pseudorange errazshave zero mean and are normally distributedsy N (0, Q,,), and this
meets the assumption with the Protection Level equatioaiiliee versions of [3].

The results in [4], based on data from several experimamdigate that the Gaussian distribution provides an adequat
model for the error in pseudorange code and carrier phassureaents. It shows that in good circumstances, with decent
equipment and an appropriate functional model, the measmenoise is normally distributed.

Parameter Estimation and Error Propagation

Based on the functional relatiafi(y) = Az and an assumed weight matfiX, the Weighted Least-Squares Estimator
(WLSE) for the unknown parameters can be obtained (AT W A)~! AT Wy (estimator indicated by the hat-symbol).
The estimator is unbiased(z) = = and the variance matrix 9;; = (ATWA)~1 ATWQ,, W A(ATW A)~ 1,

When the weight matri¥)” is taken as the inverse of the measurements’ variance métrix Q;yl, as prescribed
in [3] for precision approach, the estimator achieves mimimmean squared error (minimum variance) among all linear
and unbiased estimators, and is the Best Linear Unbiaseda&iet (BLUE).

As the estimator is a linear function of the measurementsntirmal distribution is propagated, and we arrive at

Notation

In the sequel we will consider the (estimation) error in tesipon: & — z, for which we havet — z ~ N (0, Qzz). We
will skip the unknown true values, hencet ~ N (0, Qzz). For notational convenience we skip the hat-symbol. And by
default we assume the position coordinates to be expresselbcal topocentric system East (E), North (N) and Up (U),
of which we consider the horizontal coordinates, henee ( £ ) and variance matrig) ., = ( 9E UEQN

ﬂ ONE oN

The norm of vector: with respect to the metric by matrix/, is given by||x|»s = VT Mz. With the standard

metric, matrix)/ = I equals the identity matrix and is notionally omitted, thefsec R? | ||z|| < r} describes the area
of a circle, centered at the origin, with radius

Ellipse of Concentration
When the matrix\/ is taken as the inverse of the variance matix= Q_!, the set

{z € B?|||z])%,_, =7} &)
describes the border-line of an ellipse. This ellipse isedathe ellipse of concentration. This set contains paintisat

all have the same probability density (the PDF is set equal ¢onstant, hencef,(z) = c), as illustrated in Fig. 1.
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Figure 1: Horizontal cross-section of the two dimensional
normal Probability Density Function (PDF) results in an drigure 2: The eigenvectots andus give the directions of
lipse of concentration. the axes of the ellipse of concentration.

The ellipse represents a contour line of the PDF. The shagh@@entation of the ellipse are determined by the variance
matrix Q.

Eigenvalue Decomposition

The positive definite and symmetric matrik., can be decomposed as follows

Que = UAUT 2)
where diagonal matri contains the (positive) eigenvalues@f., (we assume\; > )\,), and (orthogonal) matrix/
contains the corresponding eigenvectersaandu, as columns (the vectors are orthonormal, |j.|| = |Juz| = 1 and

T
uj ug = 0).

The eigenvectors dictate the directions of the (principa8s of the ellipse of concentration, as shown in Fig. 2. The
length of the semi major and semi minor axis a%;+ and+/\,7 respectively.

When we define vector to be the linear combination = U”x (which can be interpreted as a rotation of the
coordinate system), error propagation leads to N (0, A); the two (principal) components andv, are uncorrelated
(and independent in fact, with the normal distribution) e®ilipse of concentration (1) can also be written in terms: of

ol = 27 Qpke = A0 = 7 ©)

Horizontal Protection Level (HPL)

The equations for computing the protection levels are pitgsd in the MOPS [3].

KH NPA dma'or
HPLgpas = 7 g 4
SBAS { KH,PA dmajor ( )
with
2 2 2 21\?2
dmajor = LE _|2— ON + \/(70E 9 GN) + UQEN (5)

computed using the elements of variance maffix. We have thatl,,qjor = VA1. Therebyo,, = dmajor (regardless
of the distribution), andi,,.;.~ is the standard deviation of the one-dimensional positiwaren the direction of the
semi-major axis.

[3] states thatd,,.jo» corresponds to the error uncertainty along the semi-magisr @& the error ellips€, which
suggests an elliptically contoured distribution for thesition error. Specifically with the normal distributiod,, .o, iS
the length of the semi-major axis of the standard ellipseootentration{ = 1).

In the following two sections we will address the choice fog two K -factors in (4), the i ypa andK g pa.
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Figure 3: CircleC, with radiusr, which just encloses ellipsg. The semi-major axis of the ellipse has length; 7.

ENCLOSED ELLIPSE

The probability that the position solution lies inside it8roso-called ellipse of concentration, is easily obtaingdalar
random variableg = HQHQ = 27Q, Lz has a central Chi-square distribution with two degrees @édom, hence
2~ x*(2).

The prob:’;1b|I|tyP(|\:c||2 o < 72) can thus easily be evaluated throuBtx < 72), which can be obtained from the
central Chi-square Cumulatlve Distribution Function (Qwo degrees of freedom).

Pz=2"Qla <7 / falz (6)

The probability that the position solution lies inside thigpse S is a (guaranteed) lowerbound for the probability that
the solution lies inside the circlg, which just encloses the ellipse. We havér € S) < P(z € C), asS C C, as shown
in Fig. 3. The probability inside the circle requires intajon of the PDFf, (x) over a larger region, and hence gives a
larger probability. The equality holds whexy = ..

intermezzo: Rayleigh Distribution

When we takez = Az = (/v? + ﬁf, then the term under the square root is the sum of squaresoafitwmally

distributed variablesy; and vz) both with zero mean and variance equahio Hencez has a Rayleigh distribution

with parametek/\, i.e.zZ ~ Ray(\/)\—)

The above probability’(z < 7#2) can also be obtained &2 < \/\17). In practice the standard Rayleigh distribution
is used Ray(1), with parameter equal to 1) and with an integrity riskoefl0~° (per independent sample, as specified in
an earlier version of [3])Ky npa = 6.18 is obtained, e.g. in Matlab asayl i nv(1- 5e-9, 1) .

The occurrence of the Rayleigh distribution is no surprsevhent ~ Ray(1) thens = t? is s ~ x?(2) Chi-square
distributed. Loosely speaking, the Rayleigh distribuithe square root of the Chi-square distribution with twgrées
of freedom.

When)\; = Ay we havel|z|| ~ Ray(v/1).

WORST CASE DIRECTION

When we evaluate the probability in only one direction, thogst.case direction, and neglect the other direction, weearr
at an upperbound for the circular probability. The positéoror has largest standard deviation in the direction ofitse
eigenvectou; . The position error in this direction is distributed@gs~ N (0, A1). The probability reads

P(lvy| < VArF) (7)

The problem has been reduced to the evaluation of the pidgatbia one dimensional normal distribution. In the corttex
of [3], dmajor = VA1 @andK g, pa = 7, and with an integrity risk of - 10~ (per independent sample, as specified in an
earlier version of [3]) K, p4 = 6.0 is obtained, e.g. in Matlab asor mi nv(1- 1e-9, 0, 1).
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Figure 4: CircleC, with radiusr is just enclosed by banB. The one-sided bandwidthis= /7.

The probability computed with (7) represents the probghtfiat the two dimensional position solution is lying in the
bandB, as shown in Fig. 4. This band has a (one sided) width ef /A, 7 in the direction ofu;, and is unbounded in
the other. We hav@(z € B) > P(z € (). Or,P(z ¢ B) < P(z ¢ C); all of the very small accepted probability (of
the position being too far off), the integrity risk, is agsigl to only one component, leaving absolutely nothing fer th
other direction.

Discussion

The MOPS [3] do mention that the evaluation (7) concerns onbydimension/direction (as the along-track directiorf is o
far less relevance), but the general definition of the HPlhendame document, may suggest otherwise. ‘The Horizontal
Protection Level (HPkpgag) is theradius of a circlein the horizontal plane (. . .), with its center being at theetposition,
that describes the region assured to contain the indicatezidmtal position.” The Horizontal Alert Limit (HAL), whih
is the maximum acceptable HPL, is defined with the same wesagpt for ‘. .. the region that is required to contain the
indicated horizontal position with threquired probability

One might be inclined to use the HPL as a bound for the HPE, dtter|straightforwardly defined gkc|| =
Vv E? 4+ N2, for instance in SBAS verification activities, in particutArough the Stanford diagram [5] and [6], where
under controlled circumstances the actual HPE is assessketbanpared with the given HPL, as e.g. in [7] and [8]. With
the HPL too optimistic, one would experience more intediijures (PE-PL and PE-AL >PL), than one would expect
to see on the basis of tHé-factor. Though at the required probabilities empiricatlence is rare.

The belief of the PL bounding the PE is corroborated by theephof overbounding the pseudorange error, see e.g.
[6] and [9], which is then propagated into the position dam&ihe current version of the MOPS [3] points out that it is
the responsability of SBAS service providers to broadcastmeter values (for components that build up the pseuderan
error variance) such that the HRga g and VPLgga g bound their respective errors with target probabilities.

If, for precision approach, the HPE is no londer|, but instead taken to be equal to the projection of the ousiti
error x onto the worst-case direction given by vectar (with unit length, and obtained from the variance matrikg t
HPE can be properly compared to the above HPL. The HPE is ten gyv; = uf z.

EXACT CIRCULAR PROBABILITY
In this section an exact evaluation is presented of the fitityathat the position solution lies inside a circle wittgaven
radius. The probability is given by, see [10],

Pllal® < 7%) = Pl 3 <) = Pl 3 < 72) ®)

where two non-central Chi-square distributions are inedj\both with two degrees of freedom. The Chi-square random
variables are denoted b_é? The non-centrality parameter$ andr? respectively, can be computed from the eigenvalues

NAVITEC 2008



A1 and); of the variance matrix) ...

| =

T T
+
VAL Ve

The eigenvalues should be ordered such that A, > 0.

Equation (8) gives in principle the Cumulative Distributibunction (CDF) of a quadratic form, the squared radius,
of normally distributed variables.

It should be emphasized that (8) providesexactevaluation of the probability of lying inside the circleC' of
Fig. 3, and that it is based on the same information as theqare¥wo measures, namely the mean (assumed to be zero
in our discussion), the variance mattik..., and the normal distribution far. Tables and algorithms for the non-central
Chi-square distribution are available (the numericaleatbn is in principle based on an infinite sum, but in pragctiee
probabilities in (8) can be accurately computed). This iegh clear recommendation for the use of (8), over the pusvio
two measures which are (only) approximations.

r r

iz Vh

ry = ( )andw:%( )

2

intermezzo: Lateral and Vertical Error

By default it has been assumed in this discussion that thelimvensional position errar consisted of the local East and
North components. In aviation, in particular in approactdmoas mentioned before, the vertical, or Up component is
most important, if not critical. Next the lateral, or crasaek component is relevant, whereas the along-track coemo

is of less importance.

If instead of East, North and Up components, Along-track @rpss-track (X), and Up (U) are used (Up-component
is maintained), the two-dimensional vector could contha@ross-track and Up-components- % . The circular
probability of Cross-track and Up together being within at&@i@ radius, is readily obtained through (8), and can be
incorporated in the visualization of the desired flight pagthmeans of a tunnel-in-the-sky, at the current epoch, and
possibly predicted a short time span ahead as well. Thenr#ton of the pair of navigation error probability and ragliu
can be overlaid with the vertical cross-section of the tliturize.

CHEBYSHEV INEQUALITY

The last measure doestneed, as opposed to the previous three, knowledge on thiopasiror distribution. The multi-
variate Chebyshev inequality requires, next to the meat thie variance matrix. It provides a (guaranteed) lowendou
for the circular probability. It reads, see e.g. [11],

< trace(Qzx)

- 2

P(lz]? > ) < =

for everyr > 0. The probability that: resides outside the circle, centered at the origin, and reithusr, is always
smaller than (or at most equal to) the sum of the variancedetivoyr2. This inequality can be rewritten into

B trace(Qzz)

Pzl < %) 2 1- 2 ©

EXAMPLES

In this section we employ the four measures to five differantance matrices. The performance is compared in Fig. 5.
The five example variance matrices are:

1. Q= (2) (2) ) , No correlation, same variance; the variance matrix is Edddentity matrix; eigenvalues, = 2
and\y =2
2 0 . . . .
2.Q= 0 4 ) no correlation, different variances; eigenvaligs= 4 and\, = 2

3.Q= ( i ; ) moderate correlation, same variance; eigenvalyes 3 and; = 1
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4. Q = ( % i > moderate correlation, different variances; typical ficat example from satellite navigation;

eigenvalues\, = 3 ++v/2andl, =3 — /2

5.Q = ( 226 246 > large correlationd,, ., = 0.92), different variances; eigenvalugs = 5.79 and 2 = 0.21

The worst case direction measure always overbounds thelpiliy the dashed line is always above the bold solid
line of the exact circular probability.

The dotted line of the multi-variate Chebyshev inequatitglivays below the bold solid line. The inequality provides a
guaranteed lowerbound to the probability, and it does nedk@owledge about the error distribution, but it is a vense
bound when the contained probability is large, i.e. fordenadii. The lower-right graph shows one-minus-the-prditgb
the integrity risk, in a logarithmic scale, for variance mat#t. The worst case direction is slightly too optimistic thre
size of the integrity risk.

CONCLUSION

The motivation for this study lies in the quest for a meashed &dequately represents the horizontal position erttoe. T
goal was to find the radius (= the HPL) of the circle, centetdti@true position, that contains the position solutiorhwit
a pre-set probability, or the other way around, to speciéyrddius and find the probability. Applications lie in precis
positioning and navigation on land at at sea with differemels of required probability.

In this contribution four methods have been presented. Thie bhsed on the enclosed ellipse gives a lowerbound for
the probability, and hence is safe. The HPL based on the wass direction gives an upperbound for the probability.
When one interprets this HPL as a measure for the HPE ratlisgpio optimistic. The answer to the question in the title
therefore reads a ‘no’, the HPL domset provide a guaranteed bound on the HPE. The presented exdgaton of the
circular probability is fairly straightforward and theogé recommended.

The above three measures start from a normal distributiothé&position error. The extent to which this assumption
is adequate and acceptable depends on the application amit¢dhhmstances. The Chebyshev inequality can dispense
with knowledge about the distribution, but is hampered leyése) overbounding in terms of radius, and practical use is
guestionable.
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Figure 5: Circular probability for variance matrices 1 thgh 5, computed using the four methods, with (6) as solid line
(7) as dashed line, (8) as bold solid line, and (9) as dottedd IProbability is visualized as the Cumulative Distributi
Function (CDF) with the radius of the circle along the honitad axis (units can be thought to be in meters), and the
probability along the vertical axis. The last graph (bottagiht) shows one-minus-the-probability, the integritsii for

the variance matrix of case 4, in a logarithmic scale.
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