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ABSTRACT

The Horizontal Position Error (HPE) must be no greater than the confidence bound, known as the Horizontal Protection
Level (HPL), beyond the specified probability (integrity risk). The definition of protection levels is one of the keys
to integrity in Satellite Based Augmentation Systems (SBAS) as the Wide Area Augmentation System (WAAS) and
the European Geostationary Navigation Overlay Service (EGNOS), with the main application of providing guidance to
aircraft during approach. In this contribution we show and explain, also by means of geometrical interpretation, that
of the two defined HPLs, theoretically — with the HPE as the radial error in the two dimensional horizontal plane —
one provides a lowerbound (for the probability, and hence issafe), but that the other one leads to an upperbound (hence
overestimating the probability contained within the HPL-area). These effects are noticeable in the size of the integrity
risk. We present, as an alternative, anexactevaluation of the circular probability, and for completeness we include the
Chebyshev inequality, which provides a lowerbound for the probability regardless the actual distribution of the position
error. The measures are mutually compared, and assumptionsand relations are pointed out.

INTRODUCTION

Is the Horizontal Position Error (HPE) bounded by the Horizontal Protection Level (HPL), with the required and specified
probability? That is the central question of this contribution. In operational circumstances the actual Position Error (PE)
can not be assessed, only in controlled experiments an accurate ground-truth for the position or trajectory can be available.
In practice a statistical measure on the position error has instead to represent (in part) navigational performance.

In satellite navigation, and with a Satellite Based Augmentation System (SBAS) in particular, the use of the Protection
Level (PL) as a statistical bound to the Postion Error (PE) iscommon place. In one dimension, setting the interval
length that bounds the error in one component of the position, given the probability, is usually straightforward, once
the distribution of the position error is available. In two (or more) dimensions, this may get complicated by statistical
dependence between the position components (and by different possibilities for the geometric area or volume to bound
the error).

In aviation typically the (one-dimensional) vertical component of the user position error is of primary concern; the
horizontal components are of secondary concern. This situation may be just the other way around in other applications as
positioning and navigation on land and at sea. This formed the incentive to the underlying study.

In general we would like to capture the two-dimensional position error in a measure or statement that relates theradial
error to probability, preferably by exact means. The adjective ‘radial’ translates into a circle as the area that contains the
position error in two dimensions. There is no distinction between the two components. When an exact assessment is not
possible, one should underbound the probability or conversely overbound the radius, in order to be ‘on the safe side’. The
performance measure shall be conservative, as in the end, itis all about ensuring user safety.

There exists a large amount of literature on scalar measuresto evaluate or bound multi-dimensional errors, see e.g.
[1] for the two-dimensional case, and the topic is also addressed in [2]. In this contribution we review specifically
two measures that have been outlined explicitly in earlier versions of the Minimum Operational Performance Standards
(MOPS) for SBAS [3]. First, the probability contained in theellipse just enclosed by the circle provides a lowerbound
for the circular probability (and hence is on the safe side).Second, evaluation of the probability in only the worst case
direction (and neglecting the other) leads to upperbounding the desired circular probability (and thereby doesnot represent
guaranteed navigational performance). Then we present anexactmeasure of probability on the horizontal position error
radius. To the authors’ knowledge this measure has not been in use yet in the context of SBAS. The basic assumption
for all three measures so far is a normally distributed position error. To put this assumption into perspective also the
multi-variate Chebyshev inequality is used, which provides a lowerbound for the circular probability, irrespective of the
position error distribution. In the last section all four measures are systematically compared in five numerical examples.
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This contribution isnotabout error modelling, as overbounding individual error contributions to the total pseudorange
error, nor about Fault Detection and Exclusion (FDE), we consider nominal conditions, the so-called ‘fault or bias free
case’H0. This contributionis about translating the error distribution of a two dimensional position into a single scalar
probabilistic measure that describes or bounds the error.

PRELIMINARIES

In this section we give a concise review of the mathematical procedure that turns the pseudorange measurements (of a
single epoch) into the receiver position solution. Next, weintroduce the ellipse of concentration, and review the eigenvalue
decomposition of the variance matrix and finally we summarize the computation of the Horizontal Protection Level (HPL).

Measurement Model

We start from the following modely ∼ N(Ax, Qyy), where vectory contains the SBAS-corrected pseudorange measure-
ments (the underscore denotes the stochastic nature) and vectorx denotes the (unknown) parameter vector, with typically
three coordinates and the receiver clock offset. The originally non-linear functional relations between the measurements
and the parameters have been approximated by linear ones, and design matrixA (full rank) represents the linearized
relations. The expectation (or mean) ofy is E(y) = Ax. Matrix Qyy is the pseudoranges’ variance matrix (positive
definite, symmetric), typically a diagonal matrix; the variances for the SBAS-corrected pseudoranges are specified in [3].
Stochastic vectory is (assumed to be) normally distributed, indicated by the capital N .

With y = Ax + e, the pseudorange errorse have zero mean and are normally distributed:e ∼ N(0, Qyy), and this
meets the assumption with the Protection Level equation in earlier versions of [3].

The results in [4], based on data from several experiments, indicate that the Gaussian distribution provides an adequate
model for the error in pseudorange code and carrier phase measurements. It shows that in good circumstances, with decent
equipment and an appropriate functional model, the measurement noise is normally distributed.

Parameter Estimation and Error Propagation

Based on the functional relationE(y) = Ax and an assumed weight matrixW , the Weighted Least-Squares Estimator
(WLSE) for the unknown parameters can be obtainedx̂ = (AT WA)−1AT Wy (estimator indicated by the hat-symbol).
The estimator is unbiasedE(x̂) = x and the variance matrix isQx̂x̂ = (AT WA)−1 AT WQyyWA(AT WA)−1.

When the weight matrixW is taken as the inverse of the measurements’ variance matrix, W = Q−1
yy , as prescribed

in [3] for precision approach, the estimator achieves minimum mean squared error (minimum variance) among all linear
and unbiased estimators, and is the Best Linear Unbiased Estimator (BLUE).

As the estimator is a linear function of the measurements, the normal distribution is propagated, and we arrive at
x̂ ∼ N(x, Qx̂x̂).

Notation

In the sequel we will consider the (estimation) error in the position: x̂ − x, for which we havêx − x ∼ N(0, Qx̂x̂). We
will skip the unknown true valuesx, hencêx ∼ N(0, Qx̂x̂). For notational convenience we skip the hat-symbol. And by
default we assume the position coordinates to be expressed in a local topocentric system East (E), North (N) and Up (U),

of which we consider the horizontal coordinates, hencex =

(

E

N

)

and variance matrixQxx =

(

σ2

E σEN

σNE σ2

N

)

.

The norm of vectorx with respect to the metric by matrixM , is given by‖x‖M =
√

xT Mx. With the standard
metric, matrixM = I equals the identity matrix and is notionally omitted, the set {x ∈ R2 | ‖x‖ ≤ r} describes the area
of a circle, centered at the origin, with radiusr.

Ellipse of Concentration

When the matrixM is taken as the inverse of the variance matrixM = Q−1

xx , the set

{x ∈ R2 | ‖x‖2

Q
−1

xx

= r̃2} (1)

describes the border-line of an ellipse. This ellipse is called the ellipse of concentration. This set contains pointsx that
all have the same probability density (the PDF is set equal toa constantc, hencefx(x) = c), as illustrated in Fig. 1.
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Figure 1: Horizontal cross-section of the two dimensional
normal Probability Density Function (PDF) results in an el-
lipse of concentration.

x1

x2

u1
u2

v1

v2

Figure 2: The eigenvectorsu1 andu2 give the directions of
the axes of the ellipse of concentration.

The ellipse represents a contour line of the PDF. The shape and orientation of the ellipse are determined by the variance
matrixQxx.

Eigenvalue Decomposition

The positive definite and symmetric matrixQxx can be decomposed as follows

Qxx = UΛUT (2)

where diagonal matrixΛ contains the (positive) eigenvalues ofQxx (we assumeλ1 ≥ λ2), and (orthogonal) matrixU
contains the corresponding eigenvectorsu1 andu2 as columns (the vectors are orthonormal, i.e.‖u1‖ = ‖u2‖ = 1 and
uT

1 u2 = 0).
The eigenvectors dictate the directions of the (principal)axes of the ellipse of concentration, as shown in Fig. 2. The

length of the semi major and semi minor axis are
√

λ1r̃ and
√

λ2r̃ respectively.
When we define vectorv to be the linear combinationv = UT x (which can be interpreted as a rotation of the

coordinate system), error propagation leads tov ∼ N(0, Λ); the two (principal) componentsv
1

andv
2

are uncorrelated
(and independent in fact, with the normal distribution). The ellipse of concentration (1) can also be written in terms ofv:

‖x‖2

Q
−1

xx

= xT Q−1

xx x = vT Λ−1v = r̃2 (3)

Horizontal Protection Level (HPL)

The equations for computing the protection levels are prescribed in the MOPS [3].

HPLSBAS =

{

KH,NPA dmajor

KH,PA dmajor
(4)

with

dmajor =

√

√

√

√

σ2

E + σ2

N

2
+

√

(

σ2

E − σ2

N

2

)2

+ σ2

EN (5)

computed using the elements of variance matrixQxx. We have thatdmajor =
√

λ1. Therebyσv1
= dmajor (regardless

of the distribution), anddmajor is the standard deviation of the one-dimensional position error in the direction of the
semi-major axis.

[3] states that ‘dmajor corresponds to the error uncertainty along the semi-major axis of theerror ellipse’, which
suggests an elliptically contoured distribution for the position error. Specifically with the normal distribution,dmajor is
the length of the semi-major axis of the standard ellipse of concentration (̃r = 1).

In the following two sections we will address the choice for the twoK-factors in (4), theKH,NPA andKH,PA.
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Figure 3: CircleC, with radiusr, which just encloses ellipseS. The semi-major axis of the ellipse has length
√

λ1r̃.

ENCLOSED ELLIPSE

The probability that the position solution lies inside its own so-called ellipse of concentration, is easily obtained.Scalar
random variablez = ‖x‖2

Q
−1

xx

= xT Q−1

xx x has a central Chi-square distribution with two degrees of freedom, hence

z ∼ χ2(2).
The probabilityP (‖x‖2

Q
−1

xx

≤ r̃2) can thus easily be evaluated throughP (z ≤ r̃2), which can be obtained from the
central Chi-square Cumulative Distribution Function (CDF) (two degrees of freedom).

P (z = xT Q−1

xx x ≤ r̃2) =

∫ r̃2

0

fz(z)dz (6)

The probability that the position solution lies inside the ellipseS is a (guaranteed) lowerbound for the probability that
the solution lies inside the circleC, which just encloses the ellipse. We haveP (x ∈ S) ≤ P (x ∈ C), asS ⊂ C, as shown
in Fig. 3. The probability inside the circle requires integration of the PDFfx(x) over a larger region, and hence gives a
larger probability. The equality holds whenλ1 = λ2.

intermezzo: Rayleigh Distribution

When we takẽz =
√

λ1z =
√

v2

1
+ λ1

λ2

v2

2
, then the term under the square root is the sum of squares of two normally

distributed variables (v
1

and
√

λ1

λ2

v
2
) both with zero mean and variance equal toλ1. Hencez̃ has a Rayleigh distribution

with parameter
√

λ1, i.e. z̃ ∼ Ray(
√

λ1).
The above probabilityP (z ≤ r̃2) can also be obtained asP (z̃ ≤

√
λ1r̃). In practice the standard Rayleigh distribution

is used (Ray(1), with parameter equal to 1) and with an integrity risk of5 · 10−9 (per independent sample, as specified in
an earlier version of [3]),KH,NPA = 6.18 is obtained, e.g. in Matlab asraylinv(1-5e-9,1).

The occurrence of the Rayleigh distribution is no surprise as whent ∼ Ray(1) thens = t2 is s ∼ χ2(2) Chi-square
distributed. Loosely speaking, the Rayleigh distributionis the square root of the Chi-square distribution with two degrees
of freedom.

Whenλ1 = λ2 we have‖x‖ ∼ Ray(
√

λ1).

WORST CASE DIRECTION

When we evaluate the probability in only one direction, the worst case direction, and neglect the other direction, we arrive
at an upperbound for the circular probability. The positionerror has largest standard deviation in the direction of thefirst
eigenvectoru1. The position error in this direction is distributed asv

1
∼ N(0, λ1). The probability reads

P (|v
1
| ≤

√

λ1r̃) (7)

The problem has been reduced to the evaluation of the probability of a one dimensional normal distribution. In the context
of [3], dmajor =

√
λ1 andKH,PA = r̃, and with an integrity risk of2 · 10−9 (per independent sample, as specified in an

earlier version of [3]),KH,PA = 6.0 is obtained, e.g. in Matlab asnorminv(1-1e-9,0,1).
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Figure 4: CircleC, with radiusr is just enclosed by bandB. The one-sided bandwidth isr =
√

λ1r̃.

The probability computed with (7) represents the probability that the two dimensional position solution is lying in the
bandB, as shown in Fig. 4. This band has a (one sided) width ofr =

√
λ1r̃ in the direction ofu1, and is unbounded in

the other. We haveP (x ∈ B) > P (x ∈ C). Or, P (x 6∈ B) < P (x 6∈ C); all of the very small accepted probability (of
the position being too far off), the integrity risk, is assigned to only one component, leaving absolutely nothing for the
other direction.

Discussion

The MOPS [3] do mention that the evaluation (7) concerns onlyone dimension/direction (as the along-track direction is of
far less relevance), but the general definition of the HPL in the same document, may suggest otherwise. ‘The Horizontal
Protection Level (HPLSBAS) is theradius of a circlein the horizontal plane (. . . ), with its center being at the true position,
that describes the region assured to contain the indicated horizontal position.’ The Horizontal Alert Limit (HAL), which
is the maximum acceptable HPL, is defined with the same words,except for ‘. . . the region that is required to contain the
indicated horizontal position with therequired probability.’

One might be inclined to use the HPL as a bound for the HPE, the latter straightforwardly defined as‖x‖ =√
E2 + N2, for instance in SBAS verification activities, in particular through the Stanford diagram [5] and [6], where

under controlled circumstances the actual HPE is assessed and compared with the given HPL, as e.g. in [7] and [8]. With
the HPL too optimistic, one would experience more integrityfailures (PE>PL and PE>AL>PL), than one would expect
to see on the basis of theK-factor. Though at the required probabilities empirical evidence is rare.

The belief of the PL bounding the PE is corroborated by the concept of overbounding the pseudorange error, see e.g.
[6] and [9], which is then propagated into the position domain. The current version of the MOPS [3] points out that it is
the responsability of SBAS service providers to broadcast parameter values (for components that build up the pseudorange
error variance) such that the HPLSBAS and VPLSBAS bound their respective errors with target probabilities.

If, for precision approach, the HPE is no longer‖x‖, but instead taken to be equal to the projection of the position
errorx onto the worst-case direction given by vectoru1 (with unit length, and obtained from the variance matrix), the
HPE can be properly compared to the above HPL. The HPE is then given byv1 = uT

1
x.

EXACT CIRCULAR PROBABILITY

In this section an exact evaluation is presented of the probability that the position solution lies inside a circle with agiven
radius. The probability is given by, see [10],

P (‖x‖2 ≤ r2) = P (χ2

2,r2

2

≤ r2

1
) − P (χ2

2,r2

1

≤ r2

2
) (8)

where two non-central Chi-square distributions are involved, both with two degrees of freedom. The Chi-square random
variables are denoted byχ2. The non-centrality parametersr2

2 andr2

1 respectively, can be computed from the eigenvalues
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λ1 andλ2 of the variance matrixQxx.

r1 =
1

2
(

r√
λ1

+
r√
λ2

) and r2 =
1

2
(

r√
λ2

− r√
λ1

)

The eigenvalues should be ordered such thatλ1 ≥ λ2 ≥ 0.
Equation (8) gives in principle the Cumulative Distribution Function (CDF) of a quadratic form, the squared radius,

of normally distributed variables.
It should be emphasized that (8) provides anexactevaluation of the probability ofx lying inside the circleC of

Fig. 3, and that it is based on the same information as the previous two measures, namely the mean (assumed to be zero
in our discussion), the variance matrixQxx, and the normal distribution forx. Tables and algorithms for the non-central
Chi-square distribution are available (the numerical evaluation is in principle based on an infinite sum, but in practice the
probabilities in (8) can be accurately computed). This implies a clear recommendation for the use of (8), over the previous
two measures which are (only) approximations.

intermezzo: Lateral and Vertical Error

By default it has been assumed in this discussion that the twodimensional position errorx consisted of the local East and
North components. In aviation, in particular in approach mode, as mentioned before, the vertical, or Up component is
most important, if not critical. Next the lateral, or cross-track component is relevant, whereas the along-track component
is of less importance.

If instead of East, North and Up components, Along-track (L), Cross-track (X), and Up (U) are used (Up-component

is maintained), the two-dimensional vector could contain the Cross-track and Up-componentsx =

(

X

U

)

. The circular

probability of Cross-track and Up together being within a certain radius, is readily obtained through (8), and can be
incorporated in the visualization of the desired flight pathby means of a tunnel-in-the-sky, at the current epoch, and
possibly predicted a short time span ahead as well. The information of the pair of navigation error probability and radius
can be overlaid with the vertical cross-section of the tunnel tube.

CHEBYSHEV INEQUALITY

The last measure doesnotneed, as opposed to the previous three, knowledge on the position error distribution. The multi-
variate Chebyshev inequality requires, next to the mean, just the variance matrix. It provides a (guaranteed) lowerbound
for the circular probability. It reads, see e.g. [11],

P (‖x‖2 ≥ r2) ≤ trace(Qxx)

r2

for everyr > 0. The probability thatx resides outside the circle, centered at the origin, and withradiusr, is always
smaller than (or at most equal to) the sum of the variances divided byr2. This inequality can be rewritten into

P (‖x‖2 < r2) ≥ 1 − trace(Qxx)

r2
(9)

EXAMPLES

In this section we employ the four measures to five different variance matrices. The performance is compared in Fig. 5.
The five example variance matrices are:

1. Q =

(

2 0
0 2

)

, no correlation, same variance; the variance matrix is a scaled identity matrix; eigenvaluesλ1 = 2

andλ2 = 2

2. Q =

(

2 0
0 4

)

, no correlation, different variances; eigenvaluesλ1 = 4 andλ2 = 2

3. Q =

(

2 1
1 2

)

, moderate correlation, same variance; eigenvaluesλ1 = 3 andλ2 = 1
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4. Q =

(

2 1
1 4

)

, moderate correlation, different variances; typical practical example from satellite navigation;

eigenvaluesλ1 = 3 +
√

2 andλ2 = 3 −
√

2

5. Q =

(

2 2.6
2.6 4

)

, large correlation (ρx1x2
= 0.92), different variances; eigenvaluesλ1 = 5.79 andλ2 = 0.21

The worst case direction measure always overbounds the probability, the dashed line is always above the bold solid
line of the exact circular probability.

The dotted line of the multi-variate Chebyshev inequality is always below the bold solid line. The inequality provides a
guaranteed lowerbound to the probability, and it does not need knowledge about the error distribution, but it is a very loose
bound when the contained probability is large, i.e. for large radii. The lower-right graph shows one-minus-the-probability,
the integrity risk, in a logarithmic scale, for variance matrix 4. The worst case direction is slightly too optimistic onthe
size of the integrity risk.

CONCLUSION

The motivation for this study lies in the quest for a measure that adequately represents the horizontal position error. The
goal was to find the radius (= the HPL) of the circle, centered at the true position, that contains the position solution with
a pre-set probability, or the other way around, to specify the radius and find the probability. Applications lie in precise
positioning and navigation on land at at sea with different levels of required probability.

In this contribution four methods have been presented. The HPL based on the enclosed ellipse gives a lowerbound for
the probability, and hence is safe. The HPL based on the worst-case direction gives an upperbound for the probability.
When one interprets this HPL as a measure for the HPE radius, it is too optimistic. The answer to the question in the title
therefore reads a ‘no’, the HPL doesnot provide a guaranteed bound on the HPE. The presented exact evaluation of the
circular probability is fairly straightforward and therefore recommended.

The above three measures start from a normal distribution for the position error. The extent to which this assumption
is adequate and acceptable depends on the application and the circumstances. The Chebyshev inequality can dispense
with knowledge about the distribution, but is hampered by (severe) overbounding in terms of radius, and practical use is
questionable.
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Figure 5: Circular probability for variance matrices 1 through 5, computed using the four methods, with (6) as solid line,
(7) as dashed line, (8) as bold solid line, and (9) as dotted line. Probability is visualized as the Cumulative Distribution
Function (CDF) with the radius of the circle along the horizontal axis (units can be thought to be in meters), and the
probability along the vertical axis. The last graph (bottomright) shows one-minus-the-probability, the integrity risk, for
the variance matrix of case 4, in a logarithmic scale.
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