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Abstract

In this contribution we analyse the possible nonuniqueness in the least-squares
solution of the GNSS carrier-phase compass model. It is shown that this lack of
uniqueness may manifest itself in the fixed baseline estimator and therefore in the
GNSS compass readings. We present the conditions under which nonuniqueness
occurs and give explicit expressions for these nonunique least-squares solutions.
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1 Introduction

Global Navigation Satellite System (GNSS) attitude
determination is a field with a wide variety of
challenging (terrestrial, air and space) applications,
see e.g. Cohen (1992), Lu (1995), Tu et al. (1996),
Montgomery et al. (1997), Park and Teunissen (2003),
Simsky et al. (2005), Kuylen et al. (2006), Teunissen
(2006), Hide and Pinchin (2007).

In the present contribution we consider the deter-
mination of heading and elevation (or yaw and pitch)
and therefore restrict ourselves to the two-antenna,
single baseline case. GNSS carrier phase data and
integer ambiguity resolution are needed in order to
determine the compass parameters with the highest
possible precision. Short baseline, epoch-by-epoch,
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successful ambiguity resolution is however only pos-
sible if two or more frequencies are used, but not in the
single-frequency case. In the single-frequency case,
the underlying model is too weak to ensure a suffi-
ciently high probability of correct integer estimation.
Hence, for the single-frequency case, the correspond-
ing GNSS model needs to be strengthened and this
can be done by considering the length of the (small)
baseline to be known. This model is referred to as the
GNSS compass model and it differs from the standard
GNSS single baseline model in that the known length
of the baseline is added as a (weighted) constraint.

The inclusion of the baseline length constraint
strengthens the model, thereby increasing the ambi-
guity success rates significantly, but at the same
time it also complicates the least-squares estimation
process. This is particularly true for short to very-
short GNSS baselines (less than 1 m), as a reduction in
baseline length increases the nonlinearity of the curved
manifold. Related to the high-nonlinearity is another
potential complication, namely the occurrence of
singularities in the solution process. We will show that
non-uniqueness in the attitude solutions may indeed
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occur and we will characterize them for different
measurement scenarios. Singularities of different types
may occur and we will identify them in relation
to various data subspaces. The theoretical analysis
presented also improves our understanding of the near-
singular situations. Due to a lack of space, the theorems
are presented without an extensive proof. These will
be published elsewhere.

2 The GNSS Compass Model

In principle all GNSS baseline models can be cast
in the following frame of linear(ized) observation
equations,

E.y/ D Aa C Bb; D.y/ D Qyy; a 2 Z
p; b 2 R

n

(14.1)

where y is the given GNSS data vector of order m,
and a and b are the unknown parameter vectors of
order p and n respectively. E.:/ and D.:/ denote the
expectation and dispersion operator, and A and B are
the given design matrices that link the data vector to
the unknown parameters. Matrix A contains the carrier
wavelengths and the geometry matrix B contains the
receiver-satellite unit line-of-sight vectors. The vari-
ance matrix of y is given by the positive definite matrix
Qyy . The data vector y will usually consist of the
‘observed minus computed’ single- or multi-frequency
double-difference (DD) phase and/or pseudorange
(code) observations accumulated over all observation
epochs. The entries of vector a are then the DD carrier
phase ambiguities, expressed in units of cycles rather
than range. They are known to be integers, a 2 Z

p .
The entries of the vector b will consist of the remaining
unknown parameters, such as baseline components
(coordinates) and possibly atmospheric delay param-
eters (troposphere, ionosphere). They are known to be
real-valued, b 2 R

n. Vectors a and b are referred to as
the ambiguity vector and baseline vector, respectively.

Since we consider the GNSS-Compass application
in the present contribution, we restrict attention to the
case of satellite tracking with two near-by antennas.
The short distance between the two antennas implies
that we may neglect the (differential) atmospheric
delays. Thus b consists then only of the three
coordinates of the between baseline vector of the two
antennas.

If we may assume that the two antennas are firmly
attached to the body of the moving platform, the length

of the baseline vector may be determined a priori. In
that case we can strengthen the GNSS model (14.1) by
including the additional observation equation

E.l/ D kbk; D.l/ D �2
l (14.2)

The required compass information (e.g. heading and
pitch) follows from the baseline solution of the GNSS
compass model (14.1) and (14.2). To obtain the most
precise compass information, use needs to be made of
the very precise carrier phase data. The inclusion of
the carrier phase data into the model accounts for the
presence of the unknown integer ambiguity vector a

in (14.1).

3 The Least Squares Compass
Solution

The least-squares (LS) objective function of the GNSS
compass model (14.1) and (14.2) is given as H.a; b/ D
ky � Aa � Bbk2

Qyy
C ��2

l .l � kbk/2, with a 2 Z
p ,

b 2 R
n, and k:k2

Qyy
D .:/T Q�1

yy .:/. The LS parameter
solution is therefore given by the minimizers

La D arg min
a2Zp

Œmin
b2Rn

H.a; b/�

Lb D arg min
b2Rn

H. La; b/ (14.3)

This can be worked out further if we let Oa, with
variance matrix Q Oa Oa, denote the LS ambiguity solution
of (14.1) without the integer constraint a 2 Z

n, and
let Ob.a/, with variance matrix Q Ob.a/ Ob.a/

, denote the
conditional LS baseline solution of (14.1) assuming a

known. Then the LS solution (14.3) can be shown to
work out as

La D arg min
a2Zp

�
k Oa � ak2

Q
OaOa

C min
b2Rn

G.a; b/

�

Lb D arg min
b2Rn

G. La; b/ (14.4)

where G.a; b/ D k Ob.a/ � bk2
Q

Ob.a/Ob.a/
C ��2

l .l � kbk/2.

Note that (14.4) reduces to the LS parameter
solution of the GNSS-baseline model (14.1) in case
�2

l D 1. Then minb2Rn G.a; b/ D 0 and arg minb2Rn

G.a; b/ D Ob.a/, from which it follows that the
minimizers of H.a; b/ are given as

La D arg min
a2Zn

k Oa � ak2
Q

OaOa
and Lb D Ob. La/ (14.5)
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This is the commonly used solution for real-time
kinematic (RTK) GNSS baseline processing, see e.g.
Strang and Borre (1997), Teunissen and Kleusberg
(1998), Misra and Enge (2001), Hofmann-Wellenhoff
and Lichtenegger (2001), Leick (2003).

The computational complexity of (14.5) resides in
the computation of the integer least-squares (ILS) solu-
tion La. Its computation is based on an integer search
inside an ellipsoidal search space, which can be effi-
ciently executed by means of the standard LAMBDA
method, see Teunissen (1994) and Teunissen (1995).
The computation of Lb D Ob. La/, the so-called fixed base-
line, is straightforward once La is known.

In our present case, we have �2
l ¤ 1. This increases

the computational complexity considerably. First, the
computation of the fixed baseline vector is more com-
plicated; compare (14.4) with (14.5). Second, the com-
putation of La is now based on an integer search in a
non-ellipsoidal search space. An efficient method for
this search has been developed, see Teunissen (2006),
Buist (2007), Park and Teunissen (2007), Giorgi et al.
(2008).

4 Nonuniqueness of Compass
Solution

Note that the minimization problem minb2Rn G.a; b/

of (14.4), is part of the ambiguity objective function.
Thus for every evaluation of the ambiguity objec-
tive function, this minimization problem needs to be
solved. A proper understanding of this minimization
problem is therefore essential for the GNSS-compass
ambiguity resolution problem. To simplify notation,
we define

F.b/ D kb0 � bk2
Q C ��2

l .l � kbk/2 (14.6)

Then, for Q D Q Ob.a/ Ob.a/
, we have minb G.a; b/ D minb

F.b/ if b0 D Ob.a/, and Lb D arg minb F.b/ if b0 D Ob. La/,
see (14.3) and (14.4). Since all the properties of the
fixed baseline estimator can be derived from F.b/, we
use from now on the simplified notation of (14.6).

The minimization of (14.6) is a nonlinear least-
squares problem of which the manifold is highly
curved if Q is large and l is small. This is the typical
case for the GNSS compass, where the baseline is very
short and the single-epoch solution is determined by
the relative poor code data.

The problem of minimizing F.b/ can be described
in geometric terms as the problem of finding a point
of contact between the b0-centred ellipsoid kb0 �
bk2

Q D constant and the origin-centred sphere kbk2 D
constant. These points of contact are easily determined
in case Q is a scaled unit matrix, but not so in the
general case.

We have the following theorem.

Theorem 1. Let Mb D Q�1 C ��2
l .1 � l=kbk/ In.

Then F. Ob/ � F.b/ for all b 2 R
n if and only if M Ob Ob D

Q�1b0 and M Ob � 0.

This theorem formulates necessary and sufficiency
conditions for Ob to be a global minimizer of F.b/.
It also provides the conditions for having nonunique
minimizers. Note that Mb D M Ob for any b ¤ Ob that has

the same length as Ob, kbk D k Obk. Thus for nonunique
minimizers to exist, it is necessary that M Ob is
singular.

It can be shown that Mb is singular if and only if
kbk D l=.1 C �2

l �1/, where �1 is the smallest eigen-
value of Q�1. Nonunique minimizers, if they exist, lie
therefore all on the sphere with radius �1.

5 When do the Nonunique Solutions
Exist?

Before we can determine the nonunique solutions, we
first need to know whether they exist. The consis-
tency requirement of the system of equations, Mbb D
Q�1b0 and kbk D �1, results in two conditions that the
data vector b0 has to satisfy. The first condition is that
b0 must lie in the range space of matrix QMb, b0 2
R.QMb/. The second condition comes into play when
the first condition is satisfied. This second condition
puts restrictions on the length of b0. Not every b0 that
makes Mbb D Q�1b0 consistent, will namely produce
a solution that satisfies kbk D �1.

We start with the first condition. Let the orthogonal
matrix of eigenvectors of Q�1 be partitioned as U D
.U1; U2/, with U1 containing all eigenvectors having
�1 as eigenvalue. Then the null space and range space
of QMb are spanned by the columns of U1 and U2,
respectively. Hence, the first consistency condition can
be formulated as

U T
1 b0 D 0 or b0 2 R.U2/ (14.7)
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If this condition is satisfied, then Mbb D Q�1b0 is
solvable and its solutions can be expressed as

b D bp C U1ˇ1 (14.8)

where bp D .QMb/Cb0 is a particular solution, with
.QMb/C the pseudo inverse of QMb , and where U1ˇ1

is the homogeneous solution, with ˇ1 still undeter-
mined.

Since b of (14.8) has to satisfy kbk D �1, the as yet
undetermined ˇ1 cannot take on values freely, but has
to satisfy

kˇ1k2 D �2
1 � k.QMb/Cb0k2 � 0 (14.9)

This shows that b0 may not have an arbitrary length.
Hence, the nonnegativity condition of (14.9) is the
second consistency condition that b0 has to satisfy.

If we take the two conditions, (14.7) and (14.9),
together, we may summarize our result as follows.

Theorem 2a. The function F.b/ (cf. (14.6)) has
nonunique minimizers if and only if

b0 2 C D fx 2 R
n j kxk2

˙ � �2
1 ; x 2 R.U2/g

(14.10)

where ˙�1 D U1U
T
1 C .QMb/CT .QMb/C.

Thus we now know, if the data vector b0 lies in the
intersection of R.U2/ and the origin-centred ellipsoidal
region kxk2

˙ � �2
1 , that we will have more than one

minimizer of F.b/.

6 The Nonunique Solutions
Determined

It is now not difficult anymore to determine the
nonunique solutions. We already know that the
nonunique minimizers, if they exist, lie all on
the sphere with radius �1, denoted as S�1 . This
combined with the general solution of Mbb D Q�1b0

(cf. (14.8)), gives the following result.

Theorem 2b. The nonunique minimizers of F.b/

(cf. (14.6)), if they exist, are given by the solution set

S D fbp C R.U1/g \ S�1 (14.11)

where bp D .QMb/Cb0.

The consistency set C and solution set S can both
be given a clear geometric interpretation. The set
C describes the two consistency conditions (14.7)
and (14.9). Geometrically this set describes the
intersection of an origin-centred ellipsoidal region with
the linear manifold R.U2/. Since R.U1/ and R.U2/

are each others orthogonal complement, we have
dim R.U2/ D n � dim R.U1/. Thus if dim R.U1/ D n,
then dim R.U2/ D 0 and CD f0g, and if dim R.U1/ D
n � 1, then dim R.U2/ D 1 and C reduces to an origin
centred interval.

The solution set S is the intersection of the linear
manifold bp C R.U1/ with the sphere S�1 . It consists
of two points if the linear manifold is a straight line
(dim R.U1/ D 1) and it forms a circle if the linear
manifold is a plane (dim R.U1/ D 2). Since the dimen-
sion of the linear manifold is equal to the number
of times the eigenvalues of Q�1 are equal to �1,
we have 1 � dim R.U1/ � n. If dim R.U1/ D n, then
bp C R.U1/ DR

n and SD S�1 . This is the special case
when all eigenvalues of Q�1 are equal (i.e. Q is a
scaled unit matrix).

As an illustration, we now show for the cases n D
1; 2; 3 how the sets C and S may look like.

Case n D 1: If n D 1, then U1 D 1, U2 D 0, and
Q D ��1

1 . Therefore C D f0g and S D S�1 D fb 2 Rj
b D ˙�1g. Since F.b/ D ��2

l .1C�2
l �1/.b

2�2�1jbjC
l�1/ for b0 D 0, it is readily verified that ˙�1 are
indeed its two minimizers (see Fig. 14.1).

Case n D 2: We now have two cases: (a) U1 D I2,
U2 D 0 and (b) U1 D u1, U2 D u2. In case (a) we
have C D f0g and S D S�1 . In case (b), C is an origin-
centred interval of length 2�1.1 � �1=�2/ along the u2

direction and S consists of the two intersection points
of the line b D bp C u1˛ with the circle S�1 (see
Fig. 14.2). Note, if b0 lies on the edge of C and thus
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Fig. 14.1 The function F.b/ D �1.b0 � b/2 C ��2
l .l � jbj/2

for b0 D 0 (left) and b0 ¤ 0 (right)
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b = bp + u1a

C u1
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Fig. 14.2 The case n D 2 with U1 D u1, U2 D u2: Shown are
the circle S�1 with axes u1 and u2 , the interval C, the two solution
points of S, the line b D bp C u1˛ and the ellipse kb0 � bk2

Q D
constant

kb0k D �1.1 � �1=�2/, that kbpk D �1 and the two
intersection points coincide in one point.

Case n D 3: We have the three cases: (a) U1 D I3,
U2 D 0, (b) U1 D .u1; u2/, U2 D u3, and (c) U1 D
u1, U2 D .u2; u3/. In case (a) we have C D f0g and
S D S�1 . In case (b), C is an origin-centred interval of
length 2�1.1 � �1=�3/ along the u3 direction and the
solution space S is the circle with centre bp and radiusq

�2
1 � kbpk2 that follows from intersecting the plane

b D bp C u1˛1 C u2˛2 with the sphere S�1 . In case
(c), C is an origin-centred ellipse in the U2-plane with
principal axes �1.1 � �1=�2/u2 and �1.1 � �1=�3/u3.
The solution space S is then the two point intersection
of the line b D bp C u1˛ with the sphere S�1 .

The latter case (n D 3 (c)) is the one that is most
likely to occur with GNSS, since the eigenvalues of
the variance matrix Q D Q Ob.a/ Ob.a/

will usually all be
different.
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