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Abstract

In this contribution we study the multi-frequency, carrier-phase slip detection
capabilities of a single receiver. Our analysis is based on an analytical expression
that we present for the multi-frequency minimal detectable carrier phase cycle slip.
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1 Introduction

In this contribution we will study the Global
Navigation Satellite System (GNSS) reliability of
multi-frequency single-receiver, single-satellite code-
and carrier phase time series. Examples of such studies
for the single-baseline GNSS models can be found
in Teunissen (1998), De Jong (2000), De Jong and
Teunissen (2000). There are several advantages to
single-receiver, single-satellite data validation. First,
it can be executed in real-time inside the receiver and
thus enables early quality control on the raw data.
Second, the geometry-free single-satellite approach
has the advantage that no satellite positions need to be
known beforehand and thus no complete navigation
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messages need to be read and used. Moreover, this
approach also makes the method very flexible for
processing data from any (future) GNSS in a simple
way, like e.g. (modernized) GPS (USA), Galileo (EU),
Glonass (Russia), and Compass (China).

Our study of the single-receiver, single-satellite
reliability will be analytical and supported with numer-
ical results. As reliability measure we focus on the
Minimal Detectable Biases (MDBs). The MDB is a
measure for the size of model errors that can be
detected with a certain power and a certain probability
of false alarm. The MDB can be determined from
the functional and stochastic model and is therefore a
useful tool to assess how well certain model errors can
be detected. We formulate alternative hypotheses for
model errors like outliers in de code data on different
frequencies, cycle slips in the carrier phase data on
different frequencies, potential loss of lock, and iono-
spheric disturbances. The closed form formulas that
will be presented are applicable to any GNSS with an
arbitrary number of frequencies and include also the
ionosphere-weighted case. Due to lack of space, we
only work out the single- and multi-frequency MDBs
for cycle slips. However, the same approach can be
followed for the other type of model errors as well.
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We emphasize the results for (modernized) GPS and
Galileo.

2 The Multi-frequency
Single-Receiver Geometry-Free
Model

Null Hypothesis: The carrier phase and pseudo range
observation equations of a single receiver that tracks
a single satellite on frequency fj (j D 1; : : : ; n) at
time instant t (t D 1; : : : ; k), see e.g., Teunissen and
Kleusberg (1998), Misra and Enge (2001), Hofmann-
Wellenhoff and Lichtenegger (2001), Leick (2003), are
given as

�j .t/ D ��.t/ � �j I .t/ C b�j C n�j .t/

pj .t/ D ��.t/ C �j I .t/ C bpj C npj .t/
(24.1)

where �j .t/ and pj .t/ denote the observed carrier
phase and pseudo range, respectively, with correspond-
ing zero mean noise terms n�j .t/ and npj .t/. The
unknown parameters are ��.t/, I .t/, b�j and bpj . The
lumped parameter ��.t/ D �.t/ C cıtr .t/ � cıts.t/ C
T .t/ is formed from the receiver-satellite range �.t/,
the receiver and satellite clock errors, cıtr .t/ and
cıts.t/, respectively, and the tropospheric delay T .t/.
The parameter I .t/ denotes the ionospheric delay
expressed in units of range with respect to the first
frequency. Thus for the fj -frequency pseudo range
observable its coefficient is given as �j D f 2

1 =f 2
j . The

parameters b�j and bpj are the phase bias and the
instrumental code delay, respectively. The phase bias
is the sum of the initial phase, the phase ambiguity and
the instrumental phase delay.

Both b�j and bpj are assumed to be time-invariant.
This is allowed for relatively short time spans, in which
the instrumental delays remain sufficiently constant.
The time-invariance of b�j and bpj implies that only
time-differences of ��.t/ and I .t/ are estimable. We
may therefore just as well formulate the observation
equations in time-differenced form. Then the parame-
ters b�j and bpj get eliminated and we obtain

�j .t; s/ D ��.t; s/ � �j I .t; s/ C n�j .t; s/

pj .t; s/ D ��.t; s/ C �j I .t; s/ C npj .t; s/
(24.2)

where �j .t; s/ D �j .t/��j .s/, with a similar notation
for the time-difference of the other variates.

Would we have a priori information available about
the ionospheric delays, we could model this through
the use of additional observation equations. In our
case, we do not assume information about the absolute
ionospheric delays, but rather on the relative, time-
differenced, ionospheric delays. We therefore have the
additional (pseudo) observation equation

Io.t; s/ D I .t; s/ C nI .t; s/ (24.3)

with the (pseudo) ionospheric observable Io.t; s/. The
sample value of Io.t; s/ is usually taken to be zero.

If we define �.t/ D .�1.t/; : : : ; �n.t//T , p.t/ D
.p1.t/; : : : ; pn.t//T , y.t/ D .�.t/T ; p.t/T ; Io.t//T ,
g.t/ D .��.t/; I .t//T , � D .�1; : : : ; �n/T , y.t; s/ D
y.t/ � y.s/ and g.t; s/ D g.t/ � g.s/, then the
expectation E.:/ of the 2nC1 observation equations of
(24.2) and (24.3) can be written in the compact vector-
matrix form

E .y.t; s// D Gg.t; s/ (24.4)

where

G D

2
64

en ��

en C�

0 1

3
75 (24.5)

This two-epoch model can be extended to an arbitrary
number of epochs. Let y D .y.1/T ; : : : ; y.k/T /T and
g D .g.1/T ; : : : ; g.k/T /T , and let Dk be a full rank
k � .k � 1/ matrix of which the columns span the
orthogonal complement of ek , DT

k ek D 0 (recall that
ek is a k-vector of 1’s). Then �y D .DT

k ˝I2nC1/y and
�g D .DT

k ˝ I2/g are the time-differenced vectors of
the observables and parameters, respectively, and the
k-epoch version of (24.4) can be written as

H0 W E .�y/ D .Ik�1 ˝ G/�g (24.6)

where ˝ denotes the Kronecker product. Model (24.6),
or its two-epoch variant (24.4), will be referred to as
our null hypothesis H0.

Alternative Hypotheses: The data collected by a
single GNSS receiver can be corrupted by many
different errors. The errors that we consider are the
ones that can be modelled as a shift in the mean of
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the data vector, E.�y j Ha/ D E.�y j H0/ C shift.
Modelling errors of this kind are outliers in the
pseudo range data, cycle slips in the carrier phase
data, ionospheric disturbances and loss-of-lock.
To accomodate these model biases, the alternative
hypotheses are formulated as

Ha W E.�y/ D .Ik�1 ˝ G/�g C .DT
k sl ˝ H/b

(24.7)
where

H
.2nC1/�q

D

8̂
ˆ̂<
ˆ̂̂:

.In; 0; 0/T .phase loss of lock/

.ıT
j ; 0; 0/T .carrier phase/

.0; ıT
j ; 0/T .pseudo range/

.0; 0; 1/T .ionosphere/

(24.8)

and

sl
k�1

D
(

.
1

0; : : : ; 0;
1

1; 0; : : : ;
k

0/T .spike/

.0; : : : ; 0; 1; 1; : : : ; 1/T .slip/
(24.9)

The n-vector ıj denotes the unit vector having a 1 as
its j th entry.

Stochastic model: With the time-invariant variance
matrices of the undifferenced carrier phase and (code)
pseudo range observables �.t/ and p.t/ denoted as
Q�� and Qpp, respectively, the dispersion of the two-
epoch model (24.4) is assumed to be given as

D .y.t; s// D blockdiag.2Q��; 2Qpp; �2
�I /

(24.10)
where the scalar �2

�I denotes the variance of the time-
differenced ionospheric delay.

If we assume that the time series of the absolute
ionospheric delays can be modelled as a first-order
autoregressive stochastic process (�2

I ˇjt�sj, with
0 � ˇ � 1), the variance of the time-differenced
ionospheric delay works out as

�2
�I D 2�2

I .1 � ˇjt�sj/ (24.11)

For two successive epochs we have 2�2
I .1 � ˇ/, while

for larger time-differences the variance will tend to the
white-noise value 2�2

I if ˇ < 1. Thus �2
I and ˇ can

be used to model the level and smoothness of the noise
in the ionospheric delays.

For the measurement precision of the multi-
frequency GNSS signals, we assume Q�� D �2

�I2n

Table 24.1 Standard deviations of undifferenced GPS and
Galileo observables (Simsky et al., 2006)

L1 L2 L5 E1 E5a E5b E5 E6
Code (cm) 15 15 3.9 6.1 3.9 3.7 0.9 4.4
Phase (mm) 1.0 1.3 1.3 1.0 1.3 1.3 1.3 1.2
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Fig. 24.1 The exponential 1C10 exp.�E=10/ and the cosecant
function 1=sin.E/

and Qpp D �2
pI2n, where we used the values as given

by De Wilde et al. (2006), see also De Bakker
et al. (2009). These zenith-referenced values are
summarized in Table 24.1. To obtain the standard
deviations for an arbitrary elevation, these values still
need to be multiplied with an elevation dependent
function. In practice one often uses an exponential or
cosecant function, see Fig. 24.1. For these functions,
the function values are between 3 and 4 at 15ı elevation
and approach the minimum of 1 at 90ı elevation.

3 Testing and Reliability

In order to test H0 against Ha, we make use of the
uniformly most powerful invariant (UMPI) test, see
e.g., Arnold (1981), Koch (1999), Teunissen (2006).
The UMPI test rejects the null hypothesis H0 in favour
of the alternative hypothesis Ha, if

Tq D ObT Q�1
Ob Ob

Ob > �2
˛.q; 0/ (24.12)

where Ob, with variance matrix Q Ob Ob , is the least-squares
estimator of b under Ha, and �2

˛.q; 0/ is the ˛-level
critical value. The UMPI-test statistic Tq is distributed
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as Tq
H0� �2.q; 0/ and Tq

Ha� �2.q; �/, respectively,
where � D bT Q�1

Ob Ob b is the noncentrality parameter.
The power of the test, denoted as 	 , is defined as

the probability of correctly rejecting H0, thus 	 D
PŒTq > �2

˛.q; 0/ j Ha
. It depends on q (the dimension
of b, a.k.a. degrees of freedom of test), ˛ (level of sig-
nificance), and through the noncentrality parameter �,
on b (the bias vector). Once q, ˛ and b are given, the
power can be computed.

One can however also follow the inverse route. That
is, given the power 	 , the level of significance ˛ and
the dimension q, the noncentrality parameter can be
computed, symbolically denoted as �0 D �.˛; q; 	/.
With �0 given, one can invert the equation �0 D
bT Q�1

Ob Ob b and obtain

MDB D
s

�0

d T Q�1
Ob Ob d

d .d D unit vector/ (24.13)

This is Baarda’s (1968) celebrated Minimal Detectable
Bias (MDB) vector. The length of the MDB vector
is the smallest size of bias vector that can be found
with probability 	 in the direction d with test (24.12).
By letting d vary over the unit sphere in R

q one
obtains the whole range of MDBs that can be detected
with probability 	 with test (24.12). The MDB can be
computed once �0 and Q Ob Ob are known. The value of �0

depends on q, ˛ and 	 . For later use, we have shown
the dependence in Fig. 24.2 of

p
�0 on 	 for different

values of q and ˛.
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Fig. 24.2 Square root of noncentrality parameter �0 as function
of power 	 for degrees of freedom q D 1; 2; 3; 4 and levels of
significance ˛ D 0:01; 0:001

We now present an analytical expression for the
MDB of the single-receiver carrier-phase slip. First we
consider the single-frequency receiver, then the multi-
frequency GNSS receiver.

4 Single Frequency Receiver
MDB-Slip

The two-epoch, single-frequency receiver MDB for a
carrier-phase slip can be shown to read as

MDB�j D
q

2.�2
�j

C �2
pj

C 4�2
j �2

I /�0 (24.14)

where �I D �I

p
1 � ˇjt�sj. This expression clearly

shows how the detectability is affected by the measure-
ment precision (��j ; �pj ) , the signal frequency (�j ),
and the time-smoothness of the ionosphere (�I ).

In Fig. 24.3 we show the single-frequency phase-
slip MDB�j s for GPS and Galileo as function of �I .
For Fig. 24.3 we used the frequencies of Tables 24.2
and 24.3, and the standard deviations of Table 24.1.
The figure clearly shows the effects of (code) measure-
ment precision and frequency. For small values of �I ,
the effect of (code) measurement precision dominates,
while for larger values, the frequency effect starts to
be felt.
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Fig. 24.3 Single-frequency phase-slip MDBs as functie of
�I D �I

p
1 � ˇjt�sj. The MDBs are shown for the GPS

frequencies L1, L2, and L5, and the Galileo frequencies E1, E5,
E5a, E5b, E6 (NB: k D 2, ˛ D 0:001, 	 D 0:80 and I .t / is
defined w.r.t. L1 frequency)
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Table 24.2 GPS frequencies and wave lengths

L1 L2 L5
Frequency (MHz) 1575:42 1227:60 1176:45

Wave length (cm) 19:0 24:4 25:5

Table 24.3 Galileo frequencies and wave lengths

E1 E5a E5b E5 E6
Freq (MHz) 1575:420 1176:450 1207:140 1191:795 1278:750

� (cm) 19:0 25:5 24:8 25:2 23:4

Since all MDBs, except the E5-MDB, are larger
than 20 cm, one can not expect a single-frequency
receiver to perform well on these frequencies as fas
as cycle slip detection is concerned. Even for those
that have their MDB around their wave length – like
L5, E5a and E5b – one should keep in mind that these
values will become larger for lower elevations.

Cycle slip detection on the E5 frequency does
however have a good chance of performing well.
The zenith-referenced E5-MDB is about 8 cm for
�I D 3 mm. Since this value will have to be multiplied
by about 3 to get the 20ı elevation MDB, the result
still stays below the E5 wave length of 25.2 cm.

For the other frequencies, single-frequency cycle
slip detection will be difficult when using the single-
receiver, single-satellite geometry-free model.

5 Multi Frequency Receiver
MDB-Slips

The two-epoch, multi-frequency carrier phase slip
MDB can be shown to read as

MDB�j D ��

vuut
 

2

1 � 1
n�

!
�0 (24.15)

where

1

n�
D 1

n

1

1 C "

0
B@1 C .�j � 1�"

1C"
N�/2

1
n

Pn
iD1 �2

i �
�

1�"
1C"

�2 N�2 C �2
�=�2

I

n.1C"/

1
CA

(24.16)

with the phase-code variance ratio " D �2
�=�2

p and the

average N� D 1
n

Pn
j D1 �j .
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Fig. 24.4 Multi-frequency phase-slip MDBs as functie of
�I D �I

p
1 � ˇjt�sj. The MDBs are shown for dual- and

triple-frequency GPS, and for dual- triple- and quadruple-
frequency Galileo. (NB: k D 2, ˛ D 0:001, 	 D 0:80 and
I .t / is defined w.r.t. L1 frequency)

The dual-, triple- and quadruple-frequency MDB
phase-slips for GPS and Galileo are shown in Fig. 24.4.
The quadruple-frequency Galileo-case performs best,
while the dual-frequency GPS-case performs poorest.
In all cases however, the MDBs are below the 1-cycle
level, even below the 5 cm if �I � 1 cm. Thus single-
receiver, multi-frequency cycle slip detection will be
possible for such ionospheric conditions. For the more
extreme case that �I is several cm, GPS dual-frequency
(e.g. L1L2; L1L5) cycle slip detection will become
problematic for lower elevations.
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