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ABSTRACT
In this contribution we give a brief review of the integer
least-squares theory for GNSS attitude determination, to-
gether with a description of the key elements that make
up the LAMBDA method for resolving the baseline con-
strained integer ambiguities.

1 INTRODUCTION
Global Navigation Satellite System (GNSS) ambiguity re-
solution is the process of resolving the unknown cycle
ambiguities of the carrier phase data as integers. The sole
purpose of ambiguity resolution is to use the integer am-
biguity constraints as a means of improving significantly
on the precision of the remaining model parameters.
In this contribution we consider the problem of ambiguity
resolution for GNSS attitude determination. Attitude de-
termination based on GNSS is a rich field of current stud-
ies, with a wide variety of challenging (terrestrial, sea, air
and space) applications, see e.g. [1-18].
In the present contribution we give a brief review of the
integer least-squares theory for GNSS attitude determina-
tion as it has been developed in [18], [22] and [26]. This
review includes a description of the various elements that
make up the LAMBDA method for resolving the base-
line constrained integer ambiguities. Although our theory
and method are applicable to the multi-baseline GNSS
attitude determination problem, we restrict attention in

the present contribution to the single baseline case (two
antennas) and therefore only consider the determination
of heading and elevation (or yaw and pitch). The cor-
responding model is referred to as the GNSS compass
model.
This contribution is organised as follows. In Section 2,
we present the integer least-squares (ILS) solution of the
standard GNSS model. This solution can be used for pre-
cise attitude determination provided the underlying GNSS
model has sufficient strength. Since this is true in the
multi-frequency case, GNSS attitude determination does
not really pose a challenge if multiple frequencies are ob-
served. In that case already the standard GNSS model
has sufficient strength, thus implying that the standard
LAMBDA method can be used for ambiguity resolution.
The real ambiguity resolution challenge for GNSS atti-
tude determination occurs when only single frequency da-
ta of a single epoch is used. In that case an additional
strengthening of the underlying GNSS model is needed.
In the GNSS compass model, this additional strengthen-
ing is found in assuming the length of the baseline known.
Instead of using the baseline length as a hard constraint,
we will use it as a weighted constraint, thus adding ad-
ditional flexibility to our approach. The weighted con-
strained ILS solution is presented in Section 3. If the
weight is set to zero, the solution reduces to the standard
ILS solution and if the weight goes to infinity, one obtains
the so-called quadratically constrained ILS solution.
In Section 4, we focus on the different issues that come up
when solving the weighted constrained ILS problem. We
describe the key elements of the constrained LAMBDA
method and show how bounding functions combined with
a search and shrink approach allows one to find the sought
for integer solution in an efficient manner.
We also present an approximate method that is based on a
quadratic approximation of the nonlinear objective func-
tion at the constrained float solution. In addition to be-
ing useful for setting the size of the search space for the
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constrained LAMBDA method, this approximate method
may also be used in its own right if the length of the base-
line is not too short. This has the advantage that then the
standard LAMBDA method may be used again. The con-
tribution is concluded with a summary.

2 THE STANDARD GNSS MODEL
2.1 Heading and Elevation
In principle all the GNSS baseline models can be cast in
the following frame of linearized observation equations,

E(y) = Aa+Bb , D(y) = Qyy (1)

where y is the given GNSS data vector of order m, and
a and b are the unknown parameter vectors of order n
and p respectively. E(.) and D(.) denote the expectation
and dispersion operator, and A and B are the given de-
sign matrices that link the data vector to the unknown
parameters. Matrix A contains the carrier wavelengths
and the geometry matrix B contains the receiver-satellite
unit line-of-sight vectors. The variance matrix of y is
given by the positive definite matrix Qyy . The data vec-
tor y will usually consist of the ’observed minus com-
puted’ single- or multi-frequency double-difference (DD)
phase and/or pseudorange (code) observations accumu-
lated over all observation epochs. The entries of vector
a are then the DD carrier phase ambiguities, expressed in
units of cycles rather than range. They are known to be
integers, a ∈ Zn. The entries of the vector b will consist
of the remaining unknown parameters, such as baseline
components (coordinates) and possibly atmospheric delay
parameters (troposphere, ionosphere). They are known to
be real-valued, b ∈ Rp. Vectors a and b are referred to as
the ambiguity vector and baseline vector, respectively.
Since we consider the GNSS-Compass application in the
present contribution, we restrict attention to the case of
satellite tracking with two near-by antennas. The short
distance between the two antennas implies that we may
neglect the (differential) atmospheric delays. Thus p = 3
and b = (b1, b2, b3)T ∈ R3 consists then only of the three
coordinates of the baseline vector between the two anten-
nas. If the baseline vector is parametrized with respect to
the local North-East-Up frame, the heading H and eleva-
tion E can be computed from the baseline coordinates b1,
b2 and b3 as

H = arctan
b2
b1

and E = arctan
b3√
b21 + b22

(2)

To obtain the most precise estimates of heading and el-
evation, use needs to be made of the very precise carrier
phase data. The inclusion of the carrier phase data into the
model accounts for the presence of the unknown integer
ambiguity vector a in (1).

2.2 Integer Least Squares
We apply the least-squares estimation principle to model
(1) to solve for the unknown parameter vectors a and b.

This gives the minimization problem

min
a,b
‖y −Aa−Bb‖2Qyy

, a ∈ Zn, b ∈ R3 (3)

with the square of the weighted norm defined as ‖.‖2Qyy
=

(.)TQ−1
yy (.). The minimization problem (3), first intro-

duced in [19], is subject to the integer constraint a ∈ Zn
and has therefore been coined an Integer Least Squares
(ILS) problem by the author.
According to [19], the objective function of (3) can be
decomposed as

‖y −Aa−Bb‖2Qyy
= ‖ê‖2Qyy

+
‖â− a‖2Qââ

+ ‖b̂(a)− b‖2Qb̂(a)b̂(a)

(4)

where ê = y − Aâ − Bb̂ is the least-squares residual
vector, â and b̂ are the solutions of the normal equations[

ATQ−1
yy A ATQ−1

yy B
BTQ−1

yy A BTQ−1
yy B

] [
â

b̂

]
=
[
ATQ−1

yy y
BTQ−1

yy y

]
(5)

and

b̂(a) = (BTQ−1
yy B)−1BTQ−1

yy (y −Aa) (6)

is the conditional baseline solution (conditioned on as-
suming a known). The real-valued least-squares solu-
tions â and b̂ are referred to as the float solutions of model
(1). The variance matrix of the float ambiguity vector â
is the inverse of the b-reduced normal matrix of (5) and
it is given as Qââ = (ĀTQ−1

yy Ā)−1, with Ā = P⊥BA

and P⊥B = Im − B(BTQ−1
yy B)−1BTQ−1

yy . The variance
matrix of the conditional baseline vector b̂(a) is given as
Qb̂(a)b̂(a) = (BTQ−1

yy B)−1.
From the orthogonal decomposition (4) it is clear that the
third term on the right side can be made zero for any a ∈
Zn. The solution to the ILS minimization problem (3)
follows therefore as

ǎ = arg min
a∈Zn

||â− a||2Qââ
and b̌ = b̂(ǎ) (7)

These solutions are referred to as the fixed solutions of
model (1). The computation of ǎ involves a search for the
integer vector that is closest to â in the metric of Qââ. It
can be computed efficiently with the LAMBDA method
[20], [21]. Once ǎ has been computed, the baseline solu-
tion b̌ follows from substituting ǎ for a in (6).
For b̌ = b̂(ǎ), and thus heading Ȟ and elevation Ě, to
take full advantage of the very high precision of the car-
rier phase data, the uncertainty in ǎ needs to be as small as
possible. This implies that the probability of correct inte-
ger ambiguity estimation, the so-called ambiguity success
rate, needs to be close enough to 1.
For ambiguity resolution to be successful, the underlying
GNSS model needs to have sufficient strength. Clearly,
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the strength of the GNSS model improves and therefore
the success rate gets larger when the number of satel-
lites tracked gets larger, when the measurement preci-
sion improves, when the number of measurement epochs
increases, or when the number of frequencies used gets
larger. It can be shown that successful instantaneous am-
biguity resolution and therefore precise epoch-by-epoch
heading and elevation determination is possible using the
standard LAMBDA method, when two or more frequen-
cies are observed. This is not possible however, for the
single-frequency case, as is shown in table 1. This table
shows typical values of single-epoch, single-frequency,
short-baseline, ILS success rates for different measure-
ment precision and a varying number of satellites. Since
single-frequency, single-epoch ambiguity resolution is not
possible for the GNSS model (1), (unless the number of
tracked satellites is larger than 8 and the code precision is
better than 5 cm), a further strengthening of the model is
needed.

3 BASELINE CONSTRAINED GNSS MODEL
3.1 Constrained Integer Least Squares
If we may assume that the two antennas are firmly at-
tached to the rigid body of the moving platform, the con-
stant length of the baseline vector may be determined a
priori. In that case we can strengthen the GNSS model
(1) by including the additional constraint ||b|| = l, with l
the given baseline length (note: to denote the unweighted
norm, we write ||.|| instead of ||.||I ). Our least-squares
minimization problem becomes then

min
a,b
‖y −Bb−Aa‖2Qyy

, a ∈ Zn, b ∈ R3, ‖b‖2 = l2

(8)
This least-squares problem has been coined a Quadrati-
cally Constrained Integer Least-Squares (QC-ILS) prob-
lem in [22]. It was introduced for the first time in [9], see
also [15]. If we make use of decomposition (4), it follows
that

min
a∈Zn,b∈R3,‖b‖=l

‖y −Aa−Bb‖2Qyy
= ||ê||2Qyy

+

+ min
a∈Zn

(
‖â− a‖2Qââ

+ min
b∈R3,‖b‖=l

‖b̂(a)− b‖2Qb̂(a)b̂(a)

)
(9)

Note that now the third term on the right hand side does
not vanish anymore. This is due to the presence of the
baseline length constraint. We denote the minimizer of
the third term as

b̌(a) = arg min
b∈R3,‖b‖=l

‖b̂(a)− b‖2Qb̂(a)b̂(a)
(10)

It is the vector on the sphere of radius l that has smallest
distance to b̂(a), where distance is measured with respect
to the metric as defined by the variance matrix Qb̂(a)b̂(a).

Recall that b̂(a) is the conditional baseline solution (con-
ditioned on assuming a known). The solution b̌(a), hav-
ing length ||b̌(a)|| = l, is therefore the baseline-length

constrained, conditional baseline solution. It can geo-
metrically be depicted as the point where the ellipsoid
E = {b ∈ R3| ‖b̂(a) − b‖2Qb̂(a)b̂(a)

= constant} just

touches the sphere Sl = {b ∈ R3| ||b|| = l}, see Figure
1. This solution can be computed by means of an eigen-
value decomposition, see [18].

Fig. 1: The conditional baseline solution b̌(a) is point of
contact of ellipsoid E = {b ∈ R3| ‖b̂(a)− b‖2Qb̂(a)b̂(a)

=

constant} and sphere Sl = {b ∈ R3| ||b|| = l}.

With (10), the minimizers ǎ and b̌ of the QC-ILS problem
(9) follow as

ǎ = arg min
a∈Zn

(
‖â− a‖2Qââ

+ ‖b̂(a)− b̌(a)‖2Qb̂(a)b̂(a)

)
b̌ = b̌(ǎ)

(11)
Compare this solution with the unconstrained solution (7).
In the unconstrained case, ǎ is the integer vector closest
to â in the metric of Qââ. This is not true anymore in
the constrained case. In the constrained case a second
term is added to the objective function. This second term
measures the distance, in the metric ofQb̂(a)b̂(a), between

b̂(a) and the sphere Sl. Thus potential candidates a ∈ Zn
are now not only downweighted if they are further away
from â, but also if their corresponding conditional base-
line b̂(a) is further apart from the sphere Sl.

3.2 Weighted Constrained Integer Least Squares
Instead of using the baseline length as a hard constraint,
it could also be used as a weighted constraint. This could
be viewed as a more realistic approach, as the baseline
length l is afterall the result of an a priori measurement.
If we consider the baseline length as an observable, we
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σφ [mm] 3
σp [cm] 30 15 5

N=5 3.3 19.1 86.7
N=6 24.8 66.7 96.9
N=7 50.2 79.7 99.5
N=8 86.2 94.5 99.9

Table 1: Single-frequency, single-epoch, short-baseline, ILS success rates (%) for different measurement precision (undif-
ferenced σφ and σp) and different number of satellites (N).

need to extend model (1) with the observation equation

E(l) = ||b|| , D(l) = σ2
l (12)

Application of the least-squares principle to (1) and (12)
gives

min
a∈Zn,b∈R3

{
‖y −Aa−Bb‖2Qyy

+ σ−2
l (l − ‖b‖)2

}
(13)

This formulation is clearly more general than the previous
ones. For σ2

l →∞, it reduces to the ILS-problem and for
σ2
l → 0 it reduces to the QC-ILS problem. Through the

choice of σ2
l in (13), one can thus weigh the contribution

of the baseline length constraint to the objective function.
This offers the flexibility to allow the baseline length to
differ from l, as will be the case for a nonrigid antenna
configuration (e.g. nonrigid wing or fuselage of aircraft).
The weighted constrained integer least-squares problem
(13) was introduced for the first time in [22].
If we make use of decomposition (4), the minimizers ǎ
and b̌ of (13) follow as

ǎ = arg min
a∈Zn

(
‖â− a‖2Qââ

+G(a)
)

and b̌ = b̌(ǎ)

(14)
where

b̌(a) = arg min
b∈R3

H(a, b)

G(a) = H(a, b̌(a))

H(a, b) =
(
||b̂(a)− b||2Qb̂(a)b̂(a)

+ σ−2
l (l − ||b||)2

)
(15)

Compare this solution with the ILS solution (7) and the
QC-ILS solution (11). Although we used the same nota-
tion ǎ, b̌ and b̌(a) as before, this should not be any reason
for confusion.

3.3 The Baseline by Nonlinear Least-Squares
Although the resolution of the integer ambiguities is the
main topic of this contribution, it is useful to make a few
remarks about the different approaches that can be used
for computing the conditional baseline b̌(a). Thus, next
to the computation of the integer ambiguity minimizer ǎ,
one also needs to solve the baseline minimization problem

(see (15))

b̌(a) = arg min
b∈R3

(
||b̂(a)− b||2Qb̂(a)b̂(a)

+ σ−2
l (l − ||b||)2

)
(16)

In fact, this minimization problem needs to be solved ev-
ery time the function F (a) = ‖â− a‖2Qââ

+G(a) is eval-
uated for some a, see (14) and (15).
The conditional baseline b̌(a) is the least-squares solution
of the nonlinear model

E
[
b̂(a)
l

]
=
[

b
||b||

]
,

D
[
b̂(a)
l

]
=
[
Qb̂(a)b̂(a) 0

0 σ2
l

] (17)

Hence, one can try to compute b̂(a) by using standard
methods for solving nonlinear least-squares problems.
These are, for instance, the iterative descent methods, such
as the steepest descent method, the Gauss-Newton method,
or Newton’s method. These methods have good conver-
gency properties, provided the model is moderately non-
linear, the data are moderately inconsistent, and the initial
value is close enough to the solution [23]. In case of the
Gauss-Newton method, for instance, local convergence is
guaranteed if

|kn|||r̂||Qyy ≤ 1 (18)

where |kn| is the in absolute value largest normal cur-
vature of the nonlinear manifold (17) and r̂ is the cor-
responding least-squares residual vector.
The curvature of the nonlinear manifold (17) is in a large
part determined by the length of the baseline. The smaller
the baseline, the more curved the manifold becomes and
the more difficult it will be for the standard iterative de-
scent methods to converge to the required solution. Hence,
the standard iterative descent methods can be used for
large baselines but not for very small baselines. Thus if
the baselines are too small, one will need to resort to al-
ternative methods, such as, for instance, the globally con-
vergent method as described in [18].

4 THE CONSTRAINED LAMBDA METHOD
In this section we describe the various elements of the
constrained LAMBDA method. As we will see, the strength
of the underlying model and the length of the baseline
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determine the approach that can be taken to numerically
solve the integer minimization problem (14).
We start by pointing out some of the challenges of com-
puting ǎ. Then we briefly describe two approaches for
which the standard LAMBDA method can be used, the
global and the local ellipsoidal search. For the most chal-
lenging cases, such as the single-epoch, single-frequency,
short-baseline scenario, we describe how the various ele-
ments of the constrained LAMBDA method work.

4.1 The Challenges
In order to determine the integer ambiguities, we need to
solve the ambiguity minimization problem

ǎ = arg min
a∈Zn

F (a) with F (a) = ||â− a||2Qââ
+G(a)

(19)
In principle the integer minimizer ǎ can be computed by
means of an exhaustive search in the search space

Ω
(
χ2
)

=
{
a ∈ Zn | F (a) ≤ χ2

}
(20)

First one sets the size of the search space by choosing a
value for χ2. This value should be such that the search
space is nonempty. Then one collects all integer vectors
that lie inside Ω

(
χ2
)

and from this set one selects the in-
teger vector that returns the smallest value for F (a). This
integer vector will then be the solution sought, i.e. the in-
teger minimizer of F (a). Hence, the global search for ǎ
has the following components:

1. Set size: choose small χ2 such that Ω(χ2) nonempty.

2. Enumerate: find all integer vectors inside Ω(χ2).

3. Minimize: select ǎ such that F (ǎ) ≤ F (a) for all
a ∈ Ω(χ2).

Each of these three components poses challenges if one
wants to compute (19) in an efficient and timely manner.
In order to guarantee that Ω(χ2) is nonempty, we choose
χ2 = F (z) for some z ∈ Zn. A proper choice of z is one
that returns a small enough value for χ2. This requires
that one can choose z to be close to ǎ. This is not too diffi-
cult if the underlying GNSS model has sufficient strength.
Rounding or bootstrapping the float solution would then
give an integer solution that is already close to the solu-
tion sought. For models that lack sufficient strength, an
alternative method of choice needs to be made. We will
come back to this issue in Section 4.3.
Also the enumeration step of the above scheme is non-
trivial. The presence of the additional term G(a) in F (a)
makes that the geometry of the search space Ω(χ2) is not
ellipsoidal anymore. The more complicated geometry of
the search space makes the enumeration more difficult.
To simplify the enumeration, it would help if we could
work with a simpler search space such as, for instance, an

ellipsoidal search space. We will come back to this issue
in the next two sections.
Finally, in order to find ǎ, we need to evaluate F (a) for all
possible candidates. The evaluation of F (a) involves the
nontrivial computation of the conditional baseline b̌(a)
(see Section 3.3). Hence, if possible, one would like to
avoid the need of having to evaluate F (a) many times.

4.2 A Global Ellipsoidal Search
The complication of having to enumerate a search space
with a somewhat complicated geometry can be remedied
if one can work with an ellipsoidal search space instead.
In order to ensure that the global minimizer is included
in the enumeration, one needs to work with an ellipsoidal
search space that encompasses Ω

(
χ2
)
. The steps for com-

puting ǎ are then as follows:

1. Set size: choose small χ2 such that Ω(χ2) nonempty.

2. Enumerate: find all integer vectors inside the larger
ellipsoidal search space (see Figure 2)

Ω0(χ2) =
{
a ∈ Zn| ‖â− a‖2Qââ

≤ χ2
}
⊃ Ω(χ2)

This can be done very efficiently with the LAMBDA
method.

3. Minimize: select ǎ such that F (ǎ) ≤ F (a) for all
a ∈ Ω0(χ2).

Fig. 2: Visualization of Ω(χ2) ⊂ Ω0(χ2).

Clearly this exhaustive search is rigorous, simple and rather
straightforward to apply. This search is therefore an at-
tractive method for finding ǎ, provided it can be performed
in a timely manner. The search becomes inefficient though
if the search space contains too many integer vectors. Both
the enumeration and minimization will then contribute to
a slow down of the computational process. The larger the
search space, the more integer vectors need to be enumer-
ated and the more often the function F (a) needs to be
evaluated.
A too large search space Ω0(χ2) can be avoided if one
is able to compute a small enough value for χ2. This is
possible if the underlying unconstrained GNSS model has
sufficient strength. This is the case, for example, with
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short-baseline multi-frequency models. For such models,
bootstrapping (or rounding) the float solution usually al-
ready gives an integer close to the sought for integer so-
lution. Such a bootstrapped (or rounded) integer can then
be used to compute χ2. Thus for GNSS models that have
sufficient strength, the above LAMBDA-based search is
still attractive. This is generally not the case however for
models that are based on single-frequency, single-epoch
data. Such models are too weak to permit such a straight-
forward approach as described above. Hence, for these
challenging cases we present alternative methods.

4.3 A Local Ellipsoidal Search
Instead of trying to solve ǎ = arg mina∈Zn F (a) rigor-
ously, one can also try to solve it in an approximate sense,
i.e. by minimizing an approximation to the functionF (a).
The standard LAMBDA method can then again be ap-
plied if we make use of a quadratic approximation. This
idea was first introduced in [18], see also [22]. We there-
fore approximateF (a) in a quadratic sense using the ’best’
float solution available. The ’best’ float solution is the
constrained float solution, which is defined as the real-
valued least-squares solution of the baseline constrained
GNSS model (1) and (12). It can expected to be better
than the unconstrained float solution â, since it incorpo-
rates the baseline length information. We denote the con-
strained float ambiguity solution as ā. Since ∂aF (ā) = 0,
the quadratic approximation of F (a) at ā is given as

F (a) ≈ F (ā) +
1

2
(ā− a)T ∂2

aaF (ā)(ā− a) (21)

The Hessian matrix of (21) can be shown to read as (see
[22])

1
2∂

2
aaF (ā) =

ATQ−1
yy A−ATQ−1

yy B[BTQ−1
yy B + σ−2

l X]−1BTQ−1
yy A

(22)
with

X = Pb̄ +
(

1− l

||b̄||

)
P⊥b̄ (23)

and where Pb̄ = b̄(b̄T b̄)−1b̄T , P⊥
b̄

= I − Pb̄ and b̄ =
arg minbH(ā, b).
Note, if matrix X is set to zero, that (22) reduces to Q−1

ââ ,
the inverse of the variance matrix of the unconstrained
float ambiguity solution. Hence, the presence of matrix
X in (22) is due to the baseline length constraint.
Also note that b̄ is the constrained float solution of the
baseline. Hence, since σ2

l will usually be very small, the
’residual’ 1 − l/||b̄|| can expected to be small as well. In
fact, in the limit σ2

l → 0 we would have ||b̄|| = l. If we
neglect 1 − l/||b̄||, then X = Pb̄ and (22) reduces to the
matrix one would get when working with the linearized
model

E

[
y
l

]
=
[
A B
0 b̄T /||b̄||

] [
a
b

]
(24)

This is the model one gets when ||b|| in (12) is replaced by
its first order approximation ||b|| ≈ ||b̄||+ (b̄/||b̄||)T (b−
b̄) = b̄T b/||b̄||.
Depending on how well the above quadratic approxima-
tion works, it may be used to compute an integer solution
that is used either as a replacement of ǎ or as a way of
setting the size of the search space. For instance, one may
use (21) to compute an approximate integer solution as

ǎ′ = arg min
a∈Zn

||ā− a||2Q with Q−1 =
1

2
∂2

aaF (ā) (25)

Either this solution is used in its own right and is thus used
as a replacement of ǎ. This is allowed if one can show that
ǎ and ǎ′ have comparable success rates. Or, alternatively,
one uses ǎ′, assuming that it is close to ǎ, to set the size
of the search space through χ2 = F (ǎ′).
Instead of applying the ILS-principle to the quadratic ap-
proximation, one may also think of using bootstrapping
or rounding. In case of bootstrapping, one uses both ā
and the Hessian ∂2

aaF (ā), with the latter matrix playing
the role of the weight matrix, whereas in case of rounding,
one simply rounds the entries of ā to their nearest integer.
Whether the above quadratic approximation can be used
as a basis for computing a useful integer solution depends
to a large extend on the length of the baseline. The longer
the baseline, the better the quadratic approximation.
Hence, if the baseline is long enough, one can perform
successful, single-frequency, single-epoch ambiguity res-
olution with the standard LAMBDA method, provided it
is not based on the unconstrained model, but instead on
the above quadratic approximation that follows from the
constrained model (see Table 2).

4.4 Upper/Lower Bounding of Search Space
The quadratic approximation (21) avoids the complexity
of having to compute b̌(a) during the search. But it does
of course not guarantee a global integer minimizer as re-
sult. In order to approximate F (a) and still be able to
guarantee that we can find the global minimizer, we in-
troduce functions that are easy to evaluate and that bound
F (a) from below and from above:

F1(a) ≤ F (a) ≤ F2(a) (26)

With these two bounding functions correspond the two
search spaces

Ω1

(
χ2
)

=
{
a ∈ Zn | F1(a) ≤ χ2

}
Ω2

(
χ2
)

=
{
a ∈ Zn | F2(a) ≤ χ2

} (27)

They bound Ω(χ2) as

Ω2(χ2) ⊂ Ω(χ2) ⊂ Ω1(χ2) (28)

Note that the set ordering is the reverse of the function
ordering. Also note that the sizes of the three sets are
defined by the same χ2. Thus by varying χ2, all three sets
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σφ [mm] 3
σp [cm] 30 15 5

||b|| = 0.5 m 8.2 18.2 71.8
||b|| = 1 m 8.5 23.6 87.6
||b|| = 2 m 11.5 38.1 97.1
||b|| = 5 m 21.4 63.7 99.8
||b|| = 20 m 53.5 94.3 99.9
||b|| = 50 m 77.5 99.3 99.9

Table 2: Single-frequency, single-epoch, ILS success rates (%) based on a quadratic approximation of F (a) for different
measurement precision (undifferenced σφ and σp) and for different baseline lengths (||b||). Number of satellites was taken
as N = 6.

Fig. 3: Visualization of (26) and (28).

change in size, but the set ordering (28) remains intact
(see Figure 3).
Now recall that the global minimizer ǎ is found by evalu-
ating F (a) for all vectors in Ω(χ2), followed by select-
ing the vector that returns the smallest function value.
Hence, one would like Ω(χ2) to be small and nonempty.
The nonemptiness of Ω(χ2) guarantees that it contains
ǎ, and the smallness helps avoiding a multitude of func-
tion evaluations F (a). These two requirements are met if
Ω2(χ2) ⊂ Ω(χ2) is nonempty and Ω1(χ2) ⊃ Ω(χ2) is
small.
To obtain a small Ω1(χ2) while ensuring that Ω2(χ2) is
nonempty, we compute the smallest χ2 for which Ω2(χ2)
is nonempty. Hence, we determine χ2 as the integer min-
imizer of F2(a). This integer minimizer is determined by
means of a search and shrink strategy. Starting with a
certain initial χ2

0 (using the method of Section 4.3), we
search for an integer vector in the space Ω2:

Ω2

(
χ2

0

)
=
{
a ∈ Zn | F2(a) ≤ χ2

0

}
⊂ Ω

(
χ2

0

)
(29)

As soon as such an integer vector is found, say ã, the
space is shrunk to the value χ̃2 = F2(ã) < χ2

0 and the

search continues in this smaller set. In this way the search
proceeds rather quickly toward the integer minimizer of
F2(a), which we denote as ǎ2. This integer vector is not
necessarily the minimizer of F (a), but it is known to lie
inside the set

Ω
(
χ2

1

)
⊂ Ω1

(
χ2

1

)
=
{
a ∈ Zm | F1(a) ≤ χ2

1

}
(30)

with χ2
1 = F1(ǎ2). The sought for minimizer ǎ is then

found as the integer vector of Ω1

(
χ2

1

)
that returns the

smallest value of F (a).
Next to the search and shrink strategy, the constrained
LAMBDA method also has the option of the search and
expansion strategy as introduced in [9], see also [10], [15].
This strategy was also shown to have excellent numerical
performance.

4.5 The Bounding Functions
In principle, different choices for the bounding functions
can be made. For instance, it is possible to choose F1(a)
and F2(a) as quadratic forms so that Ω1(χ2) and Ω2(χ2)
of (28) become ellipsoidal regions. With the search and
shrink strategy, this gives the possibility to speed up the
global ellipsoidal search strategy of Section 4.2.
The goal of working with the bounding sets is that we
end up with a set Ω1(χ2) ⊃ Ω(χ2) that is small and
nonempty. This can be achieved better if we work with
bounding functions that have similar properties as F (a)
and therefore also produce similar search spaces.
Recall that

F (a) = ||â− a||2Qââ
+ min
b∈R3

H(a, b) (31)

with

H(a, b) = ||b̂(a)− b||2Q + σ−2
l (l − ||b||)2 (32)

for Q = Qb̂(a)b̂(a). We can bound F (a) from below
and from above with similar functions, if replace Q =
Qb̂(a)b̂(a) byQ = 1

λI3, where λ is the smallest and largest
eigenvalue ofQb̂(a)b̂(a), respectively. We have the follow-
ing Lemma.
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Lemma [22]: If Q = 1
λI and b̂(a) 6= 0, then

b̌(a) = arg min
b∈R3

H(a, b) =
l + σ2

l λ||b̂(a)||
1 + σ2

l λ

b̂(a)

||b̂(a)||
(33)

and

min
b∈R3

H(a, b) =
λ

1 + σ2
l λ

(
l − ||b̂(a)||

)2

(34)

If b̂(a) = 0, then the minimizer is not unique, but the
minimum still is.

With the help of this lemma it follows thatF (a) is bounded
from below and from above by the functions

F1(a) = ‖â− a‖2Qâ
+ λmin

1+σ2
l λmin

(
l − ||b̂(a)||

)2

F2(a) = ‖â− a‖2Qâ
+ λmax

1+σ2
l λmax

(
l − ||b̂(a)||

)2

(35)
Note that these functions are indeed easy to evaluate. They
avoid solving the baseline minimization problem (16).
It is our experience, that with this chosen set of bound-
ing functions, the final number of integer vectors in the
reduced search space Ω1(χ2

1), χ2
1 = F1(ǎ2), is very small

and often simply equal to one, see [25].

5 SUMMARY
In this contribution we introduced the GNSS-Compass
model as

E
[
y
l

]
=
[
Aa+Bb
||b||

]
,D
[
y
l

]
=
[
Qyy 0

0 σ2
l

]
(36)

with a ∈ Zn, b ∈ R3. It is the standard GNSS-baseline
model extended with an extra observation equation that
acts as a weighted baseline length constraint. Applica-
tion of the least-squares principle gives the minimization
problem

min
a∈Zn,b∈R3

{
‖y −Aa−Bb‖2Qyy

+ σ−2
l (l − ‖b‖)2

}
(37)

For σ2
l → ∞, it reduces to the ILS-problem (3) and for

σ2
l → 0 it reduces to the QC-ILS problem (8), see [9],

[15], [18], [19], [20], [21], [24], [25]. Through the choice
of σ2

l , one can thus weigh the contribution of the baseline
length constraint to the objective function.
It was shown that the integer estimation part of (37) re-
duces to the computation of

ǎ = arg min
a∈Zn

F (a) (38)

with F (a) = {||â − a||2Qââ
+ G(a)} and where G(a) =

minb∈R3{‖b̂(a)− b‖2Qb̂(a)b̂(a)
+ σ−2

l (l − ||b||)2}.
The inclusion of the baseline length constraint increases
the strength of the GNSS model and in particular enables

one to obtain higher ambiguity success rates. However,
the inclusion of the constraint also introduces an addi-
tional curvature which results in a more complex ambigu-
ity resolution process, in particular in case of very short
baselines. Whether or not the increase in success rate is
really needed and whether or not one really needs to take
the complete curvature into account, all depends on the
strength of the unconstrained GNSS model (σ−2

l = 0)
and on the length of the baseline.
For the precise determination of GNSS-compass informa-
tion, we therefore discriminated between the following
three classes of problems:

• Class I: If already the unconstrained GNSS model
has sufficient strength, one case base the fixed base-
line computation on the standard ILS estimator

ǎ = arg min
a∈Zn

||â− a||2Qââ
(39)

In this case no baseline length constraint is needed
(σ−2
l = 0) and the standard LAMBDA method can

be applied. This situation is applicable in the multi-
frequency case.

• Class II: Since the nonlinearity ofF (a) gets smaller
for longer baselines, one may use a quadratic ap-
proximation if the baseline is not too short. The
integer ambiguity vector is then computed as

ǎ = arg min
a∈Zn

||ā− a||2(∂2
aaF (ā))−1 (40)

with ∂2
aaF (ā) the Hessian matrix evaluated at the

constrained float ambiguity vector ā. As with the
problems of the previous class, this class permits
the application of the standard LAMBDA method.

• Class III: The above approximate ambiguity solu-
tion will not benefit sufficiently from the baseline
length constraint if the length is small. Hence, in
that case one will have to compute the integer am-
biguity vector rigorously as

ǎ = arg min
a∈Zn
{||â− a||2Qââ

+G(a)} (41)

This requires the use of the constrained LAMBDA
method.

A typical example from the last class is the single-frequen-
cy, single-epoch, short-baseline ambiguity resolution prob-
lem. The fact that in this case only single-frequency data
on a single epoch is available makes the unconstrained
GNSS model too weak for successful ambiguity resolu-
tion. Hence, the additional strength due to the baseline
length constraint is then really needed. However, the qua-
dratic approximation is not usable if the baseline length
is too short. Thus in order to resolve this most challeng-
ing ambiguity resolution problem we need to apply the

8



baseline constrained LAMBDA method. For this method
we described the following steps: (i) set initial size of
Ω2(χ2), by choosing χ2 = F2(z), where z follows from
using the quadratic approximation; (ii) apply the search
and shrink strategy to Ω2 to get ǎ2 = arg mina∈Zn F2(a);
(iii) set χ2 = F1(ǎ2), enumerate Ω1(χ2) and select in-
teger minimizer of F (a). As our experience shows, the
method allows for a very fast, single-frequency, single-
epoch ambiguity resolution of the GNSS compass model,
see [25].
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