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Abstract The prediction of spatially and/or temporal
varying variates based on observations of these variates
at some locations in space and/or instances in time, is
an important topic in the various spatial and Earth sci-
ences disciplines. This topic has been extensively stud-
ied, albeit under different names. The underlying model
used is often of the trend-signal-noise type. This model is
quite general and it encompasses many of the conceiv-
able measurements. However, the methods of predic-
tion based on these models have only been developed
for the case the trend parameters are real-valued. In the
present contribution we generalize the theory of least-
squares prediction by permitting some or all of the trend
parameters to be integer valued. We derive the solution
for least-squares prediction in linear models with inte-
ger unknowns and show how it compares to the solu-
tion of ordinary least-squares prediction. We also study
the probabilistic properties of the associated estimation
and prediction errors. The probability density functions
of these errors are derived and it is shown how they
are driven by the probability mass functions of the inte-
ger estimators. Finally, we show how these multimodal
distributions can be used for constructing confidence
regions and for cross-validation purposes aimed at test-
ing the validity of the underlying model.
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1 Introduction

The topic of this contribution is the prediction of spa-
tially and/or temporal varying variates based on obser-
vations of these variates (or functionals thereof) at some
locations in space and/or instances in time. This topic has
been extensively studied, albeit under different names,
in the various spatial and Earth sciences disciplines. In
physical geodesy it is known as least-squares colloca-
tion (LSC). Fundamental contributions to this field have
been made by Krarup (1969) and Moritz (1973), see
also Rummel (1976), Dermanis (1980), Sanso (1986),
Grafarend and Rapp (1980). The underlying model of
LSC is the so-called trend-signal-noise model. This
model is quite general and it encompasses many of
the conceivable geodetic measurements (Moritz 1980,
p. 111). It also forms the basis of the concept of inte-
grated geodesy as introduced in Eeg and Krarup (1973),
see also Krarup (1980), Hein (1986).

Although LSC has been developed for spatially vary-
ing variates, it is closely connected with the fundamental
work of Kolmogorov (1941) and Wiener (1949) on the
interpolation, extrapolation and smoothing of station-
ary time-series. In the absence of a trend, LSC becomes
the spatial analogue of Kolmogorov-Wiener prediction
(Grafarend 1976; Moritz 1980). LSC also finds its ana-
logue in Baarda’s xR-variates, which show how cor-
related, but free or constituent, variates are adjusted
(Baarda 1968).
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The trend-signal-noise model also forms the basis of
prediction in geostatistics, where optimal linear predic-
tion is called Kriging, named after Krige (1951) and fur-
ther developed by Matheron (1970), see also e.g. Journel
and Huijbregts (1991). When the trend is unknown it is
referred to as universal Kriging and when the trend is
absent or set to zero, it is called simple Kriging. In the
statistical literature Kriging is called best linear unbiased
prediction (Goldberger 1962). Least-squares prediction
of spatially varying variates was also developed in mete-
orology, where it was originally referred to as objective
analysis (Gandin 1963).

The above referred methods of prediction have been
developed for models in which the trend parameters are
real-valued. In the present contribution we will general-
ize the theory of least-squares prediction by permitting
some or all of the trend parameters to be integer valued.
Applications of such models can be found, for instance,
in case of GNSS-based (GPS and/or Galileo) predictions
of atmospheric fields (troposphere or ionosphere) or in
case of InSAR-based predictions of deformation fields,
see e.g. Odijk (2002), Hanssen et al. (2001). It is empha-
sized, in analogy with the trend-signal-noise model of
least-squares collocation, that all trend parameters in
this contribution, real-valued as well as integer-valued,
are considered nonrandom. The Bayesian approach of
integer estimation is treated in e.g. Betti et al. (1993),
and Gundlich and Koch (2002), and the correspond-
ing nonBayesian approach, giving identical estimates as
the Bayesian approach, is based on the theory of inte-
ger equivariant estimation and is treated in Teunissen
(2003).

This contribution is organized as follows. We start
in Sect. 2 with a brief review of least-squares predic-
tion. In this section, we first consider the linear model
with an observable and an unobservable random vector,
and then specialize to the familiar trend-signal-noise
model on which LSC is based. The results of this sec-
tion are used as reference for the sections following. In
Sect. 3, we define and solve the problem of least-squares
prediction in linear models with integer unknowns. We
show that the solution has — apart from an additional
computational step — the same structure as the solu-
tion of the standard least-squares prediction problem.
The additional step is concerned with the estimation of
the integer parameters. Apart from the integer least-
squares estimator, we also consider the class of integer
estimators of which the integer estimators of rounding
and bootstrapping are members of. In Sect. 4, we study
the probability distributions of the estimation and pre-
diction errors. They are needed for constructing con-
fidence regions or for validation purposes. In case of
standard least-squares prediction one can do with the

so-called error variances. Not so, however, in case inte-
ger parameters are involved. In that case, the second-
order moments of the estimation and prediction errors
can not be used to obtain an adequate quality descrip-
tion. We derive the density functions of the estimation
and prediction errors and show how they depend on
the probability mass function of the integer estima-
tor. Finally, we show how the multimodal distribution
of the prediction error can be used for cross-valida-
tion purposes. To illustrate the theory, various worked
out examples are included. Two basic corollaries which
are frequently used in the derivations, are given in the
Appendix.

2 Least-squares prediction

2.1 Estimation and prediction

In this contribution, we speak of estimation if a function
of an observable random vector y is used to guess the
value of an unknown deterministic parameter vector x.
If the function is given as f , then f (y) is said to be the
estimator of x (we call it an estimate of x if the function
is taken of an outcome of y). We speak of prediction,
if a function of an observable random vector y is used
to guess the outcome of another random, but unobserv-
able, vector y0. If the function is given as g, then g(y) is
said to be the predictor of y0 (we call it a prediction of
y0 if the function is taken of an outcome of y). In the
following, we assume the dispersion of y and y0 to be
known, and their expectations (possibly unknown) to
be linearly related to each other. Consider therefore the
partitioned linear system of equations

[
y
y0

]
=

[
A
A0

]
x +

[
e
e0

]
(1)

with matrices A and A0 of order m×n and m0×n, respec-
tively, x a nonrandom parameter vector and [eT , eT

0 ]T a
random vector, with expectation and dispersion given as,

E
[

e
e0

]
=

[
0
0

]
and D

[
e
e0

]

= D
[

y
y0

]
=

[
Qyy Qyy0

Qy0y Qy0y0

]
(2)

respectively. The matrices A and A0 are assumed known,
with A being of full column rank. Also the dispersion
matrix is assumed known and to be positive definite.
All the entries of the above vectors and matrices are
assumed to be real-valued.
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The objective function we will work with is given by
the positive definite quadratic form,

F(y, y0, x)=
[

y − Ax
y0 − A0x

]T [
Qyy Qyy0

Qy0y Qy0y0

]−1 [
y − Ax

y0 − A0x

]

(3)

If y and y0 are observable and x is unknown, then the
unique x̂′ satisfying F(y, y0, x̂′) ≤ F(y, y0, x), for all x ∈
Rn, is said to be the least-squares estimator of x based
on both y and y0. If y is observable, x is known and y0 is
unobservable, then the unique ŷ′

0 satisfying F(y, ŷ′
0, x) ≤

F(y, y0, x), for all y0 ∈ Rm0 , is said to be the least-squares
predictor of y0. In the present contribution, we are inter-
ested in the case that is a combination of the previous
two problems. We assume y to be observable, x to be
unknown and y0 to be unobservable. Then the unique
pair x̂, ŷ0 satisfying F(y, ŷ0, x̂) ≤ F(y, y0, x), for all x ∈
Rn, y0 ∈ Rm0 , is said to be the least-squares estimator-
predictor pair of x, y0.

To solve the latter problem, first note that the qua-
dratic form in Eq. (3) can be written as a sum of two
squares (see Corollary 1 of the Appendix),

F(y, y0, x) = ||y − Ax||2Qyy
+ ||y0 − A0x

− Qy0yQ−1
yy (y − Ax)||2Qy0y0|y (4)

with Qy0y0|y = Qy0y0 −Qy0yQ−1
yy Qyy0 and where we used

the shorthand notation ||.||2M = (.)TM−1(.). From Eq. (4)
it follows that the estimator-predictor pair, x̂ and ŷ0, are
given as,

x̂ = (ATQ−1
yy A)−1ATQ−1

yy y
ŷ0 = A0x̂ + Qy0yQ−1

yy (y − Ax̂)
(5)

Since x̂, ŷ0 set the second positive term of Eq. (4) equal
to zero, while x̂ minimizes the first positive term, it fol-
lows that Eq. (5) is indeed the solution to the mini-
mization of the quadratic form of Eq. (4). It can be
shown (see e.g. Koch 1980, p. 147; Teunissen et al. 2005,
p. 197) that the simultaneously derived least-squares
estimator-predictor pair x̂, ŷ0 constitute the BLUE (best
linear unbiased estimator) and the BLUP (best linear
unbiased predictor) of x and y0, respectively. This is a
consequence of having used the inverse variance matrix
of (yT , yT

0 )T as weight matrix in Eq. (3). This choice will
also be used for the mixed linear model with integer
parameters (see Sect. 3). As a result the derived inte-
ger estimator can be shown to have the largest possible
probability of correct integer estimation.

The following additional remarks can be made with
respect to Eq. (5). (i) if x would be known, then the
least-squares predictor ŷ′

0 can be obtained by replacing
x̂ in the expression for ŷ0 by the known x. (ii) Since

F(y, ŷ0, x̂) ≤ F(y, ŷ0, x), for all x ∈ Rn, it follows that the
least-squares estimator of x remains unaffected when
ŷ0 would be taken as if it were the observed y0. This is
also what one would expect, since ŷ0 should not con-
tain information about x which is not already present
in y. (iii) The first term in the expression of the least-
squares predictor ŷ0, A0x̂, is the least-squares estimator
of E(y0), the mean of y0. Thus if y0 and y are uncorrelat-
ed (Qy0y = 0), then the predictor of y0 coincides with the
estimator of E(y0). (iv) If y0 = y and thus A0 = A and
Qy0y = Qyy, then ŷ0 = y. This shows that an observable
is its own least-squares predictor.

Finally we remark that the general formulation of
the model in Eqs. (1) and (2) also allows one to cover
other simultaneous estimation-prediction problems. (i)
Let y = Ax′ + e, in which x′ is a random vector with
known variance matrix Qx′x′ and unknown mean x, and
e is a zero-mean random vector, uncorrelated with x′,
with known variance matrix Qee. To determine the least-
squares predictor of the random vector x′ with unknown
mean x, we set e → A(x′ − x) + e, y0 → x′, A0 → I,
e0 → x′ − x, followed by an application of Eq. (5).
As a result, the predictor of x′ follows as x̂′ = x̂ +
Qx′x′AT(AQx′x′AT + Qee)

−1(y − Ax̂). Would the
unknown mean of the random vector x′ be integer val-
ued, then, as our results of Sect. 3 show, the least-squares
predictor of x′ becomes x̌′ = x̌ + Qx′x′AT(AQx′x′AT +
Qee)

−1(y − Ax̌), where x̌ = arg minz∈Zn ||x̂ − z||2Qx̂x̂
, with

Qx̂x̂ = Qx′x′ + (ATQ−1
ee A)−1. (ii) Let e in y = Ax + e be

given as e = Bd, with matrix B known and where d is a
zero-mean random vector with known variance matrix
Qdd. As an application of this formulation, the entries
of d can be thought of as being the individual error com-
ponents that contribute to the overall error vector e. To
predict d, we set e → Bd, y0 → d, A0 → 0, e0 → d, fol-
lowed by an application of Eq. (5). As a result, the pre-
dictor of d follows as d̂ = QddBT(BQddBT)−1(y − Ax̂).
Note that for the special case B = I, we obtain the
least-squares predictor of e as y − Ax̂, which is the least-
squares residual. (iii) Finally we note that the so-called
trend-signal-noise model is another important case for
which the general formulation of Eqs. (1) and (2) with
solution Eq. (5) applies. This case is worked out in more
detail in the next section.

2.2 Trend, signal and noise model

An important case of the model in Eqs. (1) and (2),
and one which has found wide-spread application in the
spatial and Earth sciences, is the so-called trend-signal-
noise model, see e.g. Moritz (1980), Stark (1987), Journel
and Huijbregts (1991), Cressie (1991), Wackernagel



568 P. J. G. Teunissen

(1995), Torge (2001). This model is applicable to a wide
range of applications for which heterogeneous, over-
as well as under-determined data need to be combined,
see e.g. Dermanis (1980), Rummel (1976), Sanso (1986),
Grafarend and Rapp (1980). Such applications can be
found in e.g. physical geodesy, mining engineering, hy-
drogeology, spatial data analysis, environmental engi-
neering and digital image processing. The model also
forms the basis of the concept of integrated geodesy as
introduced in Eeg and Krarup (1973), see also Krarup
(1980) and Hein (1986). Further examples are the deter-
mination of the geoid from gravity anomalies, see e.g.
Hofmann-Wellenhof and Moritz (2005), or the determi-
nation of spherical harmonics from satellite data see e.g.
Tscherning (1978), Moritz and Suenkel (1978), Sanso
and Tscherning (2003).

In the trend-signal-noise model the observable vec-
tor y is written as a sum of three terms, y = t + s + n,
with t a deterministic, but unknown trend, s a zero-
mean random signal vector, and n a zero-mean random
noise vector. The trend is usually further parametrized
in terms of an unknown parameter vector x as t = Ax.
The signal and noise vector are assumed to be uncorre-
lated and their variance matrices are given as Qss and
Qnn, respectively. Thus we have y = Ax + s + n, with
Qyy = Qss +Qnn and where the sum of signal and noise,
s + n, plays the role of the zero-mean random vector e
of Eq. (1). We may now apply Eq. (5) to separate trend,
signal and noise. This gives

x̂ =
(

AT(Qss + Qnn)−1A
)−1

AT(Qss + Qnn)−1y

ŝ = Qss(Qss + Qnn)−1(y − Ax̂)

n̂ = Qnn(Qss + Qnn)−1(y − Ax̂)

The first equation follows directly from applying the first
equation of Eq. (5). The second and third equation are
obtained from applying the second equation of Eq. (5),
by interpreting s and n, respectively, as the unobservable
y0. Thus y0 → (sT , nT)T , A0 → 0, e0 → (sT , nT)T and
e → s + n. Note that y = Ax̂ + ŝ + n̂, which reflects the
property that the observable is its own predictor. Also
note that ê = ŝ + n̂ = y − Ax̂ is the predictor of e.

Often one can extend the trend-signal-noise model
so as to hold true for an unobservable vector y0 as well.
This gives y0 = A0x + s0 + n0, in which s0 and n0 are
uncorrelated zero-mean random vectors, with variance
matrices Qs0s0 and Qn0n0 , respectively. The two signal
vectors, s0 and s, are assumed correlated (Qs0s �= 0),
whereas the two noise vectors, n0 and n, are (usually)
assumed to be uncorrelated (Qn0n = 0). The signal plus
noise vector of the unobservable vector plays now the
role of the zero-mean random vector e0 of Eq. (1). We

may now apply Eq. (5) again to predict y0, s0 and n0. In
this case we set y0 → (yT

0 , sT
0 , nT

0 )T , A0 → (AT
0 , 0, 0)T ,

e0 → (
(s0 + n0)

T , sT
0 , nT

0

)T
and e → s + n. This gives

ŷ0 = A0x̂ + Qs0s(Qss + Qnn)−1(y − Ax̂)

ŝ0 = Qs0s(Qss + Qnn)−1(y − Ax̂)

n̂0 = 0

Note that the predictor of the trend plus signal, A0x+s0,
is identical to the predictor of y0. Both are given as
A0x̂ + ŝ0. In general, this is not the case. In the pres-
ent situation, the two predictors coincide since the noise
vector n0 was assumed to be uncorrelated with s and n.
For the same reason, the predictor of n0 is identically
zero.

2.3 Estimation and prediction error

The least-squares estimator of E(y0) is A0x̂ and the least-
squares predictor of y0 is ŷ0. In order to judge the quality
of the estimator and of the predictor, we need to con-
sider their errors. The estimation error of A0x̂ and the
prediction error of ŷ0 are defined as ê0 = E(y0)−A0x̂ and
ε̂0 = y0 − ŷ0, respectively. Both error vectors are zero-
mean random vectors, E(ê0) = 0 and E(ε̂0) = 0. Thus
the least-squares estimator A0x̂ and the least-squares
predictor ŷ0 are both unbiased. The variance matrix of
ê0 is called the error variance matrix of A0x̂ and the var-
iance matrix of ε̂0 is called the error variance matrix of
ŷ0. Since E(y0) is a nonrandom vector, the error vari-
ance matrix of A0x̂ is equal to the variance matrix of
A0x̂. We have

Qê0ê0 = A0Qx̂x̂AT
0 (6)

with Qx̂x̂ = (ATQ−1
yy A)−1 being the variance matrix of

x̂. When the observable vector y is normally distributed,
also the estimation error will be normally distributed,
ê0 ∼ N(0, Qê0,ê0).

In case of the predictor ŷ0, the error variance matrix
and the variance matrix are not the same. This is due
to the fact that both y0 and ŷ0 in ε̂0 = y0 − ŷ0 are ran-
dom vectors. In order to judge the quality of the predic-
tor, it is the variance matrix of the prediction error that
counts, rather than the variance matrix of the predic-
tor itself. To determine the error variance matrix Qε̂0ε̂0 ,
we first write ε̂0 = y0 − ŷ0 as ε̂0 = (y0 − Qy0yQ−1

yy y) −
(A0 −Qy0yQ−1

yy A)x̂. Note that the first bracketed term is
uncorrelated with y. Since x̂ is a linear function of y,
it follows that the first bracketed term is also uncorre-
lated with x̂ and therefore with the second bracketed
term. Application of the variance propagation law gives
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therefore

Qε̂0ε̂0 = Qy0y0 − Qy0yQ−1
yy Qyy0

+(A0 − Qy0yQ−1
yy A)Qx̂x̂(A0 − Qy0yQ−1

yy A)T (7)

The three terms on the right-hand side of this expression
can be understood as follows. Should x be known and
y be absent, the error variance matrix would be given
as Qε̂0ε̂0 = Qy0y0 . In this case, the uncertainty is com-
pletely due to the uncertainty of y0. When the observ-
able vector y is present and x is still known, then the
error variance matrix gets reduced to Qε̂0ε̂0 = Qy0y0 −
Qy0yQ−1

yy Qyy0 . The uncertainty reduces due to the con-
tribution of y. In our case however, x is unknown and
has to be estimated. This implies that the error vari-
ance matrix gets enlarged by the third term in Eq. (7).
With Qy0y0|y = Qy0y0 − Qy0yQ−1

yy Qyy0 and A0|y = A0 −
Qy0yQ−1

yy A, we can write the error variance matrix in
compact form as

Qε̂0ε̂0 = Qy0y0|y + A0|yQx̂x̂AT
0|y (8)

A complete probabilistic description of the predic-
tion error can be given once its probability distribution
is known. If we assume, in addition to Eqs. (1) and (2),
that y and y0 are normally distributed, then also the pre-
diction error is normally distributed. Its distribution is
then given as ε̂0 ∼ N(0, Qε̂0 ε̂0).

3 Integer-based least-squares prediction

3.1 The integer-based least-squares predictor

We now extend the model of the previous section so as
to include the option that some or all the parameters of x
are integer valued. We therefore assume x = (xT

1 , xT
2 )T ∈

Zp ×Rn−p. Thus the first p entries of x are assumed to be
unknown integers and the last n−p entries are assumed
to be unknown real-valued parameters. The matrices A,
A0 and A0|y are partitioned accordingly, A = [A1, A2],
A0 = [A01, A02] and A0|y = [A01|y, A02|y]. We consider
the same objective function F(y, y0, x), cf. Eq. (3), but
with the stipulation that x ∈ Zp ×Rn−p. Then the unique
pair x̌, y̌0 satisfying F(y, y̌0, x̌) ≤ F(y, y0, x), for all x ∈
Zp × Rn−p, y0 ∈ Rm0 , is said to be the integer-based
least-squares estimator-predictor pair of x, y0.

In order to determine this pair, we again decompose
the objective function F(y, y0, x) into a sum of squares.
This time however, it will be decomposed into a constant

term and three variable terms. We have

F(y, y0, x) = ||y − Ax||2Qyy

+||y0 − A0x − Qy0yQ−1
yy (y − Ax)||2Qy0y0|y

= ||y − Ax̂||2Qyy
+ ||x̂ − x||2Qx̂x̂

+||y0 − A0x − Qy0yQ−1
yy (y − Ax)||2Qy0y0|y

= ||y − Ax̂||2Qyy
+ ||x̂1 − x1||2Qx̂1 x̂1

+||x̂2 − x2 − Qx̂2x̂1
Q−1

x̂1x̂1
(x̂1 − x1)||2Qx̂2 x̂2|x̂1

+||y0 − A0x − Qy0yQ−1
yy (y − Ax)||2Qy0y0|y

(9)

with x̂ = (x̂T
1 , x̂T

2 )T given by the first equation of Eq. (5)
and Qx̂2x̂2|x̂1

= Qx̂2x̂2 − Qx̂2x̂1
Q−1

x̂1x̂1
Qx̂1x̂2 . The first equal-

ity of Eq. (9) is Eq. (4). With ||y − Ax||2Qyy
= ||y −

Ax̂||2Qyy
+||x̂−x||2Qx̂x̂

, which holds true since ATQ−1
yy (y−

Ax̂) = 0 and Qx̂x̂ = (ATQ−1
yy A)−1, the second equal-

ity of Eq. (9) follows from its first. The third equal-
ity follows then from the second since ||x̂ − x||2Qx̂x̂

=
||x̂1 − x1||2Qx̂1 x̂1

+||x̂2 − x2 − Qx̂2x̂1
Q−1

x̂1x̂1
(x̂1 − x1)||2Qx̂2 x̂2|x̂1

,

the proof of which follows again from an application of
Corollary 1.

Note that the last term in the third decomposition of
Eq. (9) can be made zero for any x ∈ Zp ×Rn−p and that
the before last term can be made zero for any x1 ∈ Zp.
Hence, the solution for x̌, y̌0 follows as

x̌1 = arg minz∈Zp ||x̂1 − z||2Qx̂1 x̂1

x̌2 = x̂2 − Qx̂2x̂1
Q−1

x̂1x̂1
(x̂1 − x̌1)

y̌0 = A0x̌ + Qy0yQ−1
yy (y − Ax̌)

(10)

Note that the structure of the predictor y̌0 is identical
to that of the predictor ŷ0, cf. Eq. (5). That is, y̌0 can be
obtained from the expression of ŷ0 by replacing x̂ by x̌.
Also note that x̌2 can alternatively be expressed as x̌2 =
(AT

2 Q−1
yy A2)

−1AT
2 Q−1

yy (y−A1x̌1). The steps in computing
y̌0 can now be summarized as follows. First one computes
the least-squares estimate x̂ = [x̂T

1 , x̂T
2 ]T based on the

first expression of Eq. (5). Then x̂1 is used to determine
the integer least-squares estimate x̌1, which is the integer
minimizer of ||x̂1 − z||2Qx̂1 x̂1

. Finally, both x̌1 and x̌2 are

used to compte y̌0. Note, in case all entries of x are inte-
ger valued, that the second line of Eq. (10) is absent and
the first line gets replaced by x̌ = arg minz∈Zn ||x̂−z||2Qx̂x̂

.
To see Eq. (10) at work, we consider the following

examples.

Example 1 (prediction of error components) Consider
the single equation

y = ax + e1 + · · · + eq
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with scalar a given, x an unknown integer and the ei

being q uncorrelated, zero-mean random variables. If
the sum e = ∑q

i=1 ei constitutes the total measurement
error, then the ei may be considered the individual error
components. The variance of ei will be denoted as σ 2

i .
We will now predict such an individual error compo-
nent using Eq. (10). Note that no real-valued parame-
ters occur in the above model. Hence, only the first and
the third expression of Eq. (10) need to be applied. Set-
ting x1 → x, A → a, y0 → (e1, . . . , eq)T , A0 → 0, e →
e1 + · · · + eq and e0 → (e1, . . . , eq)T , yields Qyy = Qee =∑q

j=1 σ 2
j , Qy0y = Qe0e = (σ 2

1 , . . . , σ 2
q )T , (ě1, . . . , ěq)T =

Qy0yQ−1
yy (y − ax̌) = (σ 2

1 , . . . , σ 2
q )T

(∑q
j=1 σ 2

j

)−1
(y − ax̌),

and thus

ěi = σ 2
i∑q

j=1 σ 2
j

(y − ax̌)

with the integer least-squares estimator of x given as
x̌ = [y/a], in which ‘[.]’ denotes rounding to the nearest
integer. This result shows that fractions of the residual
y − ax̌ are assigned as predictors of the individual error
components. The fractions are the ratios of the variance
of the individual error component and the total vari-
ance. The predictors get an equal share of the residual
when all variances are equal.

Example 2 (ionospheric prediction) Consider as a
trend-signal-noise model, the single-frequency, single
epoch, geometry-free GPS equations, based on double-
differenced (DD) carrier phase and pseudorange,

y1 = λx1 + x2 + s + n1
y2 = + x2 − s + n2

with x1 the unknown integer DD carrier phase ambi-
guity, λ the known wavelength of the carrier phase, x2
the unknown DD range, s the residual ionospheric sig-
nal, and n1 and n2 the noise of the carrier phase and
the pseudorange, respectively. Let σ 2

1 and σ 2
2 denote

the variances of the DD carrier phase and pseudorange,
respectively, and let σ 2

s denote the variance of the iono-
spheric signal. Then[

x̂1
x̂2

]
=

[
(y1 − y2)/λ

y2

]
and Qx̂x̂

= 1
λ2

[
4σ 2

s + σ 2
1 + σ 2

2 −λ(2σ 2
s + σ 2

2 )

−λ(2σ 2
s + σ 2

2 ) λ2(σ 2
s + σ 2

2 )

]

from which the integer-based least-squares parameter
solution follows as,

x̌1 = [x̂1]
x̌2 = x̂2 + λ

2σ 2
s +σ 2

2
4σ 2

s +σ 2
1 +σ 2

2
(x̂1 − x̌1)

If we want to predict the signal s0 (e.g. the residual
ionospheric delay at another time instant), then s0 plays
the role of y0 and the integer-based least-squares pre-
dictor š0 = Qs0yQ−1

yy (y − Ax̌) works out as

š0 = σs0s/σ
2
1

1 + σ 2
s /σ 2

1 + σ 2
s /σ 2

2

[
(y1 − λx̌1 − x̌2) − σ 2

1

σ 2
2

(y2 − x̌2)

]

3.2 Integer estimators

In order to study the properties of the integer-based
predictor y̌0, we need to understand the role played by
the integer least-squares estimator. The integer least-
squares estimator x̌1 = arg minz∈Zp ||x̂1 − z||2Qx̂1 x̂1

is a

member of the class of integer estimators as introduced
in Teunissen (1999a). For the ease of our discussion, we
restrict our attention in this and the next section to the
all integer case and therefore consider the class of inte-
ger estimators of which x̌ = arg minz∈Zn ||x̂ − z||2Qx̂x̂

is a
member of.

Let S be a mapping from the n-dimensional space
of real numbers to the n-dimensional space of integers,
S : Rn �→ Zn. Then S is a many-to-one map, imply-
ing that different real-valued vectors may be mapped to
the same integer vector. Hence, we can assign a subset
Sz ⊂ Rn to each integer vector z ∈ Zn such that

Sz = {x ∈ Rn | z = S(x)} (11)

Thus the subset Sz contains all real-valued vectors that
are mapped by S to the same integer vector z. This sub-
set is referred to as the pull-in region of z. It is the region
in which all vectors are pulled to the same z. We say that
S is an integer estimator if its pull-in regions satisfy the
following three conditions,

1. ∪
z∈Zn

Sz = Rn

2. IntSz1 ∩ IntSz2 = ∅, ∀z1, z2 ∈ Zn, z1 �= z2

3. Sz = z + S0, ∀z ∈ Zn (12)

The first condition guarantees that the union of all pull-
in regions covers the n-dimensional space completely.
Without this condition, gaps could occur, in which case
not every real-valued vector would be assigned to a cor-
responding integer vector. The second condition ensures
that the interiors of the pull-in regions do not overlap.
Without this condition, it would not be possible to assign
a real-valued vector uniquely to a single integer vector.
Note that we allow the pull-in regions to have common
boundaries. This is premitted if we assume zero proba-
bility that the outcome of a random vector lies on one
of these boundaries. This will be the case for continuous
random vectors. Finally, the third condition states that
the pull-in regions are translated copies of one another.
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Also this ‘linearity’ property is a reasonable one to ask
of an integer estimator. It states that when the real-
valued input is perturbed by an integer amount z, the
corresponding integer solution is perturbed by the same
amount. This property allows one to use the integer
remove-restore technique: S(x − z) + z = S(x). It there-
fore allows one to work with the fractional parts of a
real-valued vector, instead of with its complete entries.

Using the pull-in regions, one can give an explicit
expression for an integer estimator. It is given as

x̌ =
∑

z∈Zn

zsz(x̂) (13)

with the indicator function sz(x̂) = 1 if x̂ ∈ Sz and sz(x̂) =
0 otherwise. Equation (13) shows how an integer esti-
mator is defined through its pull-in regions. Important
members of the class of integer estimators are the inte-
ger least-squares estimator, the integer bootstrapping
estimator and the integer rounding estimator (Teunissen
1999b).

Integer rounding From a computational point of
view, the integer rounding estimator is the simplest. It
follows from rounding each of the entries of x̂ to its
nearest integer. It is given as

x̌R = ([x̂1], . . . , [x̂n])T (14)

The pull-in region of this integer estimator equals the
multivariate version of the unit-square,

SR,z =
{

x ∈ Rn || cT
i (x − z) |≤ 1

2
, i = 1, . . . , n

}
,

∀z ∈ Zn (15)

where ci is the canonical unit vector having a 1 as its ith
entry and zeros otherwise, see Fig. 1a.

Integer bootstrapping Another relatively simple
integer estimator is the bootstrapped estimator. The

bootstrapped estimator can be seen as a generalization
of integer rounding. It still makes use of integer round-
ing, but it also takes some of the correlation between
the entries of x̂ into account. The bootstrapped estima-
tor follows from a sequential conditional least-squares
adjustment and it is given as

x̌B = ([x̂1], [x̂2|1], . . . , [x̂n|1,...,n−1])T (16)

where x̂i|1,...,i−1 = x̂i − ∑i−1
j=1 σn,j|1,...,j−1σ

−2
j|1,...,j−1

(x̂j|1,...,j−1 − x̌B,j) and where σ 2
j|1,...,j−1 denotes the vari-

ance of x̂j|1,...,j−1 and σi,j|1,...,j−1 denotes the covariance
between x̂i and x̂j|1,...,j−1. Note that the bootstrapped
estimator reduces to the rounding estimator in case the
variance matrix of x̂ is diagonal. The pull-in region of the
bootstrapped estimator equals the multivariate version
of a parallellogram, see Fig. 1b. It is given as

SB,z =
{

x ∈ Rn | | cT
i L−1(x − z) | ≤ 1

2
, i = 1, . . . , n

}
,

∀z ∈ Zn (17)

where L denotes the unique unit lower triangular matrix
of the triangular decomposition Qx̂x̂ = LDLT.

Integer least-squares For the integer least-squares
estimator

x̌ = arg min
z∈Zn

||x̂ − z||2Qx̂x̂
(18)

the pull-in region is given as SLS,z = {x ∈ Rn | ||x −
z||2Qx̂x̂

≤ ||x − u||2Qx̂x̂
, ∀u ∈ Zn}. It consists of all vectors

which are closer to z than to any other integer vector of
Zn. One can give the integer least-squares pull-in region
a representation that resembles the representation of
the bootstrapped pull-in region. It is given as

SLS,z =
⋂

ci∈Zn

{
x ∈ Rn | | cT

i Q−1
x̂x̂ (x − z) | ≤ 1

2
||ci||2Qx̂x̂

}
,

∀z ∈ Zn (19)
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Fig. 1 The 2D pull-in regions of rounding, bootstrapping and least-squares: a unit square for rounding; b parallellogram for bootstrap-
ping; c hexagon for least-squares
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This shows that the pull-in region consists of intersect-
ing half-spaces of which the planes are orthogonal to the
ci and pass through z ± 1

2 ci. They are hexagons in the
two-dimensional case, see Fig. 1c.

3.3 On the computation of the integer least-squares
estimator

Note that the two integer estimators x̌R and x̌B are
easy to compute. That is, no search is needed to com-
pute their integer outcomes. This is generally not true,
however, for the integer least-squares estimator. The
integer least-squares estimator is only easy to compute
when the variance matrix of x̂ is diagonal. In that case
the integer least-squares estimator becomes identical
to x̌R and x̌B. When the variance matrix of x̂ is non-
diagonal, however, an integer search is needed to find
the integer least-squares solution. Although we refrain
from discussing the computational intricacies, the con-
ceptual steps for computing the outcomes of the inte-
ger least-squares estimator will be briefly described.
For more information we refer to e.g. Teunissen (1993,
1995) and de Jonge and Tiberius (1996a) or to the text-
books Hofmann-Wellenhof et al. (1997), Strang and
Borre (1977), Teunissen and Kleusberg (1998), Leick
(2004) and Misra and Enge (2001) in which the
LAMBDA-method for solving the integer least-squares
problem is described. Practical results obtained with
the method can be found, for example, in Boon and
Ambrosius (1997), Boon et al. (1997), Chang et al.
(2005), Cox and Brading (1999), Dai et al. (2005), de
Jonge and Tiberius (1996b), de Jonge and Tiberius
(1996), Han (1995), Moenikes et al. (2005), Peng et al.
(1999), Svendsen (2005), Tiberius and de Jonge (1995),
Tiberius et al. (1997).

The first step for finding the integer least-squares
solution is to define the integer search space

�z = {z ∈ Zn | (x̂ − z)TQ−1
x̂x̂ (x̂ − z) ≤ χ2} (20)

with χ2 a chosen positive constant. The boundary of this
search space is ellipsoidal. It is centred at x̂, its shape is
governed by the variance matrix Qx̂x̂ and its size is deter-
mined by χ2. The constant χ2 is chosen such that x̌ ∈ �z.
Since an elongated shape of the search space usually
hinders the computational efficiency of the search, the
search space is transformed to a more spherical shape
by means of an integer transformation ẑ = ZTx̂ and
Qẑẑ = ZTQx̂x̂Z. In order to preserve the integer nature
in this transformation, matrix Z and its inverse need
to have integer entries. The transformed search space is
then given as �z = {z ∈ Zn | (ẑ−z)TQ−1

ẑẑ (ẑ−z) ≤ χ2}.

The two search spaces �z and �z contain the same num-
ber of integer vectors.

To search for the integer vectors inside �z, the trian-
gular decomposition of Qẑẑ is used to write the search
space defining quadratic inequality as a sum-of-squares:

n∑
i=1

(ẑi|I − zi)
2

σ 2
i|I

≤ χ2 (21)

with I = {1, . . . , i − 1}. On the left-hand side one recog-
nizes the conditional least-squares estimator ẑi|I , which
follows when the conditioning takes place on the inte-
gers z1, z2, . . . , zi−1. Using the sum-of-squares structure,
one can set up the n scalar intervals which are used
for the search. These sequential intervals are given as

(ẑ1 − z1)
2 ≤ σ 2

1 χ2, (ẑ2|1 − z2)
2 ≤ σ 2

2|1

(
χ2 − (ẑ1−z1)

2

σ 2
1

)
,

etc. These intervals are used to collect the integer vectors
which lie inside the search space. From this set the solu-
tion ž is identified as the one which returns the smallest
value for ||ẑ−z||2Qẑẑ

. The sought for integer least-squares

solution follows then finally as x̌ = Z−Tž.

4 Distribution of estimation and prediction error

4.1 The probability mass function of integer estimators

In this section, we will derive the probability distribu-
tions of the estimation and prediction errors for the case
some or all of the entries of the parameter vector x are
estimated as integers. Similar to before, we define the
estimation error of A0x̌ as ě0 = E(y0) − A0x̌ and the
prediction error of y̌0 as ε̌0 = y0 − y̌0. In order to deter-
mine their distributions, we first need to determine the
distribution of the integer estimator x̌1. We allow x̌1 to
be any integer estimator of x1 ∈ Zp. Here and in the
following we will assume that y and y0 are normally
distributed. Then the input of the integer estimator is
normally distributed too, x̂1 ∼ N(x1, Qx̂1x̂1

), x1 ∈ Zp.
The distribution of x̌1 ∈ Zp will be a probability mass

function (PMF). Let the Sz1 , with z1 ∈ Zp, be the pull-in
regions of the integer estimator x̌1 (e.g. one of the three
types as given in Sect. 3.2). Then x̌1 = z1 ⇔ x̂1 ∈ Sz1 and
therefore P[x̌1 = z1] = P[x̂1 ∈ Sz1 ], where the notation
P[E] is used to denote the probability of the event E.
Hence, the PMF of x̌1 follows as

P[x̌1 = z1] =
∫

Sz1

fx̂1
(u)du, z1 ∈ Zp (22)
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with the probability density function (PDF) of x̂1
given as

fx̂1
(u) = 1

(2π)p/2
√

detQx̂1x̂1

exp

{
−1

2
||u − x1||2Qx̂1 x̂1

}

Thus the PMF of the integer estimator follows from inte-
grating the PDF of x̂1 over the translational invariant
pull-in regions. The PMF can be used to study the prop-
erties of the integer estimator x̌1. Since the PMF is sym-
metric with respect to x1 (P[x̌1 = x1+z] = P[x̌1 = x1−z]
for all z ∈ Zp), it follows that the integer estimator is
unbiased, E(x̌1) = x1. This property holds true for all
integer estimators and thus also for integer rounding,
integer bootstrapping and integer least-squares. It can
also be shown that of all integer estimators, the integer
least-squares estimator has the largest possible proba-
bility of correct integer estimation (Teunissen 1999b).
Thus the probability P[x̌1 = x1] is maximized when the
integer least-squares estimator is used. This estimator is
therefore the best estimator of its class. This optimal-
ity property has its price however. As we have seen,
the computation of the integer least-squares solution is
not as straightforward as the computation of the integer
rounding solution or the integer bootstrapped solution.
In some applications one might therefore still decide
to opt for integer rounding or integer bootstrapping, in
particular if their PMF’s are not too different from the
integer least-squares’ PMF.

4.2 The PDF of the estimation error

The estimation error is defined as ě0 = A0(x − x̌). If
we substitute the second expression of Eq. (10) into
ě0 = A0(x − x̂) + A0(x̂ − x̌) = ê0 + A0(x̂ − x̌), we obtain

ě0 = ê0 + (A01 + A02Qx̂2x̂1
Q−1

x̂1x̂1
)(x̂1 − x̌1) (23)

This expression shows how the difference between the
two estimation errors is driven by the residual vector
x̂1 − x̌1. Note that this residual vector always lies inside
the origin centred pull-in region of the integer estima-
tor. Thus x̂1 − x̌1 ∈ S0 ⊂ Rp. This implies that the differ-
ence between the two estimation errors, ě0 and ê0, is
bounded. Also note that the covariance between ê0 =
A0(x − x̂) = A01(x1 − x̂1) + A02(x2 − x̂2) and x̂1 is given
as Qê0x̂1

= −(A01Qx̂1x̂1
+A02Qx̂2x̂1

). Hence, the relation
between the two estimation errors can alternatively be
expressed as

ě0 = ê0 − Qê0x̂1
Q−1

x̂1x̂1
(x̂1 − x̌1) (24)

In order to determine the PDF of ě0, we need to take
the distributions of ê0, x̂1 and x̌1 into account. Since
y is nomally distributed, also ê0 and x̂1 are normally

distributed. But since the integer estimator x̌1 is not
normally distributed, also the estimation error ě0 will
not be normally distributed. Note, however, if we replace
the random integer vector x̌1 in Eq. (24) by the nonran-
dom integer vector z1, that the result will be normally
distributed. We denote this random vector as

ě0|x̂1=z1
= ê0 − Qê0x̂1

Q−1
x̂1x̂1

(x̂1 − z1) (25)

The distribution of this conditional random vector is
given as

ê0|x̂1=z1
∼ N

(
E(ê0|x̂1=z1

), Qê0ê0|x̂1

)
(26)

with mean E(ê0|x̂1=z1
) = (A01 +A02Qx̂2x̂1

Q−1
x̂1x̂1

)(x1 −z1)

and variance matrix Qê0ê0|x̂1
= A02Qx̂2x̂2|x̂1

AT
02, as is eas-

ily verified by means of Corollary 2 of the Appendix.
Note, upon comparing Eq. (24) with Eq. (25), that one
can expect the PDF of ě0 to approach the normal distri-
bution of ê0|x̂1=z1

if the probability P[x̌1 = z1]
approaches one.

We will use the distribution of ê0|x̂1=z1
to determine

the PDF of ě0. We start from the probability P[ě0 ∈ �],
in which � is an arbitrary subset of Rm0 . Since the pull-in
regions Sz1 ⊂ Rp form a partition of Rp, we may use the
total probability rule to write

P[ě0 ∈ �] =
∑

z1∈Zp

P[ě0 ∈ �|x̂1 ∈ Sz1 ]P[x̂1 ∈ Sz1 ] (27)

With Eq. (24) and x̂1 ∈ Sz1 ⇔ x̌1 = z1, we have P[ě0 ∈
�|x̂1 ∈ Sz1 ] = P[ê0−Qê0x̂1

Q−1
x̂1x̂1

(x̂1−x̌1) ∈ �|x̌1 = z1] =
P[ε̂0 − Qê0x̂1

Q−1
x̂1x̂1

(x̂1 − z1) ∈ �|x̌1 = z1] = P[ê0|x̂1=z1
∈

�|x̌1 = z1]. Note that ê0|x̂1=z1
is uncorrelated with x̂1 (cf.

Corollary 2). Hence, since it is normally distributed, it is
independent of x̂1 and thus also independent of x̌1. We
therefore have P[ě0 ∈ �|x̂1 ∈ Sz1 ] = P[ê0|x̂1=z1

∈ �].
Substituting this into Eq. (27) gives, together with P[x̂1 ∈
Sz1 ] = P[x̌1 = z1], P[ě0 ∈ �] = ∑

z1∈Zp P[ê0|x̂1=z1
∈

�]P[x̌1 = z1]. Since this result holds true for any �, the
PDF of the estimation error follows as

fě0(v) =
∑

z1∈Zp

fê0|x̂1=z1
(v)P[x̌1 = z1] (28)

in which fê0|x̂1=z1
(v) is the PDF of ê0|x̂1=z1

. Note,
although the PDF fê0|x̂1=z1

(v) and the PMF P[x̌1 = z1]
both depend on the unknown parameter x1, that the
PDF fě0(v) is independent of x1. This is due to the fact
that x1 is integer and the summation in Eq. (28) covers
the whole of Zp.

The result Eq. (28) shows that the PDF of the esti-
mation error is a multimodal distribution. It is an infi-
nite sum of weighted and shifted versions of the PDF of
ê0|x̂1=z1

. The weights are given by the probability masses
of the PMF of x̌1. Note that the PDF is symmetric with
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respect to the origin. Hence, the estimation error has a
zero mean, E(ě0) = 0. Also note, if the probability of
correct integer estimation approaches one, that the PDF
approaches the normal distribution of ê0|x̂1=x1

. Finally
note, in case all entries of x are integers and estimated
as such, that the PDF of the estimation error reduces to
a PMF. In that case we have ě0 = A0(x − x̌), with the
PMF P[ě0 = A0z] = P[x̌ = x − z] for all z ∈ Zn.

The PDF Eq. (28) can be used to describe the qual-
ity of any estimator A0x̌. Let us illustrate its application
with a simple example.

Example 3 (estimation of carrier phase) Consider again
the single-frequency, single epoch, geometry-free GPS-
model (see Example 2), but now with the ionospheric
signal absent (that is, the two GPS receivers are assumed
to be close enough to neglect the ionospheric delay).
Then σ 2

x̂1
= (σ 2

1 + σ 2
2 )/λ2 and the PMF P[x̌1 = x1 −

z1] follows as function of z1 as F(z1) = �
(

(1+2z1)
2σx̂1

)
+

�
(

(1−2z1)
2σx̂1

)
− 1, with �(x) = ∫ x

−∞
1√
2π

exp{− 1
2 w2}dw.

If we want to consider the estimation error of the car-
rier phase, we set A0 = [λ, 1]. Then the mean and var-
iance of the conditional PDF fê0|x̂1=x1−z1

(v) are given

as m(z1) = (A01 + A02Qx̂2x̂1
Q−1

x̂1x̂1
)z1 = λσ 2

1
σ 2

1 +σ 2
2

z1 and

σ 2 = A02Qx̂2x̂2|x̂1
AT

02 = σ 2
1 σ 2

2
σ 2

1 +σ 2
2

, respectively. Hence, the

PDF of the carrier phase estimation error follows then as

fě0(v) =
∑
z1∈Z

F(z1)

σ
√

2π
exp

{
−1

2

(
v − m(z1)

σ

)2
}

4.3 The PDF of the prediction error

For the prediction error ε̌0 = y0 − y̌0 we can derive
similar results. First we will derive the counterpart of
Eq. (24) for the prediction error. If we substitute the
second expression of Eq. (10) into ε̌0 = y0 − ŷ0 + ŷ0 −
y̌0 = ε̂0 + (A0 − Qy0yQ−1

yy A)(x̂ − x̌) = ε̂0 + A0|y(x̂ − x̌),

we obtain ε̌0 = ε̂0 + (A01|y + A02|yQx̂2x̂1
Q−1

x̂1x̂1
)(x̂1 − x̌1).

And since the covariance between ε̂0 and x̂1 is given as
Qε̂0x̂1

= −(A01|yQx̂1x̂1
+ A02|yQx̂2x̂1

), we find that

ε̌0 = ε̂0 − Qε̂0x̂1
Q−1

x̂1x̂1
(x̂1 − x̌1) (29)

Compare with Eq. (24). That Qε̂0x̂1
= −(A01|yQx̂1x̂1

+
A02|yQx̂2x̂1

) can be seen as follows. We have ε̂0 = y0 −
ŷ0 = y0|y=0 − A0|yx̂, with y0|y=0 = y0 − Qy0yQ−1

yy y and
A0|y = A0 − Qy0yQ−1

yy A. And since y0|y=0 and x̂ are
uncorrelated, it follows that Qε̂0x̂1

= −A0|yQx̂x̂1
.

As was the case with the estimation error ě0, also the
distribution of the prediction error ε̌0 will not be normal

due to the presence of x̌1 in Eq. (29). But if we replace,
as before, the random integer vector x̌1 by the nonran-
dom integer vector z1, we obtain a result that is normally
distributed. We denote this random vector as

ε̂0|x̂1=z1
= ε̂0 − Qε̂0x̂1

Q−1
x̂1x̂1

(x̂1 − z1) (30)

Its distribution is given as

ε̂0|x̂1=z1
∼ N

(
E(ε̂0|x̂1=z1

), Qε̂0 ε̂0|x̂1

)
(31)

with mean E(ε̂0|x̂1=z1
) = −Qε̂0x̂1

Q−1
x̂1x̂1

(x1 − z1) =
(A01|y + A02|yQx̂2x̂1

Q−1
x̂1x̂1

)(x1 − z1) and variance matrix

Qε̂0ε̂0|x̂1
= Qε̂0ε̂0 − Qε̂0x̂1

Q−1
x̂1x̂1

Qx̂1 ε̂0 = Qy0y0|y +
A0|y(Qx̂x̂−Qx̂x̂1

Q−1
x̂1x̂1

Qx̂1x̂)A
T
0|y = Qy0y0|y+A02|yQx̂2x̂2|x̂1

AT
02|y. In the expression of the variance matrix we made

use of Eq. (8) and of Qε̂0x̂1
= −A0|yQx̂x̂1

. Compare
Eq. (31) with Eq. (26). Note that ε̂0|x̂1=z1

is indepen-
dent of x̂1. This property will be used to obtain the PDF
of ε̌0.

To obtain the PDF of the prediction error ε̂0, we can
follow a similar derivation as used for the PDF of the
estimation error. We start with

P[ε̌0 ∈ �] =
∑

z1∈Zp

P[ε̌0 ∈ �|x̂1 ∈ Sz1 ]P[x̂1 ∈ Sz1 ] (32)

Using the same arguments as before, we have P[ε̌0 ∈
�|x̂1 ∈ Sz1 ] = P[ε̂0|x̂1=z1

∈ �] and P[x̂1 ∈ Sz1] = P[x̌1 =
z1], and therefore P[ε̌0 ∈ �] = ∑

z1∈Zp P[ε̂0|x̂1=z1
∈

�]P[x̌1 = z1]. Since this result holds true for any �, the
PDF of the prediction error follows as

fε̌0(v) =
∑

z1∈Zp

fε̂0|x̂1=z1
(v)P[x̌1 = z1] (33)

in which fε̂0|x̂1=z1
(v) is the PDF of ε̂0|x̂1=z1

. Thus also the
PDF of the prediction error is a multimodal distribution.
And as the PDF of the estimation error, also the PDF
of the prediction error is symmetric with respect to the
origin. Thus E(ε̌0) = 0. The PDF approaches the nor-
mal distribution of ε̂0|x̂1=x1

, if the probability of correct
integer estimation approaches one. To illustrate the use
of Eq. (33), we consider two examples.

Example 4 (prediction in all integer case) As a special
case of Eq. (33), assume that all entries of x are inte-
gers and estimated as such. We then need to consider
the distribution of ε̌0|x̂=z, instead of the distribution of
ε̌0|x̂1=z1

. Since ε̌0|x̂=z ∼ N
(
A0|y(x − z), Qy0y0|y

)
(com-

pare with Eq. (31)), the PDF of the prediction error
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follows as

fε̌0(v) =
∑

z∈Zn

P[x̌ = x − z]
(2π)m0/2

√
detQy0y0|y

× exp

{
−1

2
||v − A0|yz||2Qy0y0|y

}
(34)

Note, since x is integer, that the PDF is independent of
this unknown mean of x̂.

Example 5 (prediction of deformation rate) Another
example of a trend-signal-noise model y = Ax + s + n
with integer parameters is given by the application of
stacked radar interferometry for deformation monitor-
ing, see e.g. (Hanssen et al. 2001). In this case, y is the
vector of observed phase differences over time between
two permanent scatterers (expressed in units of range),
x is the unknown vector of integer ambiguities, s = av
is the signal vector with known coefficient vector a =
[�t1/2, . . . , �tm/2]T and zero-mean deformation rate v,
and n is the noise vector. The �ti are time intervals
(expressed in years) between the current time and a ref-
erence time and matrix A is given as A = λIm, with λ

the known wavelength. With the variance of v given as
σ 2

v and the noise variance matrix given as Qnn = σ 2
φ Im,

we have Qyy = Qss + Qnn = σ 2
v aaT + σ 2

φ Im.

When the goal is to predict the deformation rate v,
the vector y0 takes the form y0 = (aTa)−1aTs = v and
its predictor is given as v̌ = y̌0 = Qy0yQ−1

yy (y − Ax̌) =
(aTa)−1aTQss(Qss + Qnn)−1(y − Ax̌), which gives

v̌ = σ 2
v /σ 2

φ

1 + aTaσ 2
v /σ 2

φ

aT(y − λx̌)

The PDF of the prediction error of the deformation rate

is then given by Eq. (34), with A0|y = −λ
σ 2

v /σ 2
φ aT

1+aT aσ 2
v /σ 2

φ

and

Qy0y0|y = σ 2
v

1+aT aσ 2
v /σ 2

φ

.

4.4 Cross-validation

The PDF of the estimation error ě0 and the PDF of
the prediction error ε̌0 can be used to obtain confi-
dence regions. Note that in contrast with the results of
Sect. 2, one can now not rely anymore on the error vari-
ance matrices. That is, information on the error variance
matrices of A0x̌ and y̌0 is not sufficient to determine
the confidence regions. To determine the confidence
regions, one will need the complete multimodal PDFs.

The prediction error and its distribution can also be
used for validation purposes, i.e. to validate the assump-
tions underlying the model of integer-based estimation
and prediction. However, in order to be able to execute

the validation, a sample of the prediction error is needed.
This implies, since the prediction y̌0 is given, that a sam-
ple of y0 is needed. This is the concept of cross-vali-
dation, see e.g. Stone (1974) and Geisser (1975). That
is, the outcome of the model, based on one part of the
data, is used to predict the outcome of the other part.
The underlying model is then considered suspect, if the
difference between the predicted and observed value
should be considered a rare event in light of the dis-
tribution of the prediction error. Note that this is very
similar to Baarda’s (1968) concept of datasnooping for
blunder detection. In that case, one observation at a
time is excluded from the model and confronted with its
prediction based on the remaining observations.

Assuming that a sample of the prediction error is
available, the question of determining the acceptance
and rejection regions should be answered. Answering
this question is made difficult by the multimodality of
the distribution of the prediction error. Let � ⊂ Rm0 be
the acceptance region with coverage probability P[ε̌0 ∈
�] = 1 − α. Thus the test leads to rejection if ε̌0 �∈ �.
Since we want the rejection to be rare when the under-
lying model is correct, the false alarm probability α is
chosen as a small value. But since there are an infi-
nite number of subsets that can produce this false alarm
probability, we still need to determine a way of defining
a proper �. It seems reasonable to define the optimal
subset as the one which has the smallest volume. In that
case the probability 1 − α would be the most concen-
trated. To determine the optimal � we thus need to
solve the minimization problem,

min
�⊂Rm0

V� subject to P[ε̌0 ∈ �] = 1 − α (35)

where V� denotes the volume of �. The solution to this
problem is given by the subset

� = {v ∈ Rm0 | fε̌0(v) ≥ λ} (36)

where λ is chosen so as to satisfy the given probabil-
ity constraint of Eq. (35). The proof goes as follows.
Starting form the probability constraint

∫
�

fε̌0(v)dv =∫
�

fε̌0(v)dv, we have

0 =
∫
�

fε̌0(v)dv −
∫
�

fε̌0(v)dv =
∫

�/�

fε̌0(v)dv −
∫

�/�

fε̌0(v)dv

≥ λ

∫
�/�

dv − λ

∫
�/�

dv

≥ λ(

∫
�

dv −
∫
�

dv)
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and therefore V� ≤ V� for any � ⊂ Rm0 . Note, that
a similar derivation can be used to show that � is the
solution to the maximization problem max� P[ε̌0 ∈ �]
subject to V� = constant. Thus of all subsets with the
same volume, � captures the largest possible probability
mass.

Due to the multimodality of the PDF, it is a nontrivial
task to decide for a certain given α whether or not an
observed sample of ε̌0 leads to rejection. The complica-
tion resides in the direct determination of λ from α. This
complication can be avoided, however, if we make use
of a Monte Carlo based approach. The computational
steps for executing the test are then as follows. Given
the observed sample of the prediction error, say ε̌∗

0 , one
first computes λ∗ = fε̌0(ε̌

∗
0 ). This implies that the sam-

ple would lie on the boundary of the acceptance region
if λ in Eq. (36) would be set equal to λ∗. Hence, this
subset is given as �∗ = {v ∈ Rm0 | fε̌0(v) ≥ λ∗}. The
next step is then to compute the value of α that would
correspond with λ∗: α∗ = 1 − P[ε̌0 ∈ �∗]. Here the sim-
ulation enters. Let N be the number of times a sample is
generated from fε̌0(v) and let Ni be the number of times
a generated sample lies in �. Then α∗ can be approx-
imated as α∗ = 1 − Ni/N. The decision to accept or
reject the observed sample is then based on the differ-
ence between α and α∗. If α∗ < α, then the test leads to
rejection, otherwise it leads to acceptance.

Example 6 (continuation of Example 2) We determine
the PDF of the prediction error of the predicted signal
š0 of Example 2. The PMF P[x̌1 = z] of integer round-

ing is given by the function F(z) = �
(

(1+2(x1−z))
2σx̂1

)
+

�
(

(1−2(x1−z))
2σx̂1

)
−1, with �(x) = ∫ x

−∞
1√
2π

exp{− 1
2 w2}dw

and σ 2
x̂1

= (4σ 2
s +σ 2

1 +σ 2
2 )/λ2. The function F(z) is sym-

metric with respect to x1 and its shape is governed by σx̂1
.

The smaller this standard deviation is, the more peaked
the PMF is. For σx̂1

< 0.10, one will have P[x̌1 = x1] ≈ 1.

The PDF of the prediction error follows as

fě0(v) =
∑
z∈Z

F(z)

σ
√

2π
exp

{
−1

2

(
v − m(z)

σ

)2
}

with m(z)= − 2λσs0s

4σ 2
s +σ 2

1 +σ 2
2
(x1−z) and σ 2 =σ 2

s0
− 4σ 2

s0s

4σ 2
s +σ 2

1 +σ 2
2

.

Again note that the error PDF is independent of the
unknown integer mean x1. Figure 2 shows for two differ-
ent values of σ the error PDF, together with their corre-
sponding 1 − α acceptance regions.

5 Summary and conclusions

In this contribution we have generalized the theory of
least-squares prediction so as to be able to deal with
integer-real mixed linear models. Starting from the
model[

y
y0

]
=

[
A
A0

]
x +

[
e
e0

]
(37)

in which y is observable, y0 is unobservable and x is
unknown, the least-squares estimator–predictor pair of
x, y0 was derived as

x̂ = (ATQ−1
yy A)−1ATQ−1

yy y
ŷ0 = A0x̂ + Qy0yQ−1

yy (y − Ax̂)
(38)

for the case all entries of x are real-valued (x ∈ Rn),
and as

x̌1 = arg minz∈Zp ||x̂1 − z||2Qx̂1 x̂1

x̌2 = x̂2 − Qx̂2x̂1
Q−1

x̂1x̂1
(x̂1 − x̌1)

y̌0 = A0x̌ + Qy0yQ−1
yy (y − Ax̌)

(39)

for the case the first p entries of x are integer-valued,
while the remaining are real-valued (x = (xT

1 , xT
2 )T ∈

Zp × Rn−p). It was shown that the general model
formulation of Eq. (37) and its two sets of solutions

Fig. 2 PDF of the prediction
error and corresponding 1 − α

acceptance region for
σ = 0.31 a and σ = 1.00 b
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Eq. (38) and Eq. (39), can be used to tackle a wide
range of different estimation-prediction problems, one
of which is the celebrated trend-signal-noise model that
forms the basis of least-squares collocation. For instance,
by setting e → s + n, y0 → (yT

0 , sT
0 , nT

0 )T , A0 →
(AT

0 , 0, 0)T and e0 → (eT
0 , sT

0 , nT
0 )T , followed by an appli-

cation of Eq. (38), one obtains the well-known results
of least-squares collocation. Application of Eq. (39)
now extends least-squares collocation to the real-integer
mixed parameter case.

In order to judge the quality of estimation and pre-
diction, we need to consider the probabilistic properties
of the estimation and prediction errors. For the all-real
case, Eq. (38), these errors are defined as ê0 = A0(x− x̂)

and ε̂0 = y0 − ŷ0, respectively, and for the mixed case,
Eq. (39), they are defined as ě0 = A0(x − x̌) and ε̌0 =
y0 − y̌0, respectively. For the all-real case, the errors are
normally distributed if y and y0 are normally distributed.
Their distributions are then given as

ê0 ∼ N(0, Qê0 ê0 = A0Qx̂x̂AT
0 )

ε̂0 ∼ N(0, Qε̂0,ε̂0 = Qy0y0|y + A0|yQx̂x̂AT
0|y)

(40)

This shows that it are the error variance matrices Qê0ê0

and Qε̂0,ε̂0 which completely drive the probabilistic prop-
erties of the errors. Thus in the case of standard least-
squares collocation, for instance, it indeed suffices to
work with the error variances. This is, however, not
allowed anymore in case some of the parameters are
integer-valued. That is, the error variances will not suf-
fice for describing the quality of integer-based least-
squares collocation.

In the integer-real mixed parameter case, the estima-
tion and prediction errors will not be normally distrib-
uted, even if y and y0 are normally distributed. It was
shown that the distributions of these errors are given by
the multimodal PDFs

fě0(v) =
∑

z1∈Zp

fê0|x̂1=z1
(v)P[x̌1 = z1] and fε̌0(v)

=
∑

z1∈Zp

fε̂0|x̂1=z1
(v)P[x̌1 = z1] (41)

in which P[x̌1 = z1] is the PMF of x̌1, and fê0|x̂1=z1
(v)

and fε̂0|x̂1=z1
(v) are the PDFs of the normally distributed

vectors

ê0|x̂1=z1
∼ N

((
A01 + A02Qx̂2x̂1

Q−1
x̂1x̂1

)
(x1 − z1),

Qê0ê0|x̂1
= A02Qx̂2x̂2|x̂1

AT
02

)

ε̂0|x̂1=z1
∼ N

((
A01|y + A02|yQx̂2x̂1

Q−1
x̂1x̂1

)
(x1 − z1),

Qε̂0ε̂0|x̂1
= Qy0y0|y + A02|yQx̂2x̂2|x̂1

AT
02|y

)

The multimodal PDFs of Eq. (41) are infinite sums of
weighted and shifted versions of the PDFs of ê0|x̂1=z1

and ε̂0|x̂1=z1
, respectively. The weights are given by the

probability masses of the PMF of x̌1. Since the multi-
modal PDFs are symmetric with respect to the origin, the
estimation and prediction errors are zero-mean random
vectors, E(ě0) = 0 and E(ε̌0) = 0.

The above multimodal PDFs can be used to construct
confidence regions and to cross-validate the assump-
tions underlying the model with integer parameters. The
procedure for cross-validation was described for a given
false alarm probability and an acceptance region which
captures the largest probability mass.

Appendix

Corollary 1 A quadratic form

F =
[

a
b

]T [
Qaa Qab
Qba Qbb

]−1 [
a
b

]
(42)

can be decomposed into a sum of two quadratic forms as

F = aTQ−1
aa a + (b − QbaQ−1

aa a)T

×(Qbb − QbaQ−1
aa Qab)−1(b − QbaQ−1

aa a) (43)

Proof The following block triangular factorization is
easily verified,[

Qaa Qab
Qba Qbb

]
=

[
I 0

QbaQ−1
aa I

] [
Qaa 0

0 Qbb − QbaQ−1
aa Qab

]

[
I 0

QbaQ−1
aa I

]T

(44)

The inverse of this matrix follows, with
[

I 0
QbaQ−1

aa I

]−1

=
[

I 0
−QbaQ−1

aa I

]
, (45)

as[
Qaa Qab
Qba Qbb

]−1

=
[

I 0
−QbaQ−1

aa I

]T

×
[

Q−1
aa 0
0 (Qbb − QbaQ−1

aa Qab)−1

]

×
[

I 0
−QbaQ−1

aa I

]
(46)

Substitution of this expression into the quadratic form
F of Eq. (42) gives the desired decomposition. ��
Corollary 2 Let a and b be two random vectors with joint
variance matrix

D
[

a
b

]
=

[
Qaa Qab
Qba Qbb

]
(47)
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and define the random vector

b|a=c = b − QbaQ−1
aa (a − c) (48)

in which c is a constant vector. Then

(i) E(b|a=c) = E(b) − QbaQ−1
aa (E(a) − c)

(ii) Qb|a=cb|a=c = Qbb − QbaQ−1
aa Qab

(iii) Qab|a=c = 0 (a and b|a=c are uncorrelated)

Proof The expectation (i) follows directly from apply-
ing the mean propagation law to Eq. (48). To prove (ii)
and (iii), consider the transformation[

a − c
b|a=c

]
=

[
I 0

−QbaQ−1
aa I

] [
a − c

b

]

Application of the variance propagation law gives[
Qaa Qab|a=c

Qb|a=ca Qb|a=cb|a=c

]
=

[
I 0

−QbaQ−1
aa I

]
D

[
a
b

]

×
[

I 0
−QbaQ−1

aa I

]T

Substitution of Eq. (47), gives with the use of Eqs. (44)
and (45),[

Qaa Qab|a=c

Qb|a=ca Qb|a=cb|a=c

]
=

[
Qaa 0
0 Qbb − QbaQ−1

aa Qab

]

This proves (ii) and (iii). In the sequel we will use the
shorthand notation Qbb|a=c for Qb|a=cb|a=c . ��
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