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ABSTRACT 
 

Integer carrier phase ambiguity resolution is the key to fast and high-
precision global navigation satellite system (GNSS) positioning and 
application. Apart from integer estimation, also acceptance tests are part of 
the ambiguity resolution process. A popular acceptance test is the so-called 
ratio-test. 
 
In this contribution we study the properties and the underlying concepts of 
the ratio-test. We discuss some misconceptions of the ratio-test and in 
particular show that the ratio-test is not a test for testing the correctness of 
the integer least-squares solution. We also show that the common usage of 
the ratio-test with a fixed critical value has shortcomings. Instead, the fixed 
failure rate approach is recommended. This approach, which is part of the 
more general theory of integer aperture estimation, has the advantage that 
the times to first fix are reduced, while it is guaranteed that the failure rate 
does not exceed a user-defined value. Results of the fixed failure-rate ratio-
test are illustrated with a number of examples. 
 
KEYWORDS: GNSS, integer ambiguity resolution, ratio test, integer 
aperture estimation, fixed failure rate.  

 
 



 

 

 

1. INTRODUCTION 
 
Integer carrier phase ambiguity resolution is the key to fast and high-precision GNSS 
positioning and navigation. It is the process of resolving the unknown cycle ambiguities of the 
double-differenced carrier phase data as integers. Once this has been done successfully, the 
very precise carrier phase data will act as pseudo range data, thus making very precise 
positioning and navigation possible. 
 
GNSS ambiguity resolution applies to a great variety of current and future models of GPS, 
modernized GPS and Galileo, with applications in surveying, navigation, geodesy and 
geoscience in general. These models may differ greatly in complexity and diversity. They 
range from single-baseline models used for kinematic positioning to multi-baseline models 
used as a tool for studying geodynamic phenomena. The models may or may not have the 
relative receiver-satellite geometry included. They may also be discriminated on the basis of 
whether the slave receiver(s) is stationary or in motion, or whether or not the differential 
atmospheric delays (ionosphere and troposphere) are included as unknowns. An overview of 
these models can be found in textbooks such as Strang and Borre (1997), Teunissen and 
Kleusberg (1998), Hofmann-Wellenhoff et al. (2001), Leick (2003), and Misra and Enge 
(2006). 
 
GNSS ambiguity resolution can conceptually be divided into four steps: 

• In the first step, one disregards the integer nature of the ambiguities and performs a 
standard least-squares adjustment. As a result one obtains the so-called “float 
solution” of all the parameters (i.e. ambiguities, baseline components, and possibly 
additional parameters such as atmospheric delays), together with their variance-
covariance matrix. 

• In the second step, the real-valued float solution of the ambiguities is further adjusted, 
so as to take the integer constraints into account. As a result one obtains an integer 
solution for the ambiguities. Integer rounding, integer bootstrapping and integer least-
squares are different methods for obtaining the integer solution. Integer least-squares 
(ILS) is optimal, as it can be shown to maximize the probability of correct integer 
estimation (Teunissen, 1999). In contrast to rounding and bootstrapping, an integer 
search is needed to compute the ILS solution. This can efficiently be done with the 
LAMBDA method. 

• Once the integer ambiguities are computed, they are used in the third step as input to 
decide whether or not to accept the integer solution. Several such tests have been 
proposed in the literature and are currently in use in practice (Abidin 1993, Chen 
1997, Euler and Schaffrin 1990, Frei and Beutler 1990, Han 1997, Han and Rizos 
1996, Landau and Euler 1992, Tiberius and de Jonge 1995, Wang et al. 1998). 
Examples are the ratio-test, the distance-test and the projector-test. A review and 
evaluation of these tests can be found in Verhagen (2005). 

• Once the integer solution is accepted, the fourth step consists of correcting the float 
solution of all other parameters by virtue of their correlation with the ambiguities. As 
a result one obtains the so-called “fixed solution”. Provided a correct decision has 
been made in the third step, the fixed solution will have a precision that is 
commensurate with the high precision of the phase data. 

 
In this contribution we focus attention on the third step, and in particular study the properties 
and use of the popular ratio-test. 
 



 

 

 

2. RATIO TEST 
 
2.1 Definition and Misconceptions 
 
In this section we give a definition of the popular ratio-test and point to some of the 
misconceptions that are linked to this test. 
 
The ratio-test is defined as follows. Let the float ambiguity vector and its variance matrix be 
given as â  and aaQ ˆˆ , respectively. Furthermore, let a

(
 be the ILS solution, i.e. the integer 

minimizer of )ˆ()ˆ()( 1
ˆˆ aaQaaaq aa

T −−= − ,and let 'a
(

 be the integer vector that returns the second 

smallest value of the quadratic form )(aq . Then the ratio-test reads as: 
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 if: c
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(
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          (1) 

 
where c is a tolerance value, to be selected by the user. Thus only if )'(aq

(
 is sufficiently 

larger than )(aq
(

, will the decision be made to accept the ILS solution. Otherwise, the ILS 
solution is rejected in favour of the float solution. 
 
Questions that need to be addressed when using the above test are: 
 

1. What does the ratio-test actually test? 
2. What errors can be made with the ratio-test? 
3. What value for c should be chosen? 

 
Answers to these questions are needed in order to have a proper understanding of the ratio-
test. 
 
One motivation that is often given for the use of the ratio-test is that it tests the correctness of 
the ILS solution. With reference to the theory of hypothesis testing, the ratio of the two 
quadratic forms, )(aq

(
 and )'(aq

(
, is then assumed to have a Fisher-distribution, from which c 

can be computed, once the level of significance has been set. The problem with this approach 
is, however, that the ratio of the two quadratic forms is not Fisher-distributed. Even if one was 
allowed to assume that )(aq

(
 and )'(aq

(
 are Chi-square distributed (which is not true, since 

also the uncertainty of the integer vectors needs to be taken into account), then their ratio 
would still not be Fisher-distributed. The two quadratic forms are namely not independent. 
 
Also, the ratio-test is not a test for testing the correctness of the ILS solution. In fact, one can 
add an arbitrary integer vector to the float solution, without altering the outcome of the ratio 
test. Hence, biases of arbitrary size (provided they are integer) can be present in the float 
solution, without them ever being noticed by the ratio-test. 
 
In many of the existing software packages a fixed value for c is chosen, no matter the strength 
of the underlying GNSS model (Leick, 2003). This is strange, since one would expect that 
with a varying strength of the GNSS model or with varying degrees of freedom, one also 
would use varying values for c. The use of a fixed value can however be explained by a lack 
of a proper theory. That is, by not knowing how to rigorously compute a critical value, one 
adopts the value that, on the basis of empirical evidence, seems to give reasonable results. 



 

 

 

Indeed, the popular usage of the value 3 seems to be based on various empirical studies that 
have shown, although not conclusively, that a workable value for c will lie somewhere around 
this value. Wei and Schwarz (1995), for instance, proposed to use the ratio-test with a critical 
value of 2. Han and Rizos (1996) showed that good results can be obtained with the ratio-test 
with a critical value of 1.5, provided that one has confidence in the stochastic model, while 
Euler and Schaffrin (1990) used test computations, from which a value of c between 5 and 10 
followed. The outcomes of these studies are, however, difficult to generalize, since they are 
based on different GNSS measurement scenarios. 
 
2.2 What Does the Ratio-Test Test? 
 
To understand what the ratio-test tests, we need to get a better insight into its acceptance 
region and rejection region. We already remarked that the outcome of the ratio-test remains 
unchanged when an arbitrary integer vector, say z, is added to the float solution. This implies 
that its acceptance region, denoted as Ω , must be a region which is z-translational invariant. 
That is, if the acceptance region is translated over an arbitrary integer vector, then the same 
acceptance region is recovered again. Since the rejection region is complementary to the 
acceptance region, also the rejection region of the ratio-test is z-translational invariant. 
 
The z-translational invariance of the acceptance region implies that it must equal the union of 
z-translated copies of a smaller region 0Ω . Thus: 

U
nz

z
Ζ∈

Ω=Ω  where zz +Ω=Ω 0         (2) 

A closer look at the ratio-test shows that 0Ω  is given by the set: 

{ }n
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This region, which is called an aperture pull-in region, is symmetric with respect to the origin 
and its shape is governed by the variance matrix of the float solution, while its size is 
governed by the value of c. Each integer vector z has its own pull-in region. They are 
translated copies of 0Ω , i.e. zz +Ω=Ω 0 . We have: 

za =(  if za Ω∈ˆ           (4) 

Thus if the float solution resides in zΩ , the ratio-test leads to acceptance and the ILS solution 
is equal to z. 
 
Now we are in a position to understand what the ratio-test actually tests. The ratio-test tests 
the closeness of the float solution to its nearest integer vector. If it is close enough, the test 
leads to acceptance of a

(
. If it is not close enough, then the test leads to rejection in favour of 

the float solution â . The size or aperture of the pull-in region provides the largest distance 
one is willing to accept. The value for c can be used to tune this aperture. 
 
Note that testing the closeness of the float solution to its nearest integer is not the same as 
testing the correctness of the ILS solution. The outcome of the ILS solution is correct if it 
would equal the unknown integer mean of â , )ˆ(aEa = . But the closeness of â to the integer 
vector a  is not tested by the ratio-test. 
 
2.3 Relevance of the Ratio-Test 
 
Now that we know what the ratio-test actually does, one may ask in what way this test helps 
us gain confidence in the outcome of ambiguity resolution. In order to answer this question, 



 

 

 

we have to realize that acceptance of the ILS solution by the ratio-test can be correct or 
incorrect. We therefore have to distinguish between the following three cases: 
 

aa Ω∈ˆ  success: correct integer estimation 

}{\ˆ aa ΩΩ∈  failure: incorrect integer estimation 

Ω∉â   undecided: ambiguity not fixed to an integer 
 
where }{\ aΩΩ  means that aΩ  is deleted from the set Ω , with a  being the unknown integer 

ambiguity vector. 
 
The corresponding probabilities of success (s), failure (f) and undecidedness (u) are given by: 

∫Ω=
a

dxxfP as )(ˆ  

∑ ∫∈ Ω
=

}{\ ˆ )(
aZz af n

z

dxxfP          (5) 

fsu PPP −−= 1  

where )(ˆ xfa  is the probability density function (PDF) of ),(~ˆ ˆˆaaQaNa . The first two 

probabilities are referred to as success rate and failure rate, respectively. Thus fs PP +  is the 

probability of acceptance of the ratio-test and uP  is its probability of rejection. 

 
The above probabilities all depend on the shape and size of 0Ω  and on the PDF of â . Thus by 

changing 0Ω  and/or the PDF of â , one can influence the above probabilities. Changing the 

PDF will not be possible, once the measurement scenario is given (this will be different if one 
was designing a measurement scenario). Changing the shape of 0Ω  is also not possible, since 

the shape is determined by the ratio-test. This leaves us with the size of 0Ω , which is 

determined by c. Hence, by changing c one can influence the above probabilities. Thus 
through the choice of c, the user is able to have control over the failure rate, i.e. the 
probability of incorrect integer estimation. This is a very important result because it gives the 
user the necessary flexibility over what he/she finds an acceptable risk to take with integer 
ambiguity resolution. This is the relevance of having the ratio-test included as the third step in 
the four-step procedure of ambiguity resolution. 
 
2.4 Fixed Failure Rate Should Be Used 
 
The above discussion makes clear that the common practice of using a fixed value for c is not 
the way to go. By using a fixed value for c, the user is deprived from any control over the 
failure rate. The failure rate will then be different for different measurement scenarios. 
Already in a kinematic or navigation scenario, where data are collected on an epoch by epoch 
basis, the failure rate will change from epoch to epoch if a fixed value for c is used. 
 
As an illustration of the difference between the traditional ratio-test and our approach, five 
dual-frequency GPS models are considered. Based on Monte-Carlo simulations the success 
and failure rates as function of c/1=µ  are determined for each of the models, see Figure 1. It 
can be seen that with a fixed value of 3.0=µ  for most of the models considered here a very 
low failure rate is obtained, but that this is not guaranteed. This seems good, but at the same 
time also the corresponding success rate is low. If the threshold value would have been based 
on a fixed failure rate of e.g. 0.005, the corresponding c/1=µ  would have been very 



 

 

 

different for each of the models, and in most cases larger than 0.3, and thus a higher success 
rate and higher probability of a fix (probability of acceptance fs PP + ) would be obtained. 

 

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

fa
ilu

re
 r

at
e

µ
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

su
cc

es
s 

ra
te

µ  
Figure 1. Success and failure rates as function of the threshold value c/1=µ  for 5 GPS models. 

 
In order to execute the ratio-test with a fixed failure rate, one should be able to compute c 
from the chosen failure rate fP . This is, unfortunately, a rather computationally demanding 

task. It involves the 'inversion' of the integral equation that links the failure rate to the size of 
the aperture pull-in region. A practical solution to this problem is therefore to work with look-
up tables, that allows one to select (if needed through interpolation) the proper value for c. In 
Section 3.3 we will give an example of such a look-up table. 
 
2.5 What About the Success Rate? 
 
Changing c will affect the failure rate as well as the success rate. The larger c is chosen, the 
smaller the aperture of 0Ω  and therefore the smaller the failure rate, but also the smaller the 

success rate. So, what have we gained? To understand what we have gained, we have to 
consider the success rate of acceptance of the ratio-test and not the overall success rate. The 
success rate of acceptance is the frequency with which correct integer outcomes are realized, 
when the outcome of the ratio-test is to accept the integer solution. It is the probability of 
having successful fixes, denoted as sfP , and it is given by the ratio of the success rate and the 

probability of acceptance: 

fs

s
sf PP

P
P

+
=            (6) 

This probability will be close to one, if the failure rate is close to zero. Thus if the failure rate 
is small, one can be very confident about the correctness of the integer solutions that are 
accepted by the ratio-test. 
 
2.6 Is the Ratio-Test Optimal? 
 
As we have argued, the ratio-test should be used with a fixed failure rate instead of with a 



 

 

 

fixed value for c. In the next section, some further examples will be given that show the 
difference between these two approaches. Despite the preference for the fixed failure rate 
approach, when using the ratio-test, one may pose the question whether the use of the ratio-
test is the best one can do. That is, given the failure rate, is the ratio-test the test that results in 
the largest success rate? 
 
The answer is no. It can be shown that the ratio-test is a member of the class of tests as given 
by the theory of integer aperture estimation developed by Teunissen (2003). Members from 
this class differ in the way the shape of the aperture pull-in region 0Ω  is defined. Hence, 

within this class, one can, by fixing the failure rate, solve for the aperture pull-in region that 
maximizes the success rate (Figure 2 gives a two-dimensional example of the optimal aperture 
pull-in regions). The optimal test so obtained differs from the ratio-test. Since the discussion 
of the optimal test and its relation to the ratio-test is outside the scope of the present 
contribution, we refer the reader for more details to (Teunissen 2003, Verhagen and Teunissen 
2006). 
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Figure 2. Two-dimensional example of optimal aperture pull-in regions, together with the ILS pull-in 
regions (hexagons). 

 
 
3. THE FIXED FAILURE RATE RATIO-TEST 
 
In this section we illustrate the improved performance of the fixed failure rate approach. We 
also show how the value of c can be computed from a user-defined failure rate. 
 
3.1 A short baseline example 
 
We first consider a short GNSS baseline based on simulated data. The data set contains 1 Hz 
code and phase observations on the L1, E6 and E5 Galileo frequencies, with known multipath 
errors in order to demonstrate some robustness against biases. The data set was processed on 
an epoch-by-epoch basis. 
 
Figure 3 shows the errors in the float and fixed estimates of the position components (East, 
North, Up). The top panels show the results if the traditional ratio-test when a fixed critical 
value of c=2 is used; the bottom panels if the ratio-test with fixed failure rate is used 
( fP =0.001). Note that if the ratio-test is rejected, the float solution is used. In fact, the 



 

 

 

ambiguities were estimated correctly in all epochs. However, with the traditional ratio-test the 
fixed solution was unnecessarily rejected 12% of the time. Obviously, this deteriorates the 
position solutions in those epochs. 
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Figure 3. East, North, Up position errors, based on ratio-test with fixed critical value c=5 (top panels) 
and based on ratio-test with fixed failure rate fP =0.001 (bottom panels). 

 
3.2 A long baseline example 
 
This next example concerns a longer baseline (baseline Delft-Brussels, 132 km) for which 
real data was used. The characteristics of the data and the processing mode are as follows: 

• Dual-frequency phase and code (L1,L2,C1,P2); cut-off elevation 10 deg 
• Standard deviations phase 3mm; code 50 cm (undifferenced) 
• Standard deviation of ionospheric corrections (zero sample values): 10 cm 

(undifferenced) 
• 2880 epochs with 30 sec interval (whole day) 
• Tropospheric zenith delay estimation (positions kept fixed) 
• A priori tropospheric corrections using Saastamoinen model 
• Epoch-by-epoch processing (Kalman filtering) over whole time span (ambiguities 

assumed constant) 
• LAMBDA ambiguity resolution 
• Ratio-test with fixed critical value c=2 and with fixed failure rate fP =0.001 

• Verification of results ('ground truth') based on batch solution of whole day 
The results are given in Figure 4. Shown are the epoch-by-epoch values of the ratio-test, 



 

 

 

together with the rejected values for the fixed critical value (top panel) and the rejected values 
using the fixed failure rate 0.001 (bottom panel). With the fixed failure rate, the ratio-test is 
not passed only during 2 epochs, while the ambiguities would have been correct. Hence, 
during 0.07% of the time the fixed solution is unnecessarily rejected (false alarm). The 
ambiguities are always correctly fixed (success rate is 1). In case of the fixed critical value 
c=2, the ratio-test is not passed during 544 epochs, while the ambiguities would have been 
correct. Hence, during 19% of the time the fixed solution is unnecessarily rejected (false 
alarm). 
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Figure 4. Epoch-by-epoch values of the ratio )'(/)( aqaq
((

; top panel: acceptance if 

caqaq /1)'(/)( ≤((
, with c=2; bottom panel: fP =0.001. 

 



 

 

 

3.3 Determining the Critical Value 
 
We already remarked that in order to execute the ratio-test with a fixed failure rate, one has to 
compute c from the chosen failure rate fP . This is a nontrivial task, as it involves the 

'inversion' of the integral equation that links the failure rate to the size of the aperture pull-in 
region. 
 
To determine c, one needs simulations based on the variance matrix of the float ambiguities. 
This may lead to a high computational burden. To lessen this burden, the idea is that look-up 
tables are created from which the appropriate critical value c can be determined based on the 
variance matrix of the float ambiguities. This means that the only input for the complete 
ambiguity resolution kernel (LAMBDA + ratio-test) would consist of the float ambiguities 
and their variance matrix. 
 
For fP =0.01, Table 1 gives an example of how to look up the 1/c values. It works as follows. 

The user first computes the ILS failure rate ILSfP ,  (1 minus the ILS success rate) from the 

nn×  variance matrix of the float ambiguities. Then from n and ILSfP , , the 1/c value that 

corresponds with, in this case fP =0.01, is obtained from the table. 

 

ILSfP ,  n = … n = 6 n = 7 n = 8 n = 9 n = 10 n = … 

0 … 1 1 1 1 1 … 
0.01 … 1 1 1 1 1 … 
0.011 … 0.978 0.977 0.979 0.980 0.982 … 
0.016 … 0.878 0.880 0.884 0.891 0.897 … 
0.021 … 0.879 0.800 0.819 0.829 0.839 … 
0.026 … 0.730 0.741 0.775 0.787 0.800 … 
M  M  M  M  M  M  M  M  

Table 1. Example of part of the look-up table for 1/c, given fP  = 0.01 (values are indicative). 

 
One practical problem with this approach is, of course, the computation of the ILS failure 
rate. Exact computation would again require simulation. Hence, an approximation is needed. 
Several approximations are available, most of which are known to be either an upper bound or 
lower bound. Obviously, an upper bound should be used in order to guarantee that the actual 
failure rate is lower than the maximum allowable value. 
 
To show how well this works, the 1/c values obtained with this upper bound approach are 
then used to determine the corresponding failure rates and fix probabilities based on simulated 
data. Ideally, the failure rates should be very close to the fixed value 0.01. 
 
The results are shown in Figure 5 for two models. The actual failure rate as a function of time 
is shown in the left panels. The fix probability is shown in the right panels. The black solid 
line shows the failure rate obtained by using the approximated 1/c value with the look-up 
table. The grey lines show the failure rates obtained by using a fixed 1/c value of 0.5. The 
dashed black lines show the true values if the 1/c value corresponding to a fixed failure rate of 
0.01 was used. Note that as soon as the ILS failure rate is smaller than 0.01, the threshold 
value becomes equal to 1, and hence the failure rate becomes equal to the ILS failure rate. 
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Figure 5. Failure rates and fix probabilities with approximated threshold value using a look-up table 
(black solid). True values (black dashed) and values with fixed threshold value of c=2 (grey) are also 

shown. Left panels: 3-frequency GPS, 15 ambiguities. Right panels: 2-frequency Galileo/GPS, 20 
ambiguities. 

 
It follows that the approximation of the 1/c value using the look-up table works very well, 
even though the upper bound of the ILS failure rate was used. In general the failure rates are 
somewhat lower than the required value, which is good. This implies that also the fix 
probabilities are somewhat lower, since a smaller failure rate means that the acceptance 
region is smaller. However, the difference compared to the probabilities obtained with the 
'true' 1/c value is small. Obviously, using the fixed failure rate determination of the 1/c value 
gives much better performance as compared to using a fixed c value, as is done with the 
traditional ratio-test. 
 
 



 

 

 

4. CONCLUSIONS 
 
In this contribution we showed what the popular ratio-test does and how it should be used. 
The ratio-test does not test, as is often believed, the correctness of the integer least-squares 
solution. Also, the ratio-test should not be used, as is commonly done, with a fixed critical 
value. The ratio-test should be used with a fixed failure rate, thus giving the user control over 
the succes rate of fixing. Examples were given that illustrate the improved performance of our 
fixed failure rate ratio-test over the traditional ratio-test. 
 
It was also shown how the critical value can be computed from a user-defined failure rate by 
means of look-up tables. Readers interested in this approach can contact the authors for more 
details on the construction of these look-up tables. 
 
Finally, it was pointed out that the ratio-test is member of the class of tests provided by the 
theory of integer aperture estimation. With this theory available, there is no need anymore to 
make incorrect assumptions on the distribution of the parameters or test statistics (i.e. 
assuming that the estimated integer ambiguities are deterministic, or that the quadratic form 
ratio has a Fisher-distribution). With the help of this theory, it can also be shown that the 
ratio-test is not optimal. Other tests exist that have a larger success rate for a given fixed 
failure rate (Teunissen, 2003). 
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