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ABSTRACT

Integer carrier phase ambiguity resolution is they ko fast and high-
precision global navigation satellite system (GNS&)sitioning and
application. Apart from integer estimation, alseegtance tests are part of
the ambiguity resolution process. A popular acaeggatest is the so-called
ratio-test.

In this contribution we study the properties and timderlying concepts of
the ratio-test. We discuss some misconceptionshef ratio-test and in
particular show that the ratio-test is not a testtésting the correctness of
the integer least-squares solution. We also shavttte common usage of
the ratio-test with a fixed critical value has dhomings. Instead, the fixed
failure rate approach is recommended. This approabich is part of the
more general theory of integer aperture estimatias, the advantage that
the times to first fix are reduced, while it is gasteed that the failure rate
does not exceed a user-defined value. Resultsedfixbd failure-rate ratio-
test are illustrated with a number of examples.
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1. INTRODUCTION

Integer carrier phase ambiguity resolution is they ko fast and high-precision GNSS
positioning and navigation. It is the process ebieing the unknown cycle ambiguities of the
double-differenced carrier phase data as integ@nse this has been done successfully, the
very precise carrier phase data will act as pseatge data, thus making very precise
positioning and navigation possible.

GNSS ambiguity resolution applies to a great vgratcurrent and future models of GPS,
modernized GPS and Galileo, with applications imveying, navigation, geodesy and
geoscience in general. These models may differtlgréa complexity and diversity. They
range from single-baseline models used for kineanadisitioning to multi-baseline models
used as a tool for studying geodynamic phenomeha.riodels may or may not have the
relative receiver-satellite geometry included. Tiegy also be discriminated on the basis of
whether the slave receiver(s) is stationary or mtiom, or whether or not the differential
atmospheric delays (ionosphere and tropospherepelged as unknowns. An overview of
these models can be found in textbooks such amd@t@ad Borre (1997), Teunissen and
Kleusberg (1998), Hofmann-Wellenhoét al. (2001), Leick (2003), and Misra and Enge
(2006).

GNSS ambiguity resolution can conceptually be didithto four steps:

* In the first step, one disregards the integer matirthe ambiguities and performs a
standard least-squares adjustment. As a result alotains the so-called “float
solution” of all the parameters (i.e. ambiguitiesseline components, and possibly
additional parameters such as atmospheric delagggther with their variance-
covariance matrix.

* In the second step, the real-valued float solutibthe ambiguities is further adjusted,
SO as to take the integer constraints into accolmita result one obtains an integer
solution for the ambiguities. Integer roundinggeir bootstrapping and integer least-
squares are different methods for obtaining theget solution. Integer least-squares
(ILS) is optimal, as it can be shown to maximize frobability of correct integer
estimation (Teunissen, 1999). In contrast to rougdind bootstrapping, an integer
search is needed to compute the ILS solution. Tars efficiently be done with the
LAMBDA method.

« Once the integer ambiguities are computed, theysee in the third step as input to
decide whether or not to accept the integer salutiBeveral such tests have been
proposed in the literature and are currently in us@ractice (Abidin 1993, Chen
1997, Euler and Schaffrin 1990, Frei and Beutledl9Han 1997, Han and Rizos
1996, Landau and Euler 1992, Tiberius and de Jdfis, Wanget al. 1998).
Examples are the ratio-test, the distance-testthadprojector-test. A review and
evaluation of these tests can be found in Verh#2eos).

» Once the integer solution is accepted, the fourtp sonsists of correcting the float
solution of all other parameters by virtue of thaarrelation with the ambiguities. As
a result one obtains the so-called “fixed solutioRtfovided a correct decision has
been made in the third step, the fixed solutionl vidve a precision that is
commensurate with the high precision of the phasa.d

In this contribution we focus attention on the dhstep, and in particular study the properties
and use of the popular ratio-test.



2. RATIO TEST
2.1 Definition and Misconceptions

In this section we give a definition of the populatio-test and point to some of the
misconceptions that are linked to this test.

The ratio-test is defined as follows. Let the flaatbiguity vector and its variance matrix be
given asa and Q,;, respectively. Furthermore, lgt be the ILS solution, i.e. the integer

minimizer of q(a) = (a—-a)" Qgg(é—a) ,and leta' be the integer vector that returns the second
smallest value of the quadratic forgia) . Then the ratio-test reads as:

Accepta if: q(ai) >C (1)

wherec is a tolerance value, to be selected by the udmrs only if gq(a') is sufficiently
larger thanq(a), will the decision be made to accept the ILS sotutOtherwise, the ILS
solution is rejected in favour of the float solutio

Questions that need to be addressed when usirgptwe test are:

1. What does the ratio-test actually test?
2. What errors can be made with the ratio-test?
3. What value forc should be chosen?

Answers to these questions are needed in ordeave & proper understanding of the ratio-
test.

One motivation that is often given for the usehaf tatio-test is that it tests the correctness of
the ILS solution. With reference to the theory gfpbthesis testing, the ratio of the two
quadratic formsg(a) andg(a'), is then assumed to have a Fisher-distributiammfwhichc

can be computed, once the level of significancebe®s set. The problem with this approach
is, however, that the ratio of the two quadratierfs is not Fisher-distributed. Even if one was
allowed to assume thaj(a) and q(a') are Chi-square distributed (which is not truegcsin
also the uncertainty of the integer vectors needbet taken into account), then their ratio
would still not be Fisher-distributed. The two gtetet forms are namely not independent.

Also, the ratio-test is not a test for testing tioerectness of the ILS solution. In fact, one can
add an arbitrary integer vector to the float solutiwithout altering the outcome of the ratio
test. Hence, biases of arbitrary size (provided thee integer) can be present in the float
solution, without them ever being noticed by thiorgest.

In many of the existing software packages a fixald® forc is chosen, no matter the strength
of the underlying GNSS model (Leick, 2003). Thissteange, since one would expect that
with a varying strength of the GNSS model or widirwing degrees of freedom, one also
would use varying values far The use of a fixed value can however be explabed lack

of a proper theory. That is, by not knowing howriggorously compute a critical value, one
adopts the value that, on the basis of empiricadesce, seems to give reasonable results.



Indeed, the popular usage of the value 3 seeme tmabed on various empirical studies that
have shown, although not conclusively, that a wolkaalue forc will lie somewhere around
this value. Wei and Schwarz (1995), for instanegeppsed to use the ratio-test with a critical
value of 2. Han and Rizos (1996) showed that gesdlts can be obtained with the ratio-test
with a critical value of 1.5, provided that one lsfidence in the stochastic model, while
Euler and Schaffrin (1990) used test computatitmsy which a value o€ between 5 and 10
followed. The outcomes of these studies are, howaeliicult to generalize, since they are
based on different GNSS measurement scenarios.

2.2 What Does the Ratio-Test Test?

To understand what the ratio-test tests, we neegketaa better insight into its acceptance
region and rejection region. We already remarked the outcome of the ratio-test remains
unchanged when an arbitrary integer vector,zsay added to the float solution. This implies
that its acceptance region, denotedasmust be a region which wtranslational invariant.
That is, if the acceptance region is translated avearbitrary integer vector, then the same
acceptance region is recovered again. Since tleeti@j region is complementary to the
acceptance region, also the rejection region ofdhie-test isz-translational invariant.

The z-translational invariance of the acceptance regiguiies that it must equal the union of
z-translated copies of a smaller regi©g. Thus:

Q=[JQ, whereQ,=Q,+z )
Az"

A closer look at the ratio-test shows tifa§ is given by the set:

Qp ={XOR" [x"Qex < 1 (x-u)" Q3 (x~u), Dud "} 3)

This region, which is called aperture pull-in regionis symmetric with respect to the origin
and its shape is governed by the variance matrixhef float solution, while its size is
governed by the value af. Each integer vector has its own pull-in region. They are
translated copies d,, i.e. Q, =Q, +z. We have:

a=zif alQ, 4)
Thus if the float solution resides @, , the ratio-test leads to acceptance and the IL8iso

is equal ta

Now we are in a position to understand what th+tast actually tests. The ratio-test tests
the closeness of the float solution to its neargsger vector. If it is close enough, the test
leads to acceptance af. If it is not close enough, then the test leadsejection in favour of
the float solutiona. The size or aperture of the pull-in region pregdhe largest distance
one is willing to accept. The value focan be used to tune this aperture.

Note that testing the closeness of the float smhutd its nearest integer ®t the same as
testing the correctness of the ILS solution. Thecome of the ILS solution is correct if it
would equal the unknown integer meanasfa = E(4). But the closeness @to the integer

vector a is not tested by the ratio-test.
2.3 Relevance of the Ratio-Test

Now that we know what the ratio-test actually da®s may ask in what way this test helps
us gain confidence in the outcome of ambiguity lkegm. In order to answer this question,



we have to realize that acceptance of the ILS mwiuby the ratio-test can be correct or
incorrect. We therefore have to distinguish betwibenfollowing three cases:

anQ, success: correct integer estimation
afdQ\{Q,} failure: incorrect integer estimation
adQ undecided: ambiguity not fixed to an integer

where Q\ {Q, } means thaf), is deleted from the séd, with a being the unknown integer
ambiguity vector.

The corresponding probabilities of succegjsféilure §) and undecidedness)(are given by:
P.=[, fa()dx

Pr= 3 o o, fa(¥dx (5)
R, =1-P, - P

where f;(x) is the probability density function (PDF) di~N(a,Q, - JThe first two
probabilities are referred to as success rate aihad rate, respectively. Thug + P; is the
probability of acceptance of the ratio-test aéfdis its probability of rejection.

The above probabilities all depend on the shapesenedof Q, and on the PDF o&. Thus by
changingQ, and/or the PDF ofi, one can influence the above probabilities. Chamghe

PDF will not be possible, once the measurementasaeis given (this will be different if one
was designing a measurement scenario). Changinghtiqge ofQ, is also not possible, since

the shape is determined by the ratio-test. Thiseleaws with the size of),, which is

determined byc. Hence, by changing one can influence the above probabilities. Thus
through the choice o€, the user is able to have control over the failtate, i.e. the
probability of incorrect integer estimation. Thisaisvery important result because it gives the
user the necessary flexibility over what he/sheldimn acceptable risk to take with integer
ambiguity resolution. This is the relevance of hguime ratio-test included as the third step in
the four-step procedure of ambiguity resolution.

2.4 Fixed Failure Rate Should Be Used

The above discussion makes clear that the commatigeraf using a fixed value faris not

the way to go. By using a fixed value farthe user is deprived from any control over the
failure rate. The failure rate will then be diffatefor different measurement scenarios.

Already in a kinematic or navigation scenario, véhdata are collected on an epoch by epoch
basis, the failure rate will change from epochpoah if a fixed value foc is used.

As an illustration of the difference between thaditional ratio-test and our approach, five
dual-frequency GPS models are considered. Basedarie-Carlo simulations the success
and failure rates as function pf=1/c are determined for each of the models, see Fitjulte

can be seen that with a fixed value @f 0.3 for most of the models considered here a very
low failure rate is obtained, but that this is gaaranteed. This seems good, but at the same
time also the corresponding success rate is lothelthreshold value would have been based
on a fixed failure rate of e.g. 0.005, the corregpog ¢ =1/c would have been very



different for each of the models, and in most cdaeger than 0.3, and thus a higher success
rate and higher probability of a fix (probability @cceptanceP, + P; ) would be obtained.
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Figure 1. Success and failure rates as function of the llatdssalue 4 =1/ ¢ for 5 GPS models.

In order to execute the ratio-test with a fixeduwee rate, one should be able to compute
from the chosen failure ratB; . This is, unfortunately, a rather computationalgmanding

task. It involves the 'inversion' of the integrguation that links the failure rate to the size of
the aperture pull-in region. A practical solutianthis problem is therefore to work with look-
up tables, that allows one to select (if neededuttn interpolation) the proper value forin
Section 3.3 we will give an example of such a lopktable.

2.5 What About the Success Rate?

Changingc will affect the failure rate as well as the susceste. The larger is chosen, the
smaller the aperture d@, and therefore the smaller the failure rate, bsb &he smaller the

success rate. So, what have we gained? To undergiaatdwe have gained, we have to

consider the success rate of acceptance of thetesti and not the overall success rate. The
success rate of acceptance is the frequency witbhwdorrect integer outcomes are realized,
when the outcome of the ratio-test is to acceptinieger solution. It is the probability of

having successful fixes, denoted g, and it is given by the ratio of the success &ae the

probability of acceptance:
P
P = 6
sf Ps+ Pf ( )
This probability will be close to one, if the faiturate is close to zero. Thus if the failure rate
is small, one can be very confident about the ctmess of the integer solutions that are
accepted by the ratio-test.

2.6 Is the Ratio-Test Optimal?

As we have argued, the ratio-test should be uséu aviixed failure rate instead of with a



fixed value forc. In the next section, some further examples wal diven that show the
difference between these two approaches. Despiteptbference for the fixed failure rate
approach, when using the ratio-test, one may posetestion whether the use of the ratio-
test is the best one can do. That is, given tHerérate, is the ratio-test the test that results
the largest success rate?

The answer is no. It can be shown that the ratibides member of the class of tests as given
by the theory ointeger aperture estimatiodeveloped by Teunissen (2003). Members from
this class differ in the way the shape of the aperpull-in regionQ, is defined. Hence,

within this class, one can, by fixing the failuege, solve for the aperture pull-in region that

maximizes the success rate (Figure 2 gives a tweedsional example of the optimal aperture

pull-in regions). The optimal test so obtained d#férom the ratio-test. Since the discussion

of the optimal test and its relation to the radettis outside the scope of the present
contribution, we refer the reader for more detmil§Teunissen 2003, Verhagen and Teunissen
2006).

Figure 2. Two-dimensional example of optimal aperture pnlregions, together with the ILS pull-in
regions (hexagons).

3. THE FIXED FAILURE RATE RATIO-TEST

In this section we illustrate the improved perfonoa of the fixed failure rate approach. We
also show how the value ofcan be computed from a user-defined failure rate.

3.1 A short baseline example

We first consider a short GNSS baseline basedronlated data. The data set contains 1 Hz
code and phase observations on the L1, E6 and Be&fakquencies, with known multipath
errors in order to demonstrate some robustnesssigainses. The data set was processed on
an epoch-by-epoch basis.

Figure 3 shows the errors in the float and fixetinestes of the position components (East,
North, Up). The top panels show the results if tfaelitional ratio-test when a fixed critical
value of c=2 is used; the bottom panels if the ratio-testhwiked failure rate is used

(P; =0.001). Note that if the ratio-test is rejectelde ffloat solution is used. In fact, the



ambiguities were estimated correctly in all epo¢tswever, with the traditional ratio-test the
fixed solution was unnecessarily rejected 12% ef time. Obviously, this deteriorates the
position solutions in those epochs.
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Figure 3. East, North, Up position errors, based on raté-#eéth fixed critical value=5 (top panels)
and based on ratio-test with fixed failure r&g=0.001 (bottom panels).

3.2 Along baseline example

This next example concerns a longer baseline (lmes@&kelft-Brussels, 132 km) for which
real data was used. The characteristics of theagatdhe processing mode are as follows:

e Dual-frequency phase and code (L1,L2,C1,P2); cutlei¥ation 10 deg

» Standard deviations phase 3mm; code 50 cm (unelifted)

» Standard deviation of ionospheric corrections (zesample values): 10 cm

(undifferenced)

e 2880 epochs with 30 sec interval (whole day)

e Tropospheric zenith delay estimation (positions Kixetd)

* A priori tropospheric corrections using Saastamoimadel

» Epoch-by-epoch processing (Kalman filtering) overolghtime span (ambiguities
assumed constant)

¢« LAMBDA ambiguity resolution
+ Ratio-test with fixed critical value=2 and with fixed failure raté; =0.001

< Verification of results (‘'ground truth’) based aidh solution of whole day
The results are given in Figure 4. Shown are theclejpy-epoch values of the ratio-test,



together with the rejected values for the fixedical value (top panel) and the rejected values
using the fixed failure rate 0.001 (bottom pan@ljth the fixed failure rate, the ratio-test is

not passed only during 2 epochs, while the ambagiitvould have been correct. Hence,
during 0.07% of the time the fixed solution is uoessarily rejected (false alarm). The

ambiguities are always correctly fixed (successe ratl). In case of the fixed critical value

c=2, the ratio-test is not passed during 544 epoathde the ambiguities would have been

correct. Hence, during 19% of the time the fixeduson is unnecessarily rejected (false

alarm).
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3.3 Determining the Critical Value

We already remarked that in order to execute the-tast with a fixed failure rate, one has to
computec from the chosen failure rat®; . This is a nontrivial task, as it involves the

'inversion’ of the integral equation that links thdure rate to the size of the aperture pull-in
region.

To determinec, one needs simulations based on the variancexradtthe float ambiguities.
This may lead to a high computational burden. Toeleghis burden, the idea is that look-up
tables are created from which the appropriatecatitvaluec can be determined based on the
variance matrix of the float ambiguities. This mednat the only input for the complete
ambiguity resolution kernel (LAMBDA + ratio-test) winl consist of the float ambiguities
and their variance matrix.

For P; =0.01, Table 1 gives an example of how to lookhe X values. It works as follows.
The user first computes the ILS failure rd®g, s (1 minus the ILS success rate) from the
nxn variance matrix of the float ambiguities. Then fronand P; 5, the 1£ value that
corresponds with, in this ca$g =0.01, is obtained from the table.

Pius |N=- n =6 n=7 n=_8 n=9 n=10 n=
0 1 1 1

0.01 1 1 1

0.011 0.978 0.977 0.979 0.980 0.982
0.016 0.878 0.880 0.884 0.891 0.897
0.021 0.879 0.800 0.819 0.829 0.839
0.026 0.730 0.741 0.775 0.787 0.800

Table 1. Example of part of the look-up table foclgiven P; = 0.01 (values are indicative).

One practical problem with this approach is, ofrsey the computation of the ILS failure
rate. Exact computation would again require simotatHence, an approximation is needed.
Several approximations are available, most of whighknown to be either an upper bound or
lower bound. Obviously, an upper bound should exlus order to guarantee that the actual
failure rate is lower than the maximum allowablérea

To show how well this works, the clialues obtained with this upper bound approach are
then used to determine the corresponding failuesrand fix probabilities based on simulated
data. Ideally, the failure rates should be vergelto the fixed value 0.01.

The results are shown in Figure 5 for two models &ttual failure rate as a function of time
is shown in the left panels. The fix probabilitysisown in the right panels. The black solid
line shows the failure rate obtained by using thpreximated 1@ value with the look-up
table. The grey lines show the failure rates olet@iby using a fixed t/value of 0.5. The
dashed black lines show the true values if tltevalue corresponding to a fixed failure rate of
0.01 was used. Note that as soon as the ILS farhteeis smaller than 0.01, the threshold
value becomes equal to 1, and hence the failueebetomes equal to the ILS failure rate.
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ambiguities.

It follows that the approximation of theclyalue using the look-up table works very well,
even though the upper bound of the ILS failure veds used. In general the failure rates are
somewhat lower than the required value, which isdgoThis implies that also the fix
probabilities are somewhat lower, since a smalilufe rate means that the acceptance
region is smaller. However, the difference compa@dhe probabilities obtained with the
‘true' 1£ value is small. Obviously, using the fixed failuede determination of theclvalue
gives much better performance as compared to usifiged c value, as is done with the
traditional ratio-test.



4. CONCLUSIONS

In this contribution we showed what the popularoréést does and how it should be used.
The ratio-test does not test, as is often beliettesl ,correctness of the integer least-squares
solution. Also, the ratio-test should not be uszsljs commonly done, with a fixed critical
value. The ratio-test should be used with a fixatufe rate, thus giving the user control over
the succes rate of fixing. Examples were given ithegtrate the improved performance of our
fixed failure rate ratio-test over the traditiomatio-test.

It was also shown how the critical value can be poted from a user-defined failure rate by
means of look-up tables. Readers interested inaghpgoach can contact the authors for more
details on the construction of these look-up tables

Finally, it was pointed out that the ratio-tesiniember of the class of tests provided by the
theory of integer aperture estimation. With thisdty available, there is no need anymore to
make incorrect assumptions on the distribution lué parameters or test statistics (i.e.
assuming that the estimated integer ambiguitiesdaterministic, or that the quadratic form

ratio has a Fisher-distribution). With the helptbis theory, it can also be shown that the
ratio-test is not optimal. Other tests exist thavéh a larger success rate for a given fixed
failure rate (Teunissen, 2003).
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