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ABSTRACT The prediction of spatially and/or temporal varying variates based on observa-
tions of these variates at some locations in space and/or instances in time, is an important topic
in the various spatial and Earth sciences disciplines. This topic has been extensively studied,
albeit under different names. In Geodesy it is generally referred to as least-squares collocation.
The underlying model used is often of the trend-signal-noise type. This model is quite general
and it encompasses many of the conceivable measurements. However, the methods of predic-
tion based on these models have only been developed for the case the trend parameters are
real-valued. In the present contribution we generalize the theory of least-squares collocation by
permitting some or all of the trend parameters to be integer valued. We derive the solution of
integer-based least-squares collocation and show how it compares to the solution of standard
least-squares collocation.

Keywords: least-squares prediction, least-squares collocation, integer estimation, integer-
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1 INTRODUCTION

The topic of this contribution is the prediction of spatially and/or temporal varying variates
based on observations of these variates (or functionals thereof) at some locations in space and/or
instances in time. This topic has been extensively studied, albeit under different names, in the
various spatial and Earth sciences disciplines. In physical geodesy it is known as least-squares
collocation (LSC). Fundamental contributions to this field have been made by [Krarup, 1969]
and [Moritz, 1973, see also [Rummel, 1976], [Dermanis, 1980], [Sanso, 1986], [Grafarend and
Rapp, 1980]. The underlying model of LSC is the so-called trend-signal-noise model. This model
is quite general and it encompasses many of the conceivable geodetic measurements [Moritz,
1980, p. 111]. Tt also forms the basis of the concept of integrated geodesy as introduced in [Eeg
and Krarup, 1973], see also [Krarup, 1980], [Hein, 1986).

LSC has been developed for models in which the trend parameters are real-valued. In
the present contribution we will generalize the theory by permitting some or all of the trend
parameters to be integer valued. Applications of such models can be found, for instance, in
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case of GNSS-based (GPS and/or Galileo) predictions of atmospheric fields (troposphere or
ionosphere) or in case of InSAR-based predictions of deformation fields, see e.g. [Odigk, 2002],
[Hanssen et al., 2001].

2 LEAST-SQUARES PREDICTION

In this contribution, we speak of estimation if a function of an observable random vector y is
used to guess the value of an unknown deterministic parameter vector z. If the function is
given as f, then f(y) is said to be the estimator of z (we call it an estimate of z if the function
is taken of an outcome of y). We speak of prediction, if a function of an observable random
vector y is used to guess the outcome of another random, but unobservable, vector yy. If the
function is given as g, then g(y) is said to be the predictor of yo (we call it a prediction of yo
if the function is taken of an outcome of y). In the following, we assume the dispersion of y
and yo to be known, and their expectations (possibly unknown) to be linearly related to each
other. Consider therefore the partitioned linear system of equations
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with matrices A and Ag of order m x n and mg X n, respectively,  a nonrandom parameter

vector and [eT, el'1T" a random vector, with expectation and dispersion given as,
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respectively. The matrices A and Ay are assumed known, with A being of full column rank.
Also the dispersion matrix is assumed known and to be positive definite. All the entries of the

above vectors and matrices are assumed to be real-valued.
The objective function we will work with is given by the positive definite quadratic form,
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If y and yo are observable and x is unknown, then the unique 2’ satisfying F'(y,vo,2’) <
F(y,yo,z), for all z € R", is said to be the least-squares estimator of z based on both y
and yo. If y is observable, x is known and yo is unobservable, then the unique ¢ satisfying
F(y,96,2) < F(y,yo,2), for all yo € R™0, is said to be the least-squares predictor of yo. In the
present contribution, we are interested in the case that is a combination of the previous two
problems. We assume y to be observable, x to be unknown and gy to be unobservable. Then
the unique pair &, §o satisfying F(y, 9o, %) < F(y,yo, z), for all z € R™, yo € R™°, is said to be
the least-squares estimator-predictor pair of z, yg.

To solve the latter problem, first note that the quadratic form in Eq.(3) can be written as
a sum of two squares (see Corollary 1 of the Appendix),

F(y.yo,2) = [ly — Az[[3,, + llyo — Aoz — Quoy @y (y — A3y, (4)

with Qyoyoly = Quoyo — Qyon;leyyu and where we used the shorthand notation ||.||2, =
()TM~1(.). From Eq.(4) it follows that the estimator-predictor pair, # and g, are given as,

@ (ATQy AL ATQyly )
Ao + QyoyQyt (y — AR)
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Since &, 7o set the second positive term of Eq.(4) equal to zero, while & minimizes the first
positive term, it follows that Eq.(5) is indeed the solution to the minimization of the quadratic
form of Eq.(4). It can be shown (see e.g. [Koch, 1980, p. 147], [Teunissen et al., 2005, p.
197]) that the simultaneously derived least-squares estimator-predictor pair Z, §jo constitute the
BLUE (best linear unbiased estimator) and the BLUP (best linear unbiased predictor) of « and
Yo, respectively. This is a consequence of having used the inverse variance matrix of (y7,yd)”
as weight matrix in Eq.(3). This choice will also be used for the mixed linear model with integer
parameters (see Section 3). As a result the derived integer estimator can be shown to have the
largest possible probability of correct integer estimation.

The following additional remarks can be made with respect to Eq.(5). (i) if 2 would be
known, then the least-squares predictor g, can be obtained by replacing # in the expression
for go by the known z. (ii) since F(y,%o,%) < F(y,90,2), for all z € R™, it follows that
the least-squares estimator of z remains unaffected when g, would be taken as if it were the
observed yo. This is also what one would expect, since ¢ should not contain information about
x which is not already present in y. (7i¢) the first term in the expression of the least-squares
predictor go, Ao, is the least-squares estimator of E(yo), the mean of yo. Thus if yo and y are
uncorrelated (Q,, = 0), then the predictor of yy coincides with the estimator of E(yy). (iv) if
yo = y and thus Ag = A and Q,,y = Qyy, then go = y. This shows that an observable is its
own least-squares predictor.

3 LEAST-SQUARES COLLOCATION

An important case of the model in Egs. (1) and (2), and one which has found wide-spread
application in the spatial and Earth sciences, is the so-called trend-signal-noise model, see e.g.
[Moritz, 1980]. It forms the basis of least-squares collocation. The model is applicable to a
wide range of applications for which heterogeneous, over- as well as under-determined data
need to be combined, see e.g. [Dermanis, 1980], [Rummel, 1976], [Sanso, 1986], [Grafarend
and Rapp, 1980]. Such applications can be found in e.g. physical geodesy, mining engineering,
hydrogeology, spatial data analysis, environmental engineering and digital image processing.
The model also forms the basis of the concept of integrated geodesy as introduced in [Eeg and
Krarup, 1973], see also [Krarup, 1980] and [Hein, 1986].

In the trend-signal-noise model the observable vector y is written as a sum of three terms,
y =t+ s+ n, with ¢ a deterministic, but unknown trend, s a zero-mean random signal vector,
and n a zero-mean random noise vector. The trend is usually further parametrized in terms
of an unknown parameter vector x as t = Ax. The signal and noise vector are assumed to be
uncorrelated and their variance matrices are given as Qss and @, respectively. Thus we have
y = Az +s+n, with Qyy = Qss + @nn and where the sum of signal and noise, s +n, plays the
role of the zero-mean random vector e of Eq.(1). We may now apply Eq.(5) to separate trend,
signal and noise. This gives

= (AT(Qus + Qun) " A) " AT(Qus + Qua)ly
st(st + an)il(y - Ai) (6)
an(st + an)—l(y - A‘%)

The first equation follows directly from applying the first equation of Eq.(5). The second and
third equation are obtained from applying the second equation of Eq.(5), by interpreting s and
n, respectively, as the unobservable yo. Thus yo — (s7,n7)T, Ay — 0, ¢g — (s7,nT)T and
e — s+n. Note that y = AZ + § + n, which reflects the property that the observable is its own
predictor. Also note that é = § + 7 = y — AZ is the predictor of e.
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Often one can extend the trend-signal-noise model so as to hold true for an unobservable
vector yo as well. This gives yg = Apx + so + ng, in which sy and ngy are uncorrelated zero-
mean random vectors, with variance matrices Qs,s, and Qnyn,, respectively. The two signal
vectors, sp and s, are assumed correlated (Qs,s # 0), whereas the two noise vectors, ng and
n, are (usually) assumed to be uncorrelated (Qn,» = 0). The signal plus noise vector of the
unobservable vector plays now the role of the zero-mean random vector ey of Eq.(1). We may
now apply Eq.(5) again to predict yg, so and ng. In this case we set yo — (yg,sg,nd)T
Ao — (AF,0,0)T, eg — ((s0 + nO)T,SOT,ng)T and e — s+ n. This gives

)

gO = A()i' + Qsos(st + an)_l(y - Ai)
=§0 = Qsas(st + an)_l(y - Ai) (7)
ng = 0

Note that the predictor of the trend plus signal, Apx + sg, is identical to the predictor of yg.
Both are given as AgZ + §p. In general, this is not the case. In the present situation, the two
predictors coincide since the noise vector ny was assumed to be uncorrelated with s and n.
For the same reason, the predictor of ng is identically zero. The set of solutions (6) and (7)
constitute the well-known least-squares collocation results.

4 INTEGER-BASED LEAST-SQUARES PREDICTION

We now extend the model of the previous section so as to include the option that some or all the
parameters of z are integer valued. We therefore assume = = (27,21)T € ZP x R*~P. Thus the
first p entries of = are assumed to be unknown integers and the last n—p entries are assumed to be
unknown real-valued parameters. The matrices A, Ag are partitioned accordingly, A = [A, As],
Ao = [Ao1, Ap2]. We consider the same objective function F(y,yo, ), cf. Eq.(3), but with the
stipulation that x € ZP x R"~P. Then the unique pair Z, o satisfying F(y, %o, %) < F(y, y0, ),
forallxz € ZP x R"™P yq € R™, is said to be the integer-based least-squares estimator-predictor
pair of z, yo.

In order to determine this pair, we again decompose the objective function F(y,yo,z) into
a sum of squares. This time however, it will be decomposed into a constant term and three
variable terms. We have

Plwa) = lly=Aslly, + = Ao = QuuQpir— ARy,

= = Aalfy )+ = ol + i — Aoz = Qo Qo = AR,

= Iy Adlly, 111 = el + 12— 72~ Qe Q5 (1 = ., +

+[lyo — Aor — QueyQyy (y_A‘T)HQyUyOW .
8

with 2= (2T, 21)7 given by the first equation of Eq.(5) and Qisis)in= Qiaso —Qisa, Q;llj,le@Z.
The first equality of Eq.(8) is Eq.(4). With ||y — Al’HQny =y — AﬁHQQw + | — [, which
holds true since ATQ;;(y — Az) =0 and Qzz = (ATQ;L}A)_I, the second equality of Eq.(8)
follows from its first. The third equality follows then from the second since || — z[|3,. =
[|Z1 — leQQf,l + ||Z2 — @2 — Qﬂ"”ﬁl@;lli-l(il — x1)||éj2%2‘il, the proof of which follows again
from an application of Corollary 1.
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Note that the last term in the third decomposition of Eq.(8) can be made zero for any
x € ZP x R™ P and that the before last term can be made zero for any x; € ZP. Hence, the
solution for Z, g follows as

F1 = argmingegr |81 — ZH%QWE1
Ty = 22— Qana, Q;ll,il (Z1 — 1) (9)
y Aol + Qyon;yl(y — Az)

Note that the structure of the predictor gy is identical to that of the predictor go, cf. Eq.(5).
That is, g can be obtained from the expression of §jy by replacing Z by . Also note that 5 can
alternatively be expressed as &3 = (A3 Q) A2) " A7 Q! (y — A1E1). The steps in computing g
can now be summarized as follows. First one computes the least-squares estimate & = [#7, 227
based on the first expression of Eq.(5). Then Z; is used to determine the integer least-squares
estimate #1, which is the integer minimizer of ||Z; — 2| \é“” Finally, both #; and & are used

<
=)
I

to compte . Note, in case all entries of x are integer valued, that the second line of Eq.(9) is
absent and the first line gets replaced by & = argmin,ezn ||& — z||2Zm
To see Eq.(9) at work, consider the following example.

Example 1 (prediction of error components) Consider the single equation
y=ar+e +...+eq

with scalar a given, x an unknown integer and the e; being ¢ uncorrelated, zero-mean random
variables. If the sum e = 23:1 e; constitutes the total measurement error, then the e; may
be considered the individual error components. The variance of e; will be denoted as o?. We
will now predict such an individual error component using Eq.(9). Note that no real-valued
parameters occur in the above model. Hence, only the first and the third expression of Eq.(9)
need to be applied. Setting z1 — z, A — a, yo — (e1,...,¢4)T, Ao = 0,e —e1 + ...+ ¢, and
eo = (e1y-..,e9)T, yields Qyy = Qee = ;1.:1 0]2-, Quoy = Qeoe = (03, .,UZ)T, (€1,...,¢69)T =

i
Qyqu;;(y —ai) = (o?,..., 0’3)T ( ?:1 Uf-) (y — aZ), and thus

2
. g; .
¢ = =gy —a)
7=1%;
with the integer least-squares estimator of x given as & = [y/a], in which ’[.]’ denotes rounding

to the nearest integer. This result shows that fractions of the residual y — ai are assigned as
predictors of the individual error components. The fractions are the ratios of the variance of
the individual error component and the total variance. The predictors get an equal share of
the residual when all variances are equal.

5 LEAST-SQUARES COLLOCATION WITH INTEGER PARAMETERS

We are now in the position to apply the results of the previous section to the trend-signal-noise
model. For the separation of trend, signal and noise, this gives

@1 = argminez |31 —2[[3),

Ty = 22— Qi:z"ilQ.’i_Jllil(ill — 1) (10)
3 = QSS(QSS + an)’l(y — Ai‘)

7 = Q’VL"L(QSS + Q7UL)71(Z/ - Aif)
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where & is given as

&= (AT(QSS + an)ilA)il AT(QSS + an)fly

If we compare this result with standard least-squares collocation, we note that an additional
step is included, namely that of computing # = (27, #7)7. If we extend the trend-signal-noise
model so as to hold true for an unobservable vector yg = Agx + sg + ng as well, we obtain the

integer-based least-squares collocation result as

gO = AOi’ + Qsos(st + Qn7l)71(y - Af)
§0 = QSDS(QSS + an)_l(y - Af) (11)
ng = 0

Compare this result with (7). The overall conclusion is thus reached, that the solution of
integer-based collocation has the same structure of standard least-squares collocation, be it
that an additional step needs to be included to take care of the integer estimation of the trend
parameters. We conclude with an example.

Example 2 (ionospheric prediction) Consider as a trend-signal-noise model, the single-frequency,
single epoch, geometry-free GPS equations, based on double-differenced (DD) carrier phase and
pseudorange,

1 = A1+ z2e+s+m

Y2 = + X9 — S+ N2

with 2; the unknown integer DD carrier phase ambiguity, A the known wavelength of the carrier
phase, x5 the unknown DD range, s the residual ionospheric signal, and n; and ng the noise
of the carrier phase and the pseudorange, respectively. Let o7 and o3 denote the variances
of the DD carrier phase and pseudorange, respectively, and let o2 denote the variance of the
ionospheric signal. Then

[@1}:{@1—@&)@ and Oy — L[240t t08 —2e2 4 ad)
T2 Y2

"TN2 | A 2024+ 02) A (02+02)
from which the integer-based least-squares parameter solution follows as,
ry = [.’2‘1]

X 202402 /. -
&2+ Aoryorroy (81— 1)

8
N
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If we want to predict the signal s¢ (e.g. the residual ionospheric delay at another time instant),
then sg plays the role of yo and the integer-based least-squares predictor §g = QSUyQ;yl(y — Az%)
works out as 102 )
. Os4s/07 . . g7 .
So=——F"5—53 — ANy —@&9) — 5 (y2 — T
0 1+02/0? +02/02 (1 ! 2) o3 (y2 = 22)
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7 APPENDIX

Corollary 1

A quadratic form

T -1
a Qaa Qab a
F= 12
HEk-a4an "
can be decomposed into a sum of two quadratic forms as
F=a"Qula+ (b— QuaQuya) (Quy — QbaQpa Qub) ™ (b — QaQyn a) (13)

Proof The following block triangular factorization is easily verified,

{Qm Qab}:{ 1 OHQM 0 H 1 or (14)
Qba be Qbanal I 0 be - QbaQ;alQab Qbanal I
The inverse of this matrix follows, with
A I 0

[ QuQst 1 ] - [ ~QuQa ] ’ 15)

as
{Qaa Qab:|_1_|: I Or{ -1 0 H I 0}
Qba be B _QbaQ(;al I 0 (be - QbaQ;alQab)71 _QbaQ;al I
(16)

Substitution of this expression into the quadratic form F' of Eq.(12) gives the desired decom-
position.

End of Proof
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