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ABSTRACT Global Navigation Satellite System carrier phase ambiguity resolution is
the key to high precision positioning and attitude determination. In this contribution we
consider the GNSS compass model. We derive the integer least-squares estimators and
discuss the various steps involved in the ambiguity resolution process. This includes the
method that has successfully been used in (Park and Teunissen, 2003). We emphasize the
unaided, single frequency, single epoch case, since this is considered the most challenging
mode of GNSS attitude determination.

1 INTRODUCTION

Global Navigation Satellite System (GNSS) ambiguity resolution is the process of resolv-
ing the unknown cycle ambiguities of the carrier phase data as integers. The sole purpose
of ambiguity resolution is to use the integer ambiguity constraints as a means of improving
significantly on the precision of the remaining model parameters. Apart from the current
Global Positioning System (GPS) models, carrier phase ambiguity resolution also applies
to the future modernized GPS and the future European Galileo GNSS. An overview of
GNSS models, together with their applications in surveying, navigation, geodesy and
geophysics, can be found in textbooks such as (Hofmann-Wellenhof et al., 1997), (Le-
ick, 1995), (Parkinson and Spilker, 1996), (Strang and Borre, 1997) and (Teunissen and
Kleusberg, 1998).

In this contribution we will consider the problem of ambiguity resolution for GNSS
attitude determination, see e.g. (Peng et al., 1999), (Park and Teunissen, 2003), (Moon
and Verhagen, 2006). Attitude determination based on GNSS is a rich field of current
studies, with a wide variety of challenging (terrestrial, air and space) applications. In
the present contribution we restrict ourselves to the single baseline case (two antennas)
and we therefore only consider the determination of heading and elevation (or yaw and
pitch). The corresponding model is referred to as the GNSS compass model. Despite
this restriction, the GNSS compass model in itself already has a wide range of important
applications, as is also evidenced by the commercial products available, see e.g. (Furuno,
2003) or (Simsky et al., 2005), both of which make use of the LAMBDA (Least-squares
AMBiguity Decorrelation Adjustment) method. Moreover, a proper understanding of
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the intricacies of ambiguity resolution for the GNSS compass is considered essential for
attitude determination based on an array of antennas.

The GNSS compass model differs from the standard single GNSS baseline model in
that the length of the baseline is assumed known. Hence, the GNSS compass model is the
standard GNSS model with an additional baseline length constraint. When considering
ambiguity resolution for the GNSS compass model, one should keep in mind that the
difficulty of computing and estimating the integer ambiguities depends very much on
the strength of the underlying model. It will be easier when GNSS is externally aided
with additional sensors (e.g. inertial measurement unit IMU). It will also be easier when
multiple epochs and/or multiple frequencies are used. The ultimate challenge is therefore
to be able to perform successful and efficient attitude ambiguity resolution for the unaided,
single frequency, single epoch case. In (Park and Teunissen, 2003) it was shown that this
is indeed possible with the use of the LAMBDA method. This result, however, seems to
have passed relatively unnoticed. One of the goals of the present contribution is therefore
to provide a more detailed methodological description of how these results are obtained.
Two other goals of this contribution are to compare the standard GNSS model with the
GNSS compass model and to provide a description of some variations on the integer
estimation process.

This contribution is organised as follows. In Section 2, we give a very brief review of
ambiguity resolution for the standard GNSS model. In Section 3, we introduce the GNSS
compass model and describe a first, albeit approximate, approach to ambiguity resolution.
In Sections 4 and 5, we describe the ambiguity resolution building blocks for the GNSS
compass model. In Section 4, we first derive the integer least-squares estimators of the
ambiguities and the constrained baseline. The search space for the integer ambiguities
is introduced and it is shown that it needs the solution of a quadratically constrained
least-squares problem. This least-squares problem is particularly computational intensive
if it needs to be solved many times. A relaxation of this part is therefore introduced,
which results in the use of bounding search spaces. Section 4 includes the method of Park
and Teunissen (2003). In Section 5, we introduce an orthogonal decomposition of the
objective function that differs from the one used in Section 4. This alternative is based
on the constrained float solution and is therefore expected to improve efficiency. Since
it leads to a search space which is similar in structure to the one given in Section 4, the
same LAMBDA based search approach can be used.

2 INTEGER AMBIGUITY RESOLUTION

2.1 THE UNCONSTRAINED GNSS BASELINE MODEL

In principle all the GNSS baseline models can be cast in the following frame of linear(ized)
observation equations,

E(y) = Aa + Bb , D(y) = Qy (1)

where E(.) and D(.) denote the expectation and dispersion operator, y is the given GNSS
data vector of order m, a and b are the unknown parameter vectors of order n and p, and
where A and B are the given design matrices that link the data vector to the unknown
parameters. The geometry matrix B contains the unit line-of-sight vectors. The variance
matrix of y is given by the positive definite matrix Qy, which is assumed known. The
data vector y will usually consist of the ’observed minus computed’ single- or multiple-
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frequency double-difference (DD) phase and/or pseudorange (code) observations accumu-
lated over all observation epochs. The entries of vector a are then the DD carrier phase
ambiguities, expressed in units of cycles rather than range. They are known to be integers,
a ∈ Zn. The entries of the vector b will consist of the remaining unknown parameters,
such as for instance baseline components (coordinates) and possibly atmospheric delay
parameters (troposphere, ionosphere). They are known to be real-valued, b ∈ Rp.

When solving the GNSS model (1), one usually applies the least-squares principle.
This amounts to solving the following minimization problem,

min
a,b

‖ y − Aa − Bb ‖2
Qy

, a ∈ Zn , b ∈ Rp (2)

with the weighted squared norm ||.||2Qy
= (.)T Q−1

y (.). Note that the minimization is taken
over the space Zn × Rp. Problem (2) was introduced in (Teunissen, 1993) and has been
called a (mixed) integer least-squares (ILS) problem by the author.

2.2 AN ORTHOGONAL DECOMPOSITION

To gain insight into the ILS-problem (2), it is helpful to first apply an orthogonal decom-
position to the objective function. Hence, we write the objective function as a sum of
three squares,

‖ y − Aa − Bb ‖2
Qy

=‖ ê ‖2
Qy

+ ‖ â − a ‖2
Qâ

+ ‖ b̂(a) − b ‖2
Qb̂(a)

(3)

with
ê = y − Aâ − Bb̂
â = (ĀT Q−1

y Ā)−1ĀT Q−1
y y

b̂ = (B̄T Q−1
y B̄)−1B̄T Q−1

y y

b̂(a) = (BT Q−1
y B)−1BT Q−1

y (y − Aa)

(4)

where Ā = P⊥
B A, B̄ = P⊥

A B, with the orthogonal projectors P⊥
B = I − PB, PB =

B(BT Q−1
y B)−1BT Q−1

y , P⊥
A = I − PA and PA = A(AT Q−1

y A)−1AT Q−1
y . The matrix PB is

the orthogonal projector that projects orthogonally onto the range of B (with respect to
the metric of Q−1

y ). Similarly, PA is the orthogonal projector that projects orthogonally
onto the range of A.

The variance matrices of â, b̂ and b̂(a) are given as

Qâ = (ĀT Q−1
y Ā)−1 , Qb̂ = (B̄T Q−1

y B̄)−1 , Qb̂(a) = (BT Q−1
y B)−1 (5)

The vectors â and b̂ are referred to as the float ambiguity solution and the float baseline
solution, respectively. They follow when one solves (2) without the integer constraints
a ∈ Zn. The vector ê is the least-squares residual vector that corresponds with this float
solution.

The vector b̂(a) is the least-squares solution for b, assuming that a is known. It is
therefore a conditional least-squares solution of b. Note that the conditional least-squares
solution b̂(a) and its variance matrix Qb̂(a), can also be written as

b̂(a) = b̂ − Qb̂âQ
−1
â (â − a) , Qb̂(a) = Qb̂ − Qb̂âQ

−1
â Qâb̂ (6)

with the covariance matrix Qb̂â = −(BT Q−1
y B)−1BT Q−1

y AQâ.

91



2.3 INTEGER LEAST-SQUARES SOLUTION

With the help of the orthogonal decomposition (3), we can now show how the solution of
the ILS-problem (2) is obtained. We have

mina∈Zn,b∈Rp ‖ y − Aa − Bb ‖2
Qy

=

= ‖ ê ‖2
Qy

+ mina∈Zn,b∈Rp

(
‖ â − a ‖2

Qâ
+ ‖ b̂(a) − b ‖2

Qb̂(a)

)

= ‖ ê ‖2
Qy

+ mina∈Zn

(
‖ â − a ‖2

Qâ
+ minb∈Rp ‖ b̂(a) − b ‖2

Qb̂(a)

) (7)

Note that the first term, ||ê||2Qy
, is irrelevant for the minimization, since it does not depend

on a and b. Also note that the last term can be made zero for any a. Hence, the sought
for ILS-solution is given as

ǎ = arg mina∈Zn ||â − a||2Qâ

b̌ = b̂(ǎ) = b̂ − Qb̂âQ
−1
â (â − ǎ)

(8)

The vectors ǎ and b̌ are often referred to as the fixed ambiguity solution and the fixed
baseline solution, respectively.

2.4 THE INTEGER SEARCH

An integer search is needed to compute ǎ. The LAMBDA method provides an efficient
way of obtaining ǎ (Teunissen, 1993). The main steps are as follows. One starts by
defining the ambiguity search space

Ωâ = {a ∈ Zn | ||â − a||2Qâ
≤ χ2} (9)

with χ2 a suitable chosen positive constant. In order for the search space not to contain
too many integer vectors, a small value for χ2 is required, but one that still guarantees
that the search space contains at least one integer grid point.

The boundary of the search space Ωâ is ellipsoidal. It is centred at â and its shape
is governed by the variance matrix Qâ. In case of GNSS, the search space is usually
extremely elongated, due to the high correlations between the ambiguities. Since this
extreme elongation usually hinders the computational efficiency of the search, the search
space is first transformed to a more spherical shape,

Ωẑ = {z ∈ Zn | ||ẑ − z||2Qẑ
≤ χ2} (10)

using an admissible ambiguity transformation: z = Ta, ẑ = T â, Qẑ = TQâT
T . Am-

biguity transformations T are said to be admissible when both T and its inverse T−1

have integer entries. Such matrices preserve the integer nature of the ambiguities. In
order for the transformed search space to become more spherical, the volume-preserving
T -transformation is constructed as a transformation that decorrelates the ambiguities as
much as possible. Using the triangular decomposition of Qẑ, the left-hand side of the
quadratic inequality in (10) is then written as a sum-of-squares:

n∑
i=1

(ẑi|I − zi)
2

σ2
i|I

≤ χ2 (11)
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On the left-hand side one recognizes the conditional least-squares estimate ẑi|I , which
follows when the conditioning takes place on the integers z1, z2, . . . , zi−1. Using the sum-
of-squares structure, one can finally set up the n intervals which are used for the search.
These n sequential intervals are given as

(ẑ1 − z1)
2 ≤ σ2

1χ
2 , . . . , (ẑn|N − zn)2 ≤ σ2

n|N

⎛
⎝χ2 −

n−1∑
i=1

(ẑi|I − zi)
2

σ2
i|I

⎞
⎠ (12)

For more information on the LAMBDA method, we refer to e.g. (Teunissen, 1993),
(Teunissen, 1995) and (de Jonge and Tiberius, 1996a) or to the textbooks (Hofmann-
Wellenhof, 1997), (Strang and Borre, 1997), (Teunissen and Kleusberg, 1998), (Misra and
Enge, 2006). Examples of applications can be found in e.g. (Boon and Ambrosius, 1997),
(Cox and Brading, 1999), (de Jonge and Tiberius, 1996b), or (de Jonge et al., 1996).

3 THE GNSS COMPASS MODEL

3.1 THE GNSS COMPASS MODEL: CONSTRAINED VERSION

For the GNSS compass model, vector b is taken as a 3×1 vector that consists of the three
baseline components. Thus the atmospheric delays are assumed absent. Although this
assumption is not really necessary for the methods described in this and the following
sections, the assumption is made for reasons of simplicity. Moreover, in most applications
of the GNSS compass model, the length of the baseline is such that atmospheric delays
can indeed be neglected.

An essential assumption for the GNSS compass model is that the length of the baseline
is assumed known. Thus ||b||I3 = l, with l known. Hence, the GNSS compass model follows
from the standard GNSS model (1) by adding the length-constraint of the baseline,

E(y) = Aa + Bb , ||b||I3 = l , a ∈ Zn, b ∈ R3 (13)

This formulation of the GNSS compass model will be referred to as the constrained ver-
sion. It is parametrized in the three baseline components of b and it shows the baseline
constraint explicitly by means of the equation ||b||I3 = l.

3.2 THE GNSS COMPASS MODEL: UNCONSTRAINED VERSION

It is also possible to formulate an unconstrained version of the GNSS compass model.
This is done by reparametrizing b such that the constraint is automatically fulfilled. This
can be done by reparametrizing b in spherical coordinates,

b(γ) = l

⎡
⎢⎣ cos α cos β

cos α sin β
sin α

⎤
⎥⎦ (14)

with γ = [α, β]T . Substitution into (13) gives

E(y) = Aa + Bb(γ) , a ∈ Zn, γ ∈ R2 (15)

The two model formulations, (13) and (15), are equivalent. In (13), the unknown param-
eters are a and b, whereas in (15), they are a and γ. Thus the reparametrization turns
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the originally constrained model (13) into a nonlinear, but unconstrained model (15). The
three unknown components of b have been reduced to the two unknown angles α and β.

In Sections 4 and 5, we will consider the constrained version for ambiguity resolution.
First, however, we consider the unconstrained version.

3.3 INTEGER ESTIMATION BASED ON LINEARIZATION

The unconstrained model (15) is nonlinear in γ. It can be brought into the standard form
(1) by means of a linearization. Let the approximate values for the angles be provided by
γ0 = [α0, β0]

T . Linearization of the baseline vector gives then

b(γ) = b(γ0) + C(γ0)Δγ (16)

with

C(γ0) =

⎡
⎢⎣ − sin α0 cos β0 − cos α0 sin β0

− sin α0 sin β0 cos α0 cos β0

cos α0 0

⎤
⎥⎦ (17)

and Δγ = γ − γ0. Substitution into the observation equations of (15), gives the uncon-
strained linearized GNSS model as

E(Δy) = Aa + BC(γ0)Δγ , a ∈ Rn, Δγ ∈ R2 (18)

with Δy = y −Bb(γ0). Since this unconstrained GNSS compass model is of the type (1),
the same steps can be used as described in Section 2 for ambiguity resolution. Matrix
BC(γ0) and vector Δγ in (18) play the role of matrix B and vector b in (1).

The above approach is based on a linearization and thus requires approximate values.
These approximate values need to be close enough to the sought for minimizers in order
for the linearization to be valid. Such approximate values could possibly be obtained
from sensors that externally aid the attitude determination process (e.g. IMU) or from
the GNSS float solution itself. In the latter case, however, the requirements on the float
solution become more stringent the shorter the baseline is. That is, for long baselines, the
float solution is often good enough for it to be used as a way of computing approximate
values for the angles. For short baselines, however, this may not be the case.

Another aspect that one has to keep in mind, is that the above linearized approach
(possibly with iterations included) does not guarantee that one will obtain a global min-
imum of the original constrained integer least-squares problem. We will now present a
solution that does guarantee a global minimum.

4 BASELINE CONSTRAINED INTEGER AMBIGUITY RESOLUTION
(I)

4.1 INTEGER LEAST-SQUARES SOLUTION

From now on we will work with the constrained model formulation (13). The ILS-problem
to be solved is then

min
a∈Zn,b∈R3,||b||=l

‖ y − Aa − Bb ‖2
Qy

(19)
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With the use of the orthogonal decomposition (3), we can write the objective function of
(19) as a sum of squares. This gives, instead of (7), the minimization problem

mina∈Zn,b∈R3,||b||=l ‖ y − Aa − Bb ‖2
Qy

=

= ‖ ê ‖2
Qy

+ mina∈Zn,b∈R3,||b||=l

(
‖ â − a ‖2

Qâ
+ ‖ b̂(a) − b ‖2

Qb̂(a)

)

= ‖ ê ‖2
Qy

+ mina∈Zn

(
‖ â − a ‖2

Qâ
+ minb∈R3,||b||=l ‖ b̂(a) − b ‖2

Qb̂(a)

) (20)

Note that, due to the constraint, the third term in the last equation can now not be made
equal to zero. If we define

b̌(a) = arg min
b∈R3,||b||=l

‖ b̂(a) − b ‖2
Qb̂(a)

(21)

then the ILS-solution is given as

ǎ = arg mina∈Zn

(
‖ â − a ‖2

Qâ
+ ‖ b̂(a) − b̌(a) ‖2

Qb̂(a)

)
b̌ = b̌(ǎ)

(22)

From the baseline solution b̌, the necessary compass information of heading and elevation
(or yaw and pitch) can be recovered. Compare (22) with (8) and note that the computation
of b̌(a) requires the solution of a quadratically constrained least-squares problem.

4.2 QUADRATICALLY CONSTRAINED LEAST-SQUARES

There are different ways of tackling the quadratic least-squares problem (21). Let us first
consider the problem from a geometric point of view. The problem reads

min
b∈R3

||b̂(a) − b||2Qb̂(a)
subject to ||b||2I3 = l2 (23)

Note that ||b̂(a) − b||2Qb̂(a)
= c2 is the equation of an ellipsoid centred at b̂(a) and that

||b||2I3 = l2 is the equation of a sphere, with radius l, centred at the origin. Thus the
problem amounts to finding the smallest ellipsoid that just touches the sphere. At this
point of contact the ellipsoid and the sphere will have the same tangent plane and the same
normal vector (note: in exceptional cases, which we disregard, there may be more than
one point of contact; the solution to (23) is then nonunique). The outer normal vector
(i.e. direction of steepest ascent) of the ellipsoid is given by the gradient of ||b̂(a)− b||2Qb̂(a)

and the outer normal vector of the sphere is given by the gradient of ||b||2I3 . Hence, at the
point where the two surfaces touch, the normal vector of the ellipsoid is a scaled version
of the normal vector of the sphere. Denoting the scalar by λ and equating the two normal
vectors results then in the normal equations

(Q−1

b̂(a)
− λI3)b = Q−1

b̂(a)
b̂(a) (24)

(Note: this is an eigenvalue problem if b̂(a) = 0. For b̂(a) �= 0, the normal equations can
be rewritten, with the aid of the baseline constraint, as a quadratic eigenvalue problem.
We will, however, not pursue this approach further in this contribution). The scalar λ
(the Lagrange multiplier) can be positive, zero or negative. It is zero when b̂(a) already
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lies on the sphere. The scalar λ will be positive when b̂(a) lies inside the sphere, since
then the two outer normal vectors of ellipsoid and sphere will point in the same direction.
The scalar λ will be negative when b̂(a) lies outside the sphere, since then the two outer
normal vectors will point in opposite direction. Another way of understanding the sign
of λ is to note that the length of b must be smaller than that of b̂(a) if ||b̂(a)|| > l, i.e. if
the vector lies outside the sphere. This is accomplished by having −λ > 0 in the normal
equations (24).

The above normal equations will have different solutions bλ for different values of λ.
To determine λ such that bλ is the solution of (23), we set bT

λ bλ = l2 and find the optimal
value for λ as the smallest root of this nonlinear equation, whereby the singular value
decomposition (SVD) can be used to bring the above normal equations in canonical form,
thereby facilitating the formulation of the nonlinear equation, see e.g. (Gander, 1981),
(Bjork, 1996). Once the optimal value for λ has been found, say λ̂, the sought for solution
follows as b̌(a) = bλ̂.

Note that the quadratically constrained least-squares problem becomes trivial in case
of a scaled unit matrix, Qb̂(a) = μ−1I3. In that case we have

b̌(a) = lb̂(a)/||b̂(a)||I3 , λ̂ = μ(1 − ||b̂(a)||I3/l) (25)

and
min

b∈R3,||b||=l
||b̂(a) − b||2Qb̂(a)

= μ(||b̂(a)||I3 − l)2 (26)

Intermezzo We will now show, for later reference, how b̌(a) can be viewed as a solution
to an unconstrained least-squares problem. For λ̂ < 0, the normal equations (24) can be
written as

(Q−1

b̂(a)
+ |λ̂|I3)b̌(a) = Q−1

b̂(a)
b̂(a) (27)

and for λ̂ > 0, as
(Q−1

b̂(a)
+ λ̂I3)b̌(a) = Q−1

b̂(a)

(
2b̌(a) − b̂(a)

)
(28)

Both normal equations have a positive definite normal matrix with the same structure.
Their right hand sides, however, differ. Note that the point 2b̌(a) − b̂(a) is the reflection
of b̂(a) about b̌(a). Thus if b̂(a) lies inside the sphere, then 2b̌(a) − b̂(a) lies outside the
sphere. Thus we achieved the same structure for the normal matrix, by having right hand
sides that in both cases consists of a point outside the sphere.

From the structure of the above normal equations it follows that b̌(a) can be seen to
be the solution of the unconstrained least-squares problem,

min
b∈R3

||
[

β
0

]
−

[
I3

I3

]
b||2Qβ

with Qβ =

[
Qb̂(a) 0

0 |λ̂|−1I3

]
(29)

and where β = b̂(a) if λ̂ < 0 and β = 2b̌(a) − b̂(a) if λ̂ > 0.

An alternative approach for solving the quadratically constrained least-squares problem,
and one which avoids the use of the SVD and the root-finding of bT

λ bλ = l2, is based on
an iteration of orthogonal projections onto an ellipsoid. Note that problem (23) can be
reformulated as the problem of finding the closest point to an ellipsoid. This problem
is similar to the problem of computing geodetic coordinates from Cartesian coordinates.
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Since this latter approach turned out to be somewhat more efficient than the one based
on the SVD (albeit with no guaranteed convergence to a global minimum if a poor initial
is used), it was used in (Park and Teunissen, 2003).

4.3 INTEGER SEARCH (I)

One will need an integer search for computing the integer least-squares ambiguity vector
ǎ, cf. (22). We define the integer search space as

Ψ(χ2) = {a ∈ Zn| ‖ â − a ‖2
Qâ

+ ‖ b̂(a) − b̌(a) ‖2
Q

b̂(a)
≤ χ2} (30)

This search space is not ellipsoidal anymore (compare with (9)), due to the presence of
the residual baseline term. The idea behind the search for ǎ is as follows. Assuming that
Ψ(χ2) is not empty, one first collects all integer vectors inside Ψ(χ2) and then one selects
the one which returns the smallest value for the objective function of (22). To set up the
integer search, we introduce the auxiliary ellipsoidal search space

Ψ0(χ
2) = {a ∈ Zn|||â − a||2Qâ

≤ χ2} (31)

Note that Ψ(χ2) ⊂ Ψ0(χ
2). Thus Ψ0(χ

2) contains all integer vectors of Ψ(χ2) and thus
also the sought for solution ǎ. The search starts with collecting all integer vectors inside
Ψ0(χ

2), which can be done efficiently with the LAMBDA method as described in Section
2. From this set, we then retain only those that satisfy the inequality ‖ b̂(a)− b̌(a) ‖2

Qb̂(a)
≤

χ2− ‖ â − a ‖2
Qâ

. This resulting set is Ψ(χ2).
The positive scalar χ2 sets the size of the search space. In order to avoid an abundance

of integer vectors inside the search space, one would prefer a small value for χ2. However,
in order to guarantee that the search space is not empty, χ2 should not be chosen too
small. It will be clear that the search space is not empty, if χ2 is chosen as

χ2(a) =‖ â − a ‖2
Qâ

+ ‖ b̂(a) − b̌(a) ‖2
Qb̂(a)

(32)

for some a ∈ Zn. To obtain a small enough value, one would prefer to choose a close
to ǎ (note: ǎ itself is, of course, no option, since this is the solution we are looking for).
For GNSS baseline models that have enough strength, a good approach is to use either
the bootstrapped solution ǎB ∈ Zn, based on â and Qâ (of course after the decorrelation
step), or the integer least-squares solution ǎILS = arg mina∈Zn ||â−a||2Qâ

. For such models
it can be shown that the probability of correct integer estimation (the success rate) of
ǎB or ǎILS is already very close to one, thus indicating that they are good candidates for
setting the size of the search space Ψ(χ2). GNSS models that have enough strength are,
for instance, short baselines models using multiple frequencies. Hence, if these models are
used for the GNSS compass, the above approach may be used for setting the size of the
search space.

4.4 INTEGER SEARCH (II)

A much more challenging situation occurs if one considers the GNSS compass model
based on single epoch, single frequency data. In this case the success rate of ǎB or ǎILS is
too low, as a consequence of which χ2(ǎB) or χ2(ǎILS) will often be too large. This can
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be explained as follows. In the single epoch, single frequency (say L1) phase-code case,
the design matrices A and B are structured as A = [λ1Im, 0]T (m + 1 is the number of
satellites tracked) and B = [GT , GT ]T , with λ1 the L1 wavelength and G the geometry
matrix, which contains the unit direction vectors to the satellites. The variance matrices
used in (32) are then given as

Qâ =
σ2

φ

λ2
1

(
Q +

σ2
p

σ2
φ

G(GT Q−1G)−1GT

)
, Qb̂(a) =

σ2
φ

1 + σ2
φ/σ

2
p

(GT Q−1G)−1 (33)

with Q the cofactor matrix due to the double differencing and σ2
φ, σ2

p the variances of
the phase and code data, respectively. This shows, since σ2

φ << σ2
p, that the precision

of the float solution â is dominated by the relatively imprecise code data, whereas the
precision of the conditional baseline solution b̂(a) is governed by the very precise phase
data. Hence, for most a the second term on the right hand side of (32) will be much larger
than the first term. As a consequence, χ2 will be large too, which implies that Ψ0(χ

2) will
contain many integer vectors, most of which will be rejected again by the inequality check
‖ b̂(a) − b̌(a) ‖2

Qb̂(a)
≤ χ2− ‖ â − a ‖2

Qâ
. Thus in this case many of the collected integer

vectors will be computed with no avail (search halting) and, moreover, for the many
integer vectors inside Ψ0(χ

2), one will have to compute b̌(a), which may considerably slow
down the estimation process. The conclusion is therefore, that for the single epoch, single
frequency case, an alternative approach is needed for selecting χ2. Moreover, it would
be helpful, if, in the evaluation of the integer candidates, one can avoid the necessity of
having to compute ‖ b̂(a)− b̌(a) ‖2

Qb̂(a)
too often. We will first address this latter problem.

4.4.1 Bounding the search space

The computation of b̌(a) is easy if the matrix Qb̂(a) is a scaled unit matrix. In our

applications, however, this is not the case. The computation of b̌(a) may then become a
computational burden if it needs to be done for many integer candidates a. We will now
show how this can be avoided, at the expense, however, of a change in the search space.

Let λmin and λmax be the smallest and largest eigenvalue of Q−1

b̂(a)
. Then

λmin min
||b||=l

||b̂(a) − b||2I3 ≤ min
||b||=l

||b̂(a) − b||2Qb̂(a)
≤ λmax min

||b||=l
||b̂(a) − b||2I3 (34)

Since min||b||=l ||b̂(a)−b||2I3 is the problem of finding the closest vector on a sphere of radius

l, we have min||b||=l ||b̂(a) − b||2I3 = (||b̂(a)||I3 − l)2. Hence, (34) can be written as

λmin(||b̂(a)||I3 − l)2 ≤ min
||b||=l

||b̂(a) − b||2Qb̂(a)
≤ λmax(||b̂(a)||I3 − l)2 (35)

By noting that min||b||=l ||b̂(a) − b||2Qb̂(a)
≤ ||b̂(a) − b||2Qb̂(a)

for b = lb̂/||b̂||I3 , a somewhat

sharper upper bound can be obtained that avoids the computation of λmax. Hence,

λmin(||b̂(a)||I3 − l)2 ≤ min
||b||=l

||b̂(a) − b||2Qb̂(a)
≤ ||b̂||2Qb̂(a)

(||b̂(a)||I3 − l)2/||b̂||2I3 (36)

We now define the functions

F1(a) = ||â − a||2Qâ
+ λmin(||b̂(a)||I3 − l)2

F (a) = ||â − a||2Qâ
+ ||b̂(a) − b̌(a)||2Qb̂(a)

F2(a) = ||â − a||2Qâ
+ ||b̂||2Qb̂(a)

(||b̂(a)||I3 − l)2/||b̂||2I3
(37)
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and the integer sets
Ψ1(χ

2) = {a ∈ Zn|F1(a) ≤ χ2}
Ψ(χ2) = {a ∈ Zn|F (a) ≤ χ2}
Ψ2(χ

2) = {a ∈ Zn|F2(a) ≤ χ2}
(38)

Then
F1(a) ≤ F (a) ≤ F2(a) and Ψ2(χ

2) ≤ Ψ(χ2) ≤ Ψ1(χ
2) (39)

Hence, we have created, by means of the two inequalities of (36), two new integer sets,
Ψ1(χ

2) and Ψ2(χ
2), for which it will be easier to collect all integer candidates.

4.4.2 Using the bounding sets for the search

So far we did not describe how (38) can be used to set up the search. Different approaches
are possible. Here we will describe the one which has been successfully used in (Park
and Teunissen, 2003). It uses Ψ1(χ

2) and a small value for χ2, which, if necessary, is
incremented to the point that Ψ(χ2) is nonempty. The search goes as follows. We start
with an initial value χ2

0 and then collect all integer vectors inside Ψ0(χ
2
0). Of all integer

vectors inside Ψ0(χ
2
0), one then collects those that are in Ψ1(χ

2
0). The following two

situations may now occur: Ψ1(χ
2
0) can either be empty or not empty. If Ψ1(χ

2
0) is empty,

then so will Ψ(χ2
0) be. The value χ2

0 is then increased, say to χ2
1, so that Ψ1(χ

2
1) is

not empty. Of those (few) candidates inside Ψ1(χ
2
1), one then checks whether they are in

Ψ(χ2
1) as well. If not, one increases χ2

1 again and repeats the process, otherwise one selects
the candidate in Ψ(χ2

1) which returns the smallest value for F (a). This latter candidate
will then be the solution sought.

There are different ways for choosing a starting value for χ2. One can use χ2
0 =

||â − ǎB||2Qâ
. One can also use a probabilistic approach by making use of the chi-squared

distribution, i.e. determine the value of χ2
0 that corresponds to a selected probability that

the true value a is contained in the search space. Or, noting that the volume of Ψ0(χ
2) is

easy to compute, one can make use of the fact that the volume of a region is an estimate
for the number of integer vectors contained in it. Or one can make use of a quadratic
approximation of the function F and use its integer minimizer as an approximation of ǎ.
In our experience, the first choice already works fine (Park and Teunissen, 2003).

5 BASELINE CONSTRAINED INTEGER AMBIGUITY RESOLUTION
(II)

5.1 THE CONSTRAINED FLOAT SOLUTION

Note that â in (22), the least-squares estimator of a, is not based on the baseline constraint
||b||I3 = l. Hence an improved estimator of a can be obtained by incorporating this
constraint. We therefore consider the baseline constrained least-squares problem

min
a∈Rn,b∈R3,||b||I3=l

||y − Aa − Bb||2Qy
(40)

Note that this minimization problem differs from (19), since it does not include the integer
constraints on a. It does, however, include the baseline constraint. The solution to (40),
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which we denote as âl and b̂l, will therefore be referred to as the constrained float solution.
To determine this solution, we make use of the orthogonal decomposition

‖ y − Aa − Bb ‖2
Qy

=‖ ê ‖2
Qy

+ ‖ b̂ − b ‖2
Qb̂

+ ‖ â(b) − a ‖2
Qâ(b)

(41)

which follows from (3) by interchanging the role of a and b. Substitution of (41) into (40),
gives

mina∈Rn,b∈R3,||b||=l ‖ y − Aa − Bb ‖2
Qy

=

= ‖ ê ‖2
Qy

+ mina∈Rn,||b||=l

(
‖ b̂ − b ‖2

Qb̂
+ ‖ â(b) − a ‖2

Qâ(b)

)
= ‖ ê ‖2

Qy
+ min||b||=l

(
‖ b̂ − b ‖2

Qb̂
+ mina∈Rn ‖ â(b) − a ‖2

Qâ(b)

) (42)

Note that the third term in the last equation can be made zero for any b. Hence, the
constrained float solution is given as

b̂l = arg minb∈R3,||b||=l ||b̂ − b||−1
Qb̂

âl = â(b̂l) = â − Qâb̂Q
−1

b̂
(b̂ − b̂l)

(43)

Thus b̂l (having the property that ||b̂l|| = l) follows from a quadratically constrained
least-squares problem having b̂ as input and âl follows from adjusting â on the basis of
the residual baseline vector b̂ − b̂l.

Since both âl and b̂l can expected to be improvements over â and b̂, respectively,
the question arises whether they can be used in the integer search in the same way as
the unconstrained float solution was used. The answer is in the affirmative, as the next
sections will show.

5.2 AN ALTERNATIVE ORTHOGONAL DECOMPOSITION

In this section we will formulate an orthogonal decomposition similar to the one of (3), but
with âl and b̂l now playing the role of â and b̂, respectively. This alternative decomposition
is made possible by formulating the quadratically constrained least-squares problem as
an unconstrained least-squares problem. We have, similar to (24), that the constrained
float solution âl, b̂l satisfies the normal equations

[
AT Q−1

y A AT Q−1
y B

BT Q−1
y A BT Q−1

y B + λ̂I3

] [
âl

b̂l

]
=

[
AT Q−1

y y
BT Q−1

y y

]
(44)

in which −λ̂ > −λ1 is the resolved Lagrange multiplier and λ1 the smallest eigenvalue
of the reduced normal matrix B̄T Q−1

y B̄. Hence, âl and b̂l are also the solution of the
unconstrained least-squares problem

min
a∈Rn,b∈R3

||yl − Ala − Blb||2Qyl
(45)

with

yl =

[
y
0

]
, Al =

[
A
0

]
, Bl =

[
B
I3

]
, Qyl

=

[
Qy 0

0 λ̂−1I3

]

We can therefore, similarly to (3), decompose the objective function of (45) as

‖ yl − Ala − Blb ‖2
Qyl

=‖ êl ‖2
Qyl

+ ‖ âl − a ‖2
Qâl

+ ‖ b̂l(a) − b ‖2
Qb̂l(a)

(46)
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with
êl = yl − Alâl − Blb̂l

âl = (ĀT
l Q−1

yl
Āl)

−1ĀT
l Q−1

yl
yl

b̂l = (B̄T
l Q−1

yl
B̄l)

−1B̄T
l Q−1

yl
yl

b̂l(a) = (BT
l Q−1

yl
Bl)

−1BT
l Q−1

yl
(yl − Ala)

(47)

and where Qâl
= (ĀT

l Q−1
yl

Āl)
−1 and Qb̂l(a) = (BT

l Q−1
yl

Bl)
−1. Furthermore, we have the

equality
‖ y − Aa − Bb ‖2

Qy
=‖ yl − Ala − Blb ‖2

Qyl
−λ̂||b||2I3 (48)

and therefore the decomposition

‖ y − Aa − Bb ‖2
Qy

=‖ êl ‖2
Qyl

−λ̂||b||2I3+ ‖ âl − a ‖2
Qâl

+ ‖ b̂l(a) − b ‖2
Qb̂l(a)

(49)

The first term on the right hand side is independent of a and b, and therefore constant.
This also holds true for the second term on the right hand side, since λ̂ is independent
of a and b, and the length of b is known to be equal to the constant l. Hence, for the
baseline constrained integer minimization, we only need to consider the last two terms.

5.3 INTEGER LEAST-SQUARES SOLUTION

With the use of decomposition (49), we have

mina∈Zn,b∈R3,||b||I3=l ‖ y − Aa − Bb ‖2
Qy

=

= ‖ êl ‖2
Qyl

+ mina∈Zn,b∈R3,||b||I3=l

(
‖ âl − a ‖2

Qâl
+ ‖ b̂l(a) − b ‖2

Qb̂l(a)
−λ̂||b||2I3

)

= ‖ êl ‖2
Qyl

+ mina∈Zn

(
‖ âl − a ‖2

Qâl
+ minb∈R3,||b||I3=l

(
‖ b̂l(a) − b ‖2

Qb̂l(a)
−λ̂||b||2I3

))

= ‖ êl ‖2
Qyl

−λ̂l2 + mina∈Zn

(
‖ âl − a ‖2

Qâl
+ minb∈R3,||b||I3=l ‖ b̂l(a) − b ‖2

Qb̂l(a)

)
(50)

Thus if we define
b̌l(a) = arg min

b∈R3,||b||=l
‖ b̂l(a) − b ‖2

Qb̂l(a)
(51)

then the integer least-squares solution is given as

ǎ = arg mina∈Zn

(
‖ âl − a ‖2

Qâl
+ ‖ b̂l(a) − b̌l(a) ‖2

Qb̂l(a)

)
b̌ = b̌l(ǎ)

(52)

Compare this formulation with that of (22). Both have the same structure and can
therefore be tackled in the same way.
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