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ABSTRACT
Carrier phase integer ambiguity resolution is the key to high precision Global Navigation

Satellite System (GNSS) positioning and navigation. In this contribution we study some
of the computational aspects of best integer equivariant estimation. The best integer
equivariant (BIE) estimator is the optimal estimator of the class of integer equivariant
estimators, which is one of the three classes of estimators for carrier phase ambiguity
resolution. The two other classes are the class of integer estimators and the class of integer
aperture estimators. Since the BIE-estimator can not be computed exactly, it is shown
how to approximate this estimator while retaining the property of integer equivariance.
It is also shown how the decorrelating Z-transformation and the integer search of the
LAMBDA method can be used to speed up the computation of the BIE-estimator.

Keywords: GNSS ambiguity resolution, integer least-squares, best integer equivariant
estimation

1 INTRODUCTION

Global Navigation Satellite System (GNSS) ambiguity resolution is the process of resolving
the unknown cycle ambiguities of double difference (DD) carrier phase data. It is the key
to fast and high-precision GNSS relative positioning. An overview of GNSS carrier phase
models, together with their applications in surveying, navigation, geodesy and geophysics,
can be found in textbooks such as [Hofmann-Wellenhof et al., 2001], [Leick, 1995], [Misra
and Enge, 2001, [Parkinson and Spilker, 1996], [Strang and Borre, 1997] and [Teunissen
and Kleusberg, 1998].

In order to describe the problem of GNSS ambiguity resolution, we take as our point
of departure the following system of linear observation equations

E{y}=Aa+Bb ,a€Z",be RP (1)
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with E{.} the mathematical expectation operator, y the m-vector of observables, a the
n-vector of unknown integer parameters and b the p-vector of unknown real-valued pa-
rameters. The m x (n + p) design matrix (A, B) is assumed to be of full rank.

All the linear(ized) GNSS models can in principle be cast in the above frame of ob-
servation equations. The data vector y will then usually consist of the ’observed minus
computed’ single- or dual- frequency double-difference (DD) phase and/or pseudorange
(code) observations accumulated over all observation epochs. The entries of vector a are
then the DD carrier phase ambiguities, expressed in units of cycles rather than range,
while the entries of the vector b will consist of the remaining unknown parameters, such
as for instance baseline components (coordinates) and possibly atmospheric delay param-
eters (troposphere, ionosphere).

The procedure which is usually followed for solving the GNSS model can be divided
into three steps. In the first step one simply discards the integer constraints a € Z"
and performs a standard least-squares (LS) adjustment. As a result one obtains the LS-
estimators of a and b as & and b, respectively. This solution is usually referred to as the
'float’ solution. In the second step the ’float’ solution a is is further adjusted so as to take
the integerness of the ambiguities into account in some pre-defined way. This gives

as = S(a) (2)

in which S is an n-dimensional mapping that takes the integerness of the ambiguities into *
account. The estimator Gs is then used in the final and third step to adjust the ’float’
estimator b. As a result one obtains the so-called ’fixed’ estimator of b as

bs = b— Q4,Q5"(a — as) (3)

in which Q4 denotes the variance-covariance (vc-) matrix of @ and @, denotes the covari-
ance matrix of b and . :
The above three-step procedure is still ambiguous in the sense that it leaves room for
. choosing the n-dimensional map S. Different choices for S will lead to different ambiguity
estimators and thus also to different baseline estimators bg. One can therefore now think
of constructing a family of maps S with certain desirable properties. Three such classes
of ambiguity estimators are the class of integer estimators, the class of integer aperture
estimators, and the class of integer equivariant estimators. These classes were introduced
in, respectively, [Teunissen, 1999, 2003, 2002]. These three classes are subsets of one
another. The first class, the class of integer estimators, is the most restrictive class. This
is due to the fact that the outcomes of any estimator within this class are required to
be integer. The integer least-squares (ILS) estimator can be shown to be the optimal
estimator within this class, see [Teunissen, 1999]. It is defined as
ars =argmin || & —z 1%, (4)
and it can be shown to have the largest possible probability of correct integer estimation.
In contrast to integer rounding and integer bootstrapping, an integer search is needed to
compute drs. The ILS-estimator and the integer search are efficiently mechanized in the
LAMBDA method [Teunissen, 1993, 1995], which is currently one of the most applied
methods for GNSS carrier phase ambiguity resolution. In particular the decorrelating Z-
transformation of the LAMBDA-method is responsible for speeding up the integer search.
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Practical results obtained with the LAMBDA method can be found, for example, in
[Boon and Ambrosius, 1997], [Boon et al., 1997], [Coz and Brading, 1999, [de Jonge and
Tiberius, 1996b], [de Jonge et al., 1996], [Han, 1995], [Peng et al., 1999], [ Tiberius and de
Jonge, 1995).

The second class, the class of integer aperture estimators, encompasses the class of
integer estimators. The integer aperture estimators are of a hybrid nature in the sense that
their outcomes are either integer or noninteger. Examples of different integer aperture
estimators and their properties can be found in [Teunissen, 2003a, 2004, 2005]. The
most relaxed of the three classes is the class of integer equivariant estimators. These
estimators are real-valued and they only obey the integer remove-restore principle. The
best integer equivariant (BIE) estimator can be shown to be the optimal estimator within
this relaxed class, see [Teunissen, 2003b]. Here optimality is measured by minimizing
the mean squared error of the estimator. When using the BIE-estimator care should be
taken in how it is computed. The purpose of the current contribution is to show how the
BIE-estimator should be computed and which pitfall should be avoided.

This contribution is organized as follows. In section 2 we give a brief review of the
theory of integer equivariant estimation. It includes the definition of the class of integer
equivariant estimators. In section 3 we give the BIE-estimator for an arbitrary probability
density function (PDF) of the ambiguity float solution. It follows from minimizing the
mean squared error within the class of integer equivariant estimators. Although the BIE-
estimator holds true for any probability density function the data might have, we assume
in section 4 that the data are normally distributed. For this case it follows that the BIE-
estimator of te baseline can be obtained in a way which is very similar to the three-step
procedure of current methods of ambiguity resolution. The only difference being that
the integer ambiguity estimator needs to be replaced by its BIE-counterpart. Since the
BIE-estimator of the ambiguities contains an infinite sum, it can not be evaluated in an
exact manner. It is shown how to approximate the BIE-estimator while retaining the
property of integer equivariance. It is also shown how the decorrelating Z-transformation
and the integer search of the LAMBDA method can be used to speed up the computation
of the BIE-estimator.

2 INTEGER EQUIVARIANT ESTIMATION

In order to describe the class of integer equivariant (IE) estimators, we consider estimating
an arbitrary linear function of the two type of unknown parameters of the GNSS model
(1),

6=Ta+1lb,lbeR", lLeR (5)
It seems reasonable that an IE estimator should at least obey the integer remove-restore
principle, see [Teunissen, 2002]. When estimating ambiguities in case of GNSS for in-
stance, one would like, when adding an arbitrary number of cycles to the carrier phase
data, that the solution of the integer ambiguities gets shifted by the same integer amount.
For the estimator of @ this would mean that adding Az to y, with arbitrary z € Z”, must
result in a shift of ITz. Likewise it seems reasonable to require of the estimator that
adding B( to y, with arbitrary ( € RP, results in a shift {7 (. Afterall we would not
like the integer part of the estimator to become contaminated by such an addition.to y.
Estimators of @ that fulfil these two conditions are called integer equivariant. Hence, they
are defined as follows
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Definition 1 (IE estimators) »
The estimator 0;p = fo(y), with f : R™ +— R, is said to be an integer equivariant

estimator of 8 = {Ta + I b if

foly+Az) = foly)+¥¥z,Vye R™ 2 € 2" ©)
foy+BC) = foly)+4¢, Yy € R™,( € RP

It is easy to verify that integer estimators, like integer rounding, integer bootstrapping or
integer least-squares, are integer equivariant. Simply check that the above two conditions
are indeed fulfilled by integer estimators. The converse, however, is not necessarily true.
The class of [E-estimators is therefore a larger class than the class of integer estimators.

The class of [E-estimators is also larger than the class of linear unbiased estimators.
Let ffy, for some f; € R™, be the linear estimator of § = Ta+Ib. For it to be unbiased
we need, using E{y} = Aa + Bb, that ff Aa+ ffBb=1Ta+Ifb, Va € R",b € RP holds
true, or that both I, = AT fy and I, = BT f hold true. But this equivalent to stating that

T(y+Aa) = ffy+%a,Vy€ R™acR" -
ffy+Bb) = ffy+ITb,VyeR™beRP

Comparing this result with (6) shows that the condition of linear unbiasedness is more
restrictive than the condition of integer equivariance. Hence, the class of linear unbiased
estimators is a subset of the class of integer equivariant estimators.

3 BEST INTEGER EQUIVARIANT ESTIMATION

Having defined the class of IE-estimators we will now look for an IE-estimator which is
’best’ in a certain sense. We will denote our best integer equivariant (BIE) estimator of
as O and use the mean squared error (MSE) as our criterion of 'best’. The best integer
equivariant estimator will therefore be defined as

Op1r = arg i, E{(fo(y) — 6)*} (8)

in which I E stands for the class of IE-estimators. The minimization is thus taken over
all integer equivariant functions that satisfy the conditions of Definition 1.

The reason for choosing the MSE-criterion is twofold. First, it is a well-known prob-
abilistic criterion for measuring the closeness of an estimator to its target value, in our
case 8. Second, the MSE-criterion is also often used as measure for the quality of the
'float’ solution itself. The following theorem gives the solution to the above minimization

problem (8).

Theorem 1 (BIE estimation)

Let y € R™ have mean E{y} = Aa + Bb and probability density function (PDF) p,(¥),
and let éprr be the best integer equivariant estimator of @ = {Ta + ITb. Then

9“ = ZzEZ" fm(zgz + Efﬁ)Py(Ef + A(a‘ T z) * B(b = ﬁ))dﬁ (9)
R Seezn Jrp Py(y + Ala— 2) + B(b— B))dB
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Proof: see [Teunissen, 2003b]. _
Note that the BIE-estimator can also be written as

Op1e = Tapre + [ bp1e (10)
where i
{ agre = > zezn 2wy (y) , Xiezn w,y(y) =1 (11)
bpre = [re Bwp(y)dB , [prwp(y)dp =1

in which the weighting functions w,(y) and wg(y) are defined by (9). This shows that the
BIE-estimator of the integer parameter vector a is a weighted sum of all integer vectors
in Z*. The weights vary between zero and one, and their values are determined by y and
its PDF. As a consequence the estimator agrg will be real-valued in general, instead of
integer-valued. .

The above theorem holds true for any PDF the vector of observables y might have.
This is therefore a very general result indeed. A closer look at (9) reveals however, that
one needs a and b, and therefore 8, in order to compute 8z;z. The dependence on a and
b is present in the numerator of (9) and not in its denominator. The summation over
all integer vectors in Z™ and the integration over RP makes the dependence on a and b
disappear in the denominator. If the dependence of fg;r on @ persists one would not be
able to compute the BIE-estimator. Note however that this dependence disappears in case
the PDF of y has the structure p,(y) = f(y — Aa — Bb). And this property is fortunately
still true for a large class of probability density functions, such as the multivariate normal
distribution.

A direct and important consequence of the above theorem is that the BIE-estimator
is always better than or at least as good as any integer estimator as well as any linear
unbiased estimator. Afterall the class of integer estimators and the class of linear unbiased
estimators are both subsets of the class of IE-estimators. The BIE-estimator is therefore
also better than the best linear unbiased (BLU) estimator. The BLU-estimator is the
minimum variance estimator of the class of linear unbiased estimators and it is given by
the well-known Gauss-Markov theorem. We therefore have

MSE(6p1£) < MSE(6pLv) | (12)

The two estimators fg;z and 93,50 both minimize the mean squared error within their
class. In case of the BLU-estimator this is equivalent to minimizing the variance within
LU. Since the IE estimator can be shown to be unbiased as well, it follows that inequality
(12) also holds true for the variances of the two type of estimators. This is summarized
in the following Gauss-Markov-like theorem.

Theorem 2 (minimum variance unbiased estimation)
The BIE-estimator is unbiased and has a better precision than the BLU-estimator:
(&) E{bsie} = E{fsv}
(13)
(1) D{0pre} < D{0srv}

where D{.} denotes the dispersion operator.
Proof: see [Teunissen, 2003b].
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The above result is remarkable since it shows that for a large class of PDF’s of y, one
can always, with a model like (1), improve upon the precision of the BLU-estimator
while keeping the estimator unbiased. If we apply the above theorem to the problem of
estimating the baseline in case of GNSS and make the comparison with the ’float’ baseline
estimator b and an unbiased ’fixed’ baseline estimator b, we have

{ D{E}m} < D{b} and E{f}ms} = E{b} (14)
D{bpie} < D{b} and E{bpis} = E{b}

The precision of the baseline estimator bg;g is therefore always better than or at least as
good as the precision of its 'float’ and ’fixed’ counterparts.

4 COMPUTATION OF THE BIE ESTIMATOR
4.1 THE GAUSSIAN CASE

In our discussion of the BIE-estimator and its properties we did not make a particular
choice so far for the PDF of y. In many applications however, such as GNSS, it is assumed
that y is normally distributed. In that case the PDF of y takes the form

i o m, O el A RS
py(y) = (2‘”)%@9@ B ly—A Bb ”Q,‘r (15)

where || . |3, = ()7@Q;(.). With this Gaussian PDF the BIE-estimator also takes on a
particular shape. We have the following corollary.

Corollary (BIE in the Gaussian case) A

Let the PDF of y be given as in (15) and let 057 be the best integer equivariant estimator
of @ = ITa+ITb. Then

01 = Tapre + Fbpre (16)
with ‘ :
{ ?’BIE - ‘{SZEZ" sz(a) (17)
bpie = b—QQ:" (& — éprk)
and

exp—% ” &_‘z 'lzog (18)
2 ez eXP—'gl' la—= ”5,,

We (&) -

This result shows that in the Gaussian case we may use the three-step procedure of section
1 also for best integer equivariant estimation. Thus first the float solution is computed.
Then a is used to compute dpg. This is then ﬁna.ljy followed by using the ambiguity
residual @ — ag;g to further adjust b so as to obtain bprp.

‘4.2 THE INTEGER EQUIVARIANT APPROXIMATION

The BIE ambiguity estimator cannot be computed exactly because of the infinite sum in
(17). We will now show how to approximate the BIE estimator such that the property of

integer equivariance is not lost.
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If the infinite sum is replaced by a sum over a finite set of integers, say ©, one should
be careful not to loose the property of integer equivariance. Special care has therefore to
be taken in chosen the integer set ©. In order to determine a finite set of integers for the
approximation of the BIE ambiguity estimator without spoiling the property of integer
equivariance, the finite set © should not be chosen as a fixed set, but instead as a set of
integers that depends on the float ambiguity vector @ In order to achieve this, we first

define the ellipsoidal region:
E}={zeR"||z— 23, <X}, ze 2" (19)

This region is centred at the integer vector z € Z™®, its shape is determined by the variance
matrix Qa, and its size is governed by the parameter A. This set has the indicator function:

sy 1 lfze B
6;(z) = { 0 otherwise (20)

Complementary to this ellipsoidal region, we define the integer set:
={ze2"|lz-zl}, <)} ,zeR" (21)

This set contains all integer vectors which lie within a certain distance from =z € R",
where the metric of the distance is determined by Q;. If we now replace the summation
over the whole space of integers Z™ by the summation over the integer set ©2, we can
approximate the BIE estimator as:

exp{—1||a — z||%
=3 12 2lé - !Qé},, (22)
25 “Tocoy o0 {116 - 2I13,}
Thus the integer-summation is taken over an integer set that depends on the float solution
a. When a changes, also the integer set, over which the summation is taken, changes. We
can bring the above expression for a3, into the same form as our original expression for
apre, if we make use of the indicator function (20). This gives

62 (a) exp{—2la— z]3,}
i - 2 Qi
™y ‘ ; 23
BIE ZEZZ'- Zzgzn 6;‘(0,) exp{_%”a_ Z’”é&} ( )
which we can write as
apre = Y 2w(d) (24)
z€2"
ith

wl 5r\(&) exp{—l |ﬁ B z'le}

wy() = = : A e

- Tiezn 8(a) exp{—3lla - 23, }

Compare the weighting function of the approximation, w7 (&), with the weighting function
w, (@) of the BIE estimator, cf. (18). It is now easily verified that the approximation a3,
is indeed integer equivariant.
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4.3 SETTING THE SIZE OF THE INTEGER SET

In order to understand the approximation involved, we first note that limy—.. 83z =
apre- Thus the approximation improves when the the size of the integer set increases.
Since the BIE estimator is a weighted sum over all integers, the integer set ©7 in (22)
should be chosen such that the weights w,(a), Yu ¢ ©) are so small that w,(@)u ~ 0.
The difference between the BIE estimator and its approximation is:

apre — g = Larezn 2ws(d) — 2:co) 2w} (@) (26)
. Zzeeg z(w,(a) — w3(a)) + ZzeZ"\{e:.}} zw,(a)

Note that w)(a) > w,(a), since for their denominators we have

1  1E
> exp{—5lla—2lg,} < 3 exp{—3lla~ 2%, }
3692 ) zeZn

Hence, the approximation error is not only the result of ignoring the last term on the
right-hand side of (26), but also due to the different weights assigned to the integers in

the set ©3.
Another way to look at the approximation is to ask oneselves the question for which

PDF the estimator a3, would become the ezact BIE estimator. The approximation d3;z

is equal to the true BIE solution when the PDF of @ would be given by the truncated

normal distribution: g : g
_ @) en{-1lz —al3,) -

Jea exp{—3llz — all3, }dz

This implies that the approximation a}; is close to @z;z when the difference between

the normal distribution and its truncated version (27) is small. The difference between

these two distributions is small, when ) is chosen such that

Pi(z)

(Qﬂ,)%\l/m&“ ]E‘} exP{_%”I - G"%ﬂ}dﬂ: 8 | (28)

Hence, in order to get a good approximation, A can be determined from
PG € E)) = P(|la— a||éa <M)=1l-¢a (29)

with o set at a small value. Thus by setting o at a small value, one can determine A from
the Chi-squared distribution, since [|a —a||3, has a central x*-distribution with n degrees

of freedom.

4.4 CONSTRUCTING THE INTEGER SET

Now that we have set the size of the integer set, we need to identify which integer vectors
reside in this set. That is, we need to identify all integer vectors z that satisfy the
inequality

la — 2I3, < A2 (30)
For this we can make use of the integer search implemented in the LAMBDA method, see
(Teunissen, 1993, 1995), (de Jonge and Tiberius, 1996). However, in order to perform the
search in an efficient manner, one first will have to transform the search space such that
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its shape comes close to a spherical shape. This can be achieved with the decorrelating
Z-transformation of the LAMBDA method. Thus the procedure is to first determine from
the variance matrix @Q; the decorrelating Z-transformation. Then to transform the float
solution @ and its variance matrix as 2 = Za and Q; = ZQaZ7, respectively, followed by
a search for all integer vectors u € Z" satisfying

(12 —ull, <A (31)

Then z = Z~u is used to back-transform the integer vectors such that the integer vectors
- satisfying the original inequality (30) are obtained.

5 SUMMARY

In this contribution we considered the computation of the BIE-estimator. In the Gaussian
case, the BIE-estimator of the baseline is given as bgyg = b— Q&Q‘;l(& — dprg), with the
BIE-estimator of the ambiguity vector given as

&BIE = Z zw,(fz)
zeZn

where -
exp{—3lla — 2|3, }

>rezn exp{—3lla — 2[3,}

Since the computation of the BIE-estimator of the ambiguities requires a summation over

all integer vectors, no exact evaluation is possible. One is therefore forced to make use

of an approximation. In defining the approximation it is of importance to retdin the
property of integer equivariance. It was shown that this holds true for the approximation,

ape = Y w3 (d)
zeZn

w,(@) =

where . S R
d;(a) exp{—3lla — =3, }

eezm 02(a) exp{—3lla — z[I3, }

in which §}(z) is the indicator function of the ellipsoidal region

w)(a) =

B} ={z € R*| [z - 2|}3, < *}.

It is the introduction of the indicator function which avoids the infinite sum. Instead
of the infinite sum, the summation is now taken over the finite integer set

e)={zez"||a-z|}, <}

In order to compute aj;5, we need a good choice for A and we need to generate the
integer vectors which reside in the integer set ©7. This set can be generated efficiently with
the integer search of the LAMBDA method, provided its decorrelating Z-transformation
is applied first. To obtain a proper value for A, use is made of the probability P(a €
E}) = P(lla—all3, < A*) = 1—a, where a is set at a small value. The central Chi-square
distribution with n degrees of freedom can then be used to obtain A from a. :
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