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ABSTRACT

GNSS carrier phase ambiguity resolution is the key to fast and high- precision satellite
positioning and navigation. It applies to a great variety of current and future models
of GPS, modernized GPS and Galileo. In [Teunissen, 2003] we described the general
principle of integer aperture (IA) ambiguity estimation. In the present contribution we
introduce one particular IA estimator, the integer aperture least-squares (IALS) estimator.
The motivation for studying this estimator stems from the known optimality of the integer
least-squares estimator. It is shown how the IALS estimator extends the integer least-
squares estimator and how its performance can be measured by means of its fail-rate and

success-rate.

1 INTRODUCTION

Global Navigation Satellite System (GNSS) ambiguity resolution is the process of resolving
the unknown cycle ambiguities of double difference (DD) carrier phase data. Its practical
importance becomes clear when one realizes the great variety of current and future GNSS
models to which it applies. An overview of GNSS models, together with their applications
in surveying, navigation, geodesy and geophysics, can be found in textbooks such as
[Hofmann-Wellenhof et al., 2001}, [Leick, 1995], [Misra and Enge, 2001], [Parkinson and
Spilker, 1996), [Strang and Borre, 1997] and |Teunissen and Kleusberg, 1998].

In [Teunissen, 2003] we introduced the class of integer aperture (/A) estimators for
carrier phase ambiguity resolution. This class allows one to design ambiguity estimators
such that the ambiguity resolution process will have a user-defined fized fail-rate. In this
contribution we will introduce the integer aperture least-squares (IALS) estimator as an
extention of the well-known integer least-squares estimator. We start with a brief review of
integer estimation and of integer least-squares estimation in particular. Then we describe
the general principle of integer aperture estimation and introduce the integer aperture
least-squares estimator. It is shown how the framework of integer aperture estimation
incorporates the important problem of ambiguity discernibility. By setting the size and
shape of the integer aperture pull-in region, the user has control over the fail-rate of the
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integer aperture estimator and thus also over the amount of discernibility. In case of the
IALS estimator the aperture pull-in region is chosen as a down-sized version of the integer
least-squares pull-in region. It is shown how the aperture of the pull-in region governs
the fail-rate and the success-rate of the IALS estimator and how lower bounds and upper
bounds of these probabilities can be computed.

2 INTEGER LEAST-SQUARES ESTIMATION
2.1 THE GNSS MODEL

As our point of departure we take the following system of linear observation equations
E{y}=Aa+Bb ,a€Z",be R’ T ot

with E{.} the mathematical expectation operator, y the m-vector of observables, a the
n-vector of unknown integer parameters and b the p-vector of unknown real-valued pa-
rameters. The m x (n + p) design matrix (A, B) is assumed to be of full rank.

All the linear(ized) GNSS models can in principle be cast in the above frame of ob-
servation equations. The data vector y will then usually consist of the ’observed minus
computed’ single- or dual- frequency double-difference (DD) phase and/or pseudorange
(code) observations accumulated over all observation epochs. The entries of vector a are
then the DD carrier phase ambiguities, expressed in units of cycles rather than range,
while the entries of the vector b will consist of the remaining unknown parameters, such
as for instance baseline components (coordinates) and possibly atmospheric delay param-
eters (troposphere, ionosphere).

The procedure which is usually followed for solving the GNSS model can be divided
into three steps. In the first step one simply discards the integer constraints a € 2"
and performs a standard least-squares (LS) adjustment. As a result one obtains the
LS-estimators of a and b as

1

with Q, the ve-matrix of the observables, 4 = P§ A, B = P{ B, and the two orthogonal
projectors Pg = I, — B(BTQ;*B)~'BTQ* and Py = I, — A(ATQ,A)~1ATQ;". This
solution is usually referred to as the 'float’ solution.

In the second step the ’float’ estimator a is used to compute the corresponding integer
estimator @ € Z™. This implies that a mapping S from the n-dimensional space of reals
to the n-dimensional space of integers is introduced such that

d=8@) , S: R -2 : (3)

(ATQ;IA)—IA’TQ;ly 5
(B7Q;'B) B0y "y “

o B

This integer estimator is then used in the final and third step to adjust the ’float’ estimator
b. As a result one obtains the so-called 'fixed’ estimator of b as

b=b-QuQ:'(a-a) (4)

in which Q4 denotes the ve-matrix of @ and @, denotes the covariance matrix of b and a.
This "fixed’ estimator can alternatively be expressed as b = (BTQ; 1B) 1BTQ, (v — Aa).
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Note that only two of the three steps are needed in case one only would be interested
in obtaining an integer solution for a. In the case of GNSS, however, one is particularly
interested in the solution of the third step as it contains the solution for the baseline
coordinates. All three steps are therefore needed in case of GNSS.

2.2 INTEGER AMBIGUITY ESTIMATION

The above three-step procedure is still ambiguous in the sense that it leaves room for
choosing the integer map S. It will be clear that the map S will not be one-to-one due
to the discrete nature of Z". Instead it will be a many-to-one map. This implies that
different real-valued vectors will be mapped to one and the same integer vector. One can
therefore assign a subset S, C R™ to each integer vector z € Z™

Sz={$€Rn|3=_S(I)}, x€” - (5)

The subset S, contains all real-valued vectors that will be mapped by S to the same
integer vector z € Z™. This subset is referred to as the pull-in region of z. It is the region
in which all vectors are pulled to the same integer vector z.

Since the pull-in regions define the integer estimator completely, one can define classes
of integer estimators by imposing various conditions on the pull-in regions. One such class
was introduced by Teunissen (1999a) as follows.

Definition 1 (Integer estimators)
The mapping & = S(a) is said to be an integer estimator if its pull-in regions satisfy

(1)  UseznS: = R"
(i7) Int(S,)NInt(S,) =0, Vz1,20 € Z", 2, # 2,
(i) S;=z+ S5y, Y2€ "

This definition is motivated as follows. Each one of the above three conditions describe a
property of which it seems reasonable that it is possessed by an arbitrary integer estimator.
The first condition states that the pull-in regions should not leave any gaps and the second
that they should not overlap. The absence of gaps is needed in order to be able to map any
float solution @ € R™ to Z™, while the absence of overlaps is needed to guarantee that the
float solution is mapped to just one integer vector. Note that we allow the pull-in regions
to have common boundaries. This is/permitted if we assume to have zero probability
that a lies on one of the boundaries. This will be the case when the probability density
function (PDF) of @ is continuous.

The third and last condition of the definition follows from the requirement that S (z+
z) = S(z) + z,Yz € R*,z € Z". Also this condition is a reasonable one to ask for. It
states that when the float solution & is perturbed by z € Z", the corresponding integer
solution is perturbed by the same amount. This property allows one to apply the integer
remove-restore technique: S(a— z) + z = S(a). It therefore allows one to work with the
fractional parts of the entries of a, instead of with its complete entries.

Using the pull-in regions, one can give an explicit expression for the corresponding
integer estimator . It reads :

d= Y 28,(8) with 5,(8) = { : AL ; g: (6)

zeZn
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Note that the s.(@) can be interpreted as weights, since 3.czn s:(@) = 1. The integer
estimator & is therefore equal to a weighted sum of integer vectors with binary weights.

2.3 INTEGER LEAST-SQUARES AMBIGUITY ESTIMATION

Different choices for S will lead to different integer estimators @ and thus also to different
baseline estimators b. One can therefore now think of constructing integer maps which
possess certain desirable properties. Examples are integer rounding, integer bootstrapping
and integer least-squares. In this contribution we will make use of the integer least-squares
(ILS) estimator. It is defined as

ars = arg min la—z |13, (7)

In contrast to integer rounding and integer bootstrapping, an integer search is needed to
compute dzs. The ILS-estimator was introduced in [Teunissen, 1993], see.also [Teunissen,
1995]. The ILS procedure is mechanized in the LAMBDA method, which is currently
one of the most applied methods for GNSS carrier phase ambiguity resolution. Practical
results obtained with it can be found, for example, in [Boon and Ambrosius, 1997), [Boon
et al., 1997], [Coz and Brading, 1999], [de Jonge and Tiberius, 1996b], [de Jonge et al.,
1996], [Han, 1995], [Jonkman, 1998], [Peng et al., 1999], [Tiberius and de Jonge, 1995],
[ Tiberius et al., 1997].

To determine the ILS pull-in regions we need to know the set of float solutions a € R"
that are mapped to the same integer vector z € Z™. This set is described by all z € R"
that satisfy z = argmingez~ | z — u ||3,. The ILS pull-in-region that belongs to the
integer vector z follows therefore as

Sis:={z € R ||z -z g, |z —u |3, Yu € 2"} (8)

It consists of all those points which are closer to z than to any other integer point in R".
The metric used for measuring these distances is determined by the ve-matrix ¢;. An
alternative representation of the ILS pull-in regions is

1
Sps:=Neezm{z €R*| | Qi z—2) <= |l lld,}, Vz€ 2" (9)

This shows that the ILS pull-in regions are constructed from intersecting half-spaces. One
can show that at most 2" — 1 pairs of such half spaces are needed for constructing the pull-
in region. The ILS pull-in regions are convex, symmetric sets of volume 1, which satisfy
the conditions of Definition 1. They are hexagons in the two-dimensional case. Two-
dimensional examples of the pull-in regions of integer least-squares are given in Figure
1.

2.4 PROBABILITY OF CORRECT INTEGER ESTIMATION: THE AM-
BIGUITY SUCCESS-RATE

For the evaluation of the fixed ambiguities one needs the distribution of the integer esti-
mator & This distribution is of the discrete type and it will be denoted as P(a = z). It
is a probability mass function, having zero masses at nongrid points and nonzero masses
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Figure 1: Two-dimensional pull-in regions of integer least-squares. Left: high correlation;
Right: low correlation.

at some or all grid points. This distribution is obtained from integrating the probability
density function (PDF) of & over the pull-in regions,

P =2) =/S' falz)dz , z € 2" (10)

This distribution is of course dependent on the pull-in regions S, and thus on the chosen
integer estimator. Since various integer estimators exist which are admissible, some may
be better than others. Having the problem of GNSS ambiguity resolution in mind, one is
particularly interested in the estimator which maximizes the probability of correct integer
estimation. This probability equals P(@ = a), but it will differ for different ambiguity
estimators. The answer to the question which estimator maximizes the probability of
correct integer estimation is given by the following theorem.

Theorem 1 (Optimal integer estimation)
Let fa(z | a) be the PDF of the float solution & and let

apy, = argmax fa(a | a) (11)
be an integer estimator. Then
P(ayi = a) 2 P(a=a) (12)

for any arbitrary integer estimator &.

Proof: see [Teunissen, 1999)

Note that we have denoted the PDF of & for the occasion as f;(z | a) instead of as f3(z).
This has been done to explicitly show the dependence of the pdf on the true but unknown
ambiguity vector a € Z™. In this contribution we will make a limited use of this notation.
We will use the notation f;(z | @) only when it is really needed to show the dependence

on a explicitly.
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The above theorem holds true for an arbitrary pdf of the float ambiguities 4. In
most GNSS applications however, one assumes the data to be normally distributed. The
estimator @& will then be normally distributed too, with mean a € Z™ and vc-matrix Q;,
a ~ N(a,Qs). In this case the optimal estimator becomes identical to the integer least

squares estimator
= (I b 2
ars = arg min | z—allg, (13)

The above theorem therefore gives a probabilistic justification for using the ILS estimator
when the pdf is Gaussian. For GNSS ambiguity resolution it shows, that one is better off
using the ILS estimator than any other admissible integer estimator. Due to the rather
complicated geometry of the integer least- squares pull-in region, no exact and easy-to-
compute expression exists for the ILS success rate. However, there do exist sharp bounds

for this success rate.

Corollary 1 (Bounds for the ILS success rate)
Let the float solution be distributed as @ ~ N(a,@Q;). Then

n 1 Cn
o] = | =1} Pl = <P(2, <—-) 14
11(2(5-) 1) S Pas -0 < P (Xm0 < ) (4
with oy; the conditional standard deviation of the ith ambiguity conditioned on the
previous / = 1,...,4 — 1 ambiguities, ®(z) = [, 7= exp{—3v’}dv, ¢, = (3T(3))/™ /=,

ADOP = /detQ; ﬁ, and where I" denotes the gamma function and x?(n,0) the central
Chi-square distribution with n degrees of freedom.

The lower bound was introduced in [Teunissen, 1997] and proven in |7Teunissen, 1999)].
The upper bound was introduced in [Hassibi and Boyd, 1998] and proven in [ Teunissen,
2000]. Although other lower bounds exist, the above lower bound is presently the sharpest
one available, see e.g. [Thomsen, 2000] and [ Verhagen, 2003]. In [Teunissen, 1998] it has
been shown that the lower bound is the exact success rate of integer bootstrapping.  The
above bounds will be used later in this contribution for obtaining bounds for one of the

integer aperture estimators.

3 INTEGER APERTURE LEAST-SQUARES ESTIMATION
3.1 INTEGER APERTURE ESTIMATION

In this section we will extend the theory of integer (I) estimation to integer aperture (IA)
estimation. The outcome of an I estimator is always integer. It may happen, however,
that one is not willing to accept the integer outcome. This will be the case when one
is doubtful about the correctness of the integer outcome. In that case one would rather
prefer the non-integer float solution instead. The decision whether or not to make use of
the integer outcome can be made in different ways. One approach is to base the decision on
the probability of correct integer estimation, the success-rate. The decision is then made
in favor of the float solution if this probability falls below a certain user-defined threshold.
This approach can be referred to as being model-driven, since the probability of correct
integer estimation depends on the strength of the underlying mathematical model but
not on the actual outcome of the estimator. With this approach, the decision whether
or to make use of the I estimator can thus be made before the actual measurements are
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collected and processed. Next to the model-driven approach, one can also make use of a
more data-driven approach. In many GNSS ambiguity resolution procedures we already
have such data-driven approaches in place. They are referred to as the 'discernibility
tests’. They come to reject the integer outcome when it appears difficult, using the float
solution, to discern between the 'best’ and the ’second best’ integer solution. In the case
of a rejection the decision is made in favor of the float solution. As with the model-driven
approach, the rationale of the 'discernibility tests’ is that one wants to avoid the situation
of having to work with an incorrect integer solution. Since the aim of both approaches
is essentially the same, one may wonder whether or not it is possible to formulate an
overall framework in which both approaches find their natural place. This indeed turns
out to be possible. The required framework is given by the class of integer aperture (IA)
estimators as introduced in Teunissen (2003). The IA estimators are defined by dropping
one of the three conditions of Definition 1, namely the condition that the pull-in regions
should cover R™ completely. The pull-in regions of the IA estimators are therefore allowed
to have gaps, thus making it possible that theire outcomes could be equal to the float
solution as well.

In order to introduce the new class of ambiguity estimators from first principles, let
Q2 C R™ be the region of R™ for which @ is mapped to an integer if @ € Q. It seems
reasonable to ask of the region (2 that it has the property that if @ € 2 then also é+2z € (,
for all z € Z™. If this property would not hold, then float solutions could be mapped to
integers whereas their fractional parts would not. We thus require {2 to be translational
invariant with respect to an arbitrary integer vector: 2+ z = Q, for all z € Z". Knowing
Q) is however not sufficient for defining our estimator. 2 only determines whether or not
the float solution is mapped to an integer, but it does not tell us yet to which integer the
float solution is mapped. We therefore define

Q.,=0NnS;,,vze 2" (15)
where S, is a pull-in region satisfying the conditions of Definition 1. Then

(z) Uz-Qz‘—‘U;(QQSz)=Qﬂ(UzS;)=QﬂR“=Q
(2‘:‘.) 921 anz e (Qnsn) n(QnSz:;) = Qﬂ(Szl nszg) = 0; Vo, %0 € 2™ 21 # 2
(i) Qo+2=(QQNSe) +2z=(Q+2)N(Se+2) =0NS,=Q,, Vz€ Z"

This shows that the subsets 2, C S, satisfy the same conditions as those of Definition 1,
be it that R™ has now been replaced i)y 2 C R™. Hence, the mapping of the IA-estimator
can now be defined as follows. The IA-estimator maps the float solution & to the integer
vector z when @ € 2, and it maps the float solution to itself when é& ¢ 2. The class of
[A-estimators can therefore be defined as follows.

Definition 2 (Integer aperture estimators)
Integer aperture estimators are defined as

Gra=a+ Z (z — a)w,(a) (16)

2€Zn"

with w,(z) the indicator function of 2, = QN S, and  C R™ translational invariant.

Note that an IA-estimator is indeed also an IE-estimator, just like an I-estimator is.
There is also resemblance between an IA-estimator and an I-estimator. Since the indicator
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functions s,(z) of the pull-in regions S, sum up to unity, Y°.cz« s:(z) = 1, the I-estimator

(6) may be written as
d=a+ Y (z—a)s.(z) (17)
z€Z"

Comparing this expression with that of (16) shows that the difference between the two
estimators lies in their binary weights, s.(z) versus w,(z). Since the s.(z) sum up to
unity for all z € R", the outcome of an I-estimator will always be integer. This is not
true for an IA-estimator, since the binary weights w.(z) do not sum up to unity for all
z € R". The [A-estimator is therefore an hybrid estimator having as outcome either
the real-valued float solution @ or an integer solution. The IA-estimator returns the float
solution if @ & 2 and it will be equal to z when @ € 2,. Note, since 2 is the collection
of all Q, = Qy + z, that the [A-estimator is completely determined once £ is known.
Thus Qo C Sy plays the same role for the IA-estimators as Sy does for the I-estimators.
By changing the size and shape of y one changes the outcome of the IA-estimator. The
subset ) can therefore be seen as an adjustable pull-in region with two limiting cases.
The limiting case in which §2y is empty and the limiting case when Q4 equals Sp. In the
first case the [A-estimator becomes identical to the float solution @, and in the second case
the IA-estimator becomes identical to an I-estimator. The subset g therefore determines
the aperture of the pull-in region.

In order to evaluate the performance of an IA-estimator as to whether it produces
the correct integer outcome a € Z", it is helpful to classify its possible outcomes. An
[A-estimator can produce one of the following three outcomes

a€2" (correct integer)
Gra =< z€ Z"\ {a} (incorrect integer) (18)
@€ R*"\ Z® (no integer)

A correct integer outcome may be considered a success, an incorrect integer outcome a
failure, and an outcome where no correction at all is given to the float solution as inde-
terminate or undecided. The probability of success, the success-rate, equals the integral
of fa,.(z) over Q,, whereas the probability of failure, the fail-rate, equals the probability
of fa,.(z) over 2\ Q,. The respective probabilities are therefore given as

Ps = P(ars = a) o= Ja, fara(z)dz = Jo, falz)dz (success)

Pr = Yo Plata=2) = oo, fara(@)dr = T.uafo, fa(z)dz (failure)

PU = P(ﬁ;A = &) = 1- fQ fam (:r)da: = = Ps - Pp (undecided)
(19)

Note that these three probabilities are completely governed by fs(z), the PDF of the float
solution, and by 2, the aperture pull-in region which uniquely defines the IA-estimator.
Depending on the type of [A-estimator one is considering, the above integrals for com-
puting the success-rate and the fail-rate may be difficult to evaluate exactly. Whether
or not an exact evaluation is possible depends to a large extent on the complexity of the

geometry of the aperture pull-in region 2.

3.2 THE INTEGER APERTURE LEAST SQUARES—ESTIMATOR

In this section we introduce the integer aperture least-squares (IALS) estimator. It is
obtained from down-scaling the pull-in region of the integer least-squares estimator. We
therefore have the following definition.
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Figure 2: Two-dimensional integer aperture pull-in regions of the IALS estimator for
different values of A.

Definition 3 (1A least-squares estimation)
The pull-in regions of the integer aperture least-squares (IALS) estimator are defined as

QLS,;. = ASLS',, Vze Z" y UL AL€] (20)
with

ASLS,; = {I € R" I %(I — z) € SLS,O}

Sso = {zeR||z|],2lz—ul}, , YueZ"}
It is easily verified that these pull-in regions indeed satisfy the conditions of integer aper-
ture pull-in regions. Note that A acts as the aperture parameter (see Figure 2). By
changing A one changes the size of {2r s, but not its shape. The shape of Qg , will re-
main identical to that of the least-squares pull-in region Sps.. The computational steps
involved are now as follows. Using the float solution @ and its ve-matrix Q;, one first
computes the integer least-squares solution dzs. Then the aperture parameter A is used
to up-scale the least-squares residual ér5s = @ —drs to -—ez,_g ThlS up-scaled version of the
residual vector is then used to verify whether : :

Ty
u = arg min I TéLs =2 I3, (21)

equals the zero vector or not. If it equals the zero vector then G415 = @rs, otherwise
GpLs = ars.

The motivation for introducing this estimator stems from the known optimality of the
integer least-squares estimator, cf. Theorem 1, the ease with which it can be computed
using the LAMBDA method, and the fact that the shape of its aperture region is not
affected by changes in A. This latter property makes it possible to use some of the
probabilistic results which are already available for the integer least-squares estimator.
In the Gaussian case namely the aperture parameter A acts as a scale factor on the ve-
matrix. This follows from the property [y, . fa(z +a)dz = A" [5, . fa(Az + a)dz. This
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implies that if Pg, (aLs = a) denotes the success-rate of the ILS-estimator having Q;
as vc-matrix, the success-rate of the IALS-estimator is given as Ps = P}%Qa (drs = a).
Hence, when one has routines available for computing the ILS success-rate one may use
them as well for computing the success-rate of the IALS-estimator, the only difference
being that one has to replace ); by the up-scaled version f;Qa. The same holds true for
the known lower bounds and upper bounds of the ILS success-rate.

As to the fail-rate of the IALS-estimator one may use ellipsoidal regions to bound
ASrso- In this way one can obtain bounds on the fail-rate which are based on noncentral
Chi-square distributions. The following theorem gives such bounds for both the success-
rate and the fail-rate of the IALS-estimator.

Theorem 2 (Probabilistic lower bounds and upper bounds for the IALS-estimator)
Let the float solution be distributed as @ ~ N(a,Qs) and let the lower bounds and
the upper bounds of the fail-rate and success-rate of the IALS-estimator be denoted as

LF§PFSUF and LsSP_gﬁUs. Then

Lr = Tieznio PO3(n,A:) < 1p)
Up = SZEZ“\{O}P (x*(n, ;) < up)

CH o (22)
Ls = I (20 (25”) 1
Uy = ( *(n,0) < zhee
with X, = 2FQ;'2, Ip = a2 mmzez.\{g} | 2 113, ur = Mmaxees, || z |I5,, cn =

(2D(2))"/7 and ADOP = +/detQ; ".

Proof. We first prove the lower bound for the fail-rate. Define the subset
Eeo={z € Stso| | = [13,5 €}

and let ¢ be chosen such that

Eq0 C ASLso
Then
PF — ZxEZ“\{O} P(& —a e ASLS.z}
= ZZGZ"‘\{O} P(& —-—a—2€C /\SLS,O}
2 Tiezn\fo) P(@—a— 2 € Eqo}

Yzezmoy P 2& - a3 ||§9,-.S €}

Ysezmy(oy POP(ny A2) < €'}

In order to determine the value for ¢;, we make use of the two equivalent representations
of ASp, '

Il

| 7Q:'z | < 3A || 2 |3, , V2 € 2®

Iz 1%, <ll = ~
and of
EoCE., with Ely: |27Q7'z | <€ z|lq., Vz € 2"
This shows that E o C AS if ¢ is chosen as ¢ < 3) min,ezn\(o} || # |lg,- This concludes
the proof of the lower bound of Pr. The proof of the upper bound goes along similar
lines. It makes use of the fact that ASrso C E, if eu is chosen as €, > maxgexs, ||

z [lga= Amaxzes;, | 2 [|os-
The given bounds on the success-rate Ps are of a different type. They follow directly

from using the aperture parameter A as scale factor in the known bounds of the ILS
success-rate, see Corollary 1. End of proof.
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