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Introduction

This research memo should be seen as a first attempt to formulate an unified framework for the
adjustment and testing of both the functional and stochastic models. In this memo we concentrate
on the problem of estimating parts of the stochastic model. The unification is based on the method
of least-squares. Our idea, which is worked out in this memo, was to investigate weather it is
possible to use the method of least-squares adjustment also for the problem of variance component
estimation. This turns out to be the case. As a consequence, we have the possibility of applying
one estimation principle, namely our well-known and well understood method of least-squares, to
both the problem of estimating the functional model and stochastic model.

Delft, 1988

The present document is a reprint of the original 1988 MGP-report ’Towards a Least-Squares
Framework for Adjusting and Testing of both Functional and Stochastic Models’. Since the theory
developed in this report is still considered to be relevant for many modern applications, it was
decided to produce a more accessible format of the report. The original format turned out to be
poorly reproducible electronically using modern day typesetting system. For the reprint we have
chosen to use the popular LATEXtypesetting system. I am greatful to AliReza Amiri-Simkooei who
took the painstaking task upon him to transform the original document into a LATEXversion. This
work is greatly acknowledged. To keep the flavor of the original report in tact (including its flaws),
the current document is a complete one-to-one reprint of the original version. The current document
is thus the LATEXreprint of the original report.

Delft, 2004

1



Chapter 1

The Model: y ∼ N (Ax,Qy)

1.1 Linear Unbiased Estimators (LUE’s)

Consider the linear model of observation equations:

E{y} = Ax, Qy (1.1)

where A is assumed to have full rank and the covariance matrix of y is assumed to be positive
definite. Any linear unbiased estimator of x can then be expressed as

x̂ = (L∗A)−1L∗y, (1.2)

where the m×n matrix L is arbitrary provided that (L∗A)−1 exists. The property of unbiasedness
is easily verified with (1.1) and (1.2):

E{x̂} = (L∗A)−1L∗E{y} = (L∗A)−1L∗Ax = x (1.3)

The covariance matrix of x̂, Qx̂, follows from applying the error propagation law to (1.2):

Qx̂ = (L∗A)−1L∗QyL(A∗L)−1 (1.4)

The results (1.3) and (1.4) are independent of the distribution of y. Since the estimator x̂ of (1.2)
is a linear estimator, it follows that if y is normally distributed then so is x̂. In this case, the
distribution of x̂ is completely specified by its first two moments, i.e., x and Qx̂.

1.2 Least-Squares Estimators (BLUE’s)

Consider again model (1.1). The least squares (LSQ) estimator of x reads then:

x̂ = (A∗Q−1
y A)−1A∗Q−1

y y, (1.5)

Comparison of (1.2) with (1.5) shows that the least-squares estimator is a linear unbiased estimator.
The corresponding choice for L is:

L = Q−1
y A (1.6)

substitution of (1.6) into (1.4) shows that the covariance matrix of the least-squares estimator reads

Qx̂ = (A∗Q−1
y A)−1 (1.7)

It can be shown that of all linear unbiased estimators, the LSQ-estimator has minimum variance. It
is therefore a minimum variance linear unbiased estimator, also known in the literatures as BLUE
(Best Linear Unbiased Estimator). This property of minimum variance is also independent of the
distribution of y.
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Chapter 2

The Model: y ∼ N (Ax,
∑p

α=1 σ2
αQα)

2.1 Least-Squares Estimation of σ2
α , α = 1, 2, · · · , p

Consider the linear model of observation equations:

E{ y
︸︷︷︸

m×1

} = A
︸︷︷︸

m×n

x
︸︷︷︸

n×1

, E{(y − Ax)(y − Ax)∗
︸ ︷︷ ︸

m×m

} =

p
∑

α=1

σ2
α Qα

︸︷︷︸

m×m

(2.1)

where A is assumed to have full rank and the matrices Qα are assumed to be non-negative definite
such that the sum

∑p
α=1 σ2

αQα is non-negative definite. Note that in this case, we have two sets
of unknowns: the parameter vector x and the variance components σ2

α, α = 1, 2, . . . , p. The idea
of our least-squares approach to variance-component estimation is now to interpret the matrix
equation of (2.1), which represents the covariance matrix of y, as a set of m2-number of observation
equations. Thus, just like we interpret the functional model E{y} = Ax as a set of m-number
of observation equations with the observation vector y, we are going to interpret the stochastic

model E{(y − Ax)(y − Ax)∗} =
∑p

α=1 σ2
αQα as a set of m2-number of observation equations

with the observation matrix (y − Ax)(y − Ax)∗. There is however one complication: the matrix
(y − Ax)(y − Ax)∗ is not observable since the vector x is unknown a-priori. This problem can
however be circumvented by transforming model (2.1) into a model of condition equations. In
terms of condition equations, model (2.1) reads

B∗E{y} = 0, E{B∗yy∗B} =

p
∑

α=1

σ2
αB∗QαB (2.2)

where matrix B satisfies

B∗A = 0, with rank(B) = b (2.3)

Note that the unknown parameter vector x has now been eliminated from the model. If we define
the vector of misclosures, t, as

B∗y = t, (2.4)

We can write (2.2) more compactly as

E{t} = 0, E{ttT } =

p
∑

α=1

σ2
αB∗QαB (2.5)

Note that there is no adjustment needed for the first part, i.e., the functional part, of model (2.5).
There is no redundancy and there are no unknowns. We may therefore concentrate on the second
part, i.e., the stochastic part. The matrix equation of (2.5) can be recast into a set of b2-number
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of observation equations by stacking the b-number of b × 1 column vectors of E{ttT } into a b2 × 1
observation vector. This results in the linear model of observation equations:

E{








t1t
t2t
...

tbt








︸ ︷︷ ︸

b2×1

} =








(B∗Q1B)01 · · · (B∗QpB)01
(B∗Q1B)02 · · · (B∗QpB)02

...
. . .

...
(B∗Q1B)0b · · · (B∗QpB)0b








︸ ︷︷ ︸

b2×p








σ2
1

σ2
2
...

σ2
p








︸ ︷︷ ︸

p×1

(2.6)

The notation (B∗QαB)01, (B∗QαB)02, etc indicates the first, the second, etc column vector of the
matrix B∗QαB. If we denote the operator which transforms a matrix into a vector by vec, i.e.,

vec








x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xn1 xn2 · · · xnn








=
[

x11 · · · xn1 x12 · · · xn2 · · · x1n · · · xnn

]∗
(2.7)

Equation (2.6) can be written more compactly as

E{vec(tt∗)} =
[

vec(B∗Q1B) vec(B∗Q2B) · · · vec(B∗QpB)
]








σ2
1

σ2
2
...

σ2
p








(2.8)

Having established this results, we can now apply the estimation methods of Section I.1 and I.2.
That is, we can now compute linear unbiased estimators of the variance components and also, if
the covariance matrix of vec(tt∗) is known, the least squares estimators (BLUE’s) of the variance
components. If we denote the covariance matrix of vec(tt∗) by Qvec, the least-squares estimators
of the variance components read:








σ̂2
1

σ̂2
2
...

σ̂2
p








=








n11 · · · n1p

n21 · · · n2p

...
. . .

...
np1 · · · npp








−1 






vec (B∗Q1B)∗Q−1
vecvec(tt∗)

vec (B∗Q2B)∗Q−1
vecvec(tt∗)

...
vec (B∗QpB)∗Q−1

vecvec(tt∗)








(2.9)

where

nkl = vec(B∗QkB)∗Q−1
vecvec(B∗QlB), k, l = 1, 2, · · · , p (2.10)

The above given least squares approach to variance component estimation has a number of attractive
features:

1. Since the approach is based on the least squares principle, we know without any additional
derivation that the estimators of (2.9) are unbiased and of minimum variance. These prop-
erties are independent of the distribution of vec(tt∗). Note by the way that if t is normally
distributed then vec(tt∗) is certainly not normally distributed.

2. Since the approach is based on the least squares principle, the inverse of the normal matrix
in (2.9) automatically gives us the covariance matrix of the variance components.

3. Since the approach is based on the least squares principle, parts of standard software can be
used for computing the variance components.

4. Since the approach is based on the least squares principle, parts of our standard quality control
theory (unfortunately only a few parts) can be applied to model (2.8) and the result (2.9).

5. The linear model of observation equations (2.8) makes it in principle rather straightforward
to apply estimation methods other than least squares. One could in particular think of robust
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estimation methods. This may turn out to be an important alternative if one wants to be
guarded against misspecifications in the functional part of model (2.8).

In order to insure non negative variance components, one can also incorporate non-negativity
constraints σ2

α ≥ 0, α = 1, 2, · · · , p in the model (2.8).

6. Finally, the least squares approach to variance component estimation is also attractive from
a didactic point of view.

2.2 The Covariance Matrix of vec(tt∗)

In order to be able to compute the LSQ-estimators of the variance components in (2.9), we need
to know the b2 × b2 covariance matrix of vec(tt∗), Qvec. In fact we need its inverse, Q−1

vec. In (2.9)
we silently assumed that this inverse exist. It is however not difficult to show that the covariance
matrix Qvec is singular! Recall that

vec(tt∗) =








t1t
t2t
...

tbt








(2.11)

Now define a b2 × 1 vector as:

a =








a1

a2

...
ab








(2.12)

where ai, i = 1, 2, · · · , b are vectors of order b × 1. Taking the inner product of (2.11) and (2.12)
gives

a∗vec(tt∗) =

b∑

i=1

tia
∗
i t =

[
t1 · · · tb

]






a∗
1t
...

a∗
bt




 = t∗






a∗
1
...

a∗
b




 t (2.13)

If we define

A =






a∗
1
...

a∗
b




 (2.14)

we have

a∗vec(tt∗) = t∗At (2.15)

It will be clear that the covariance matrix of vec(tt∗) is singular, if vector a exist such that a∗vec(tt∗)
is zero. From (2.15) follows that such vectors indeed exist. For instance, if we take the b× b matrix
A to be skew-symmetric, i.e., A∗ = −A, then

t∗At = (t∗At)∗ = t∗A∗t = −t∗At (2.16)

and thus 1

a∗vec(tt∗) = 0. (2.17)

It seems that the singularity of Qvec makes things drastically more complicated. We will return to
this matter in the next subsection. Let us however first derive the covariance matrix of vec(tt∗).
The elements of the covariance matrix Qvec are by definition given as

Qi j k l
vec = E{(titj − E{titj})(tktl − E{tktl})}, i, j, k, l = 1, 2, · · · , b (2.18)

1Note that this property is independent of the distribution of t
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If we factor the right hand side we get

Qi j k l
vec = E{titjtktl} − E{titj}E{tktl}, i, j, k, l = 1, 2, · · · , b (2.19)

This result shows that we need the second and the fourth multivariate central moments of the
random vector t. If we assume that t is normally distributed with mean zero and covariance matrix
Qt, the first four multivariate central moments read

E{ti} = 0

E{titj} = qij

E{titjtk} = 0 (2.20)

E{titjtktl} = qijqkl + qikqjl + qjkqil

i, j, k, l = 1, 2, · · · , b

where qij represents Qt in index notation. For a proof of (2.20) we refer to Appendix A. With
(2.20), equation (2.19) can be written as

Qijkl
vec = qikqjl + qjkqil (2.21)

From this results follows that the b2 × b2 covariance matrix Qvec is composed of b2-number b × b
submatrices, i.e., as

Qvec =








Q1.1. Q1.2. · · · Q1.b.

Q2.1. Q2.2. · · · Q2.b.

...
... Qi.k.

...
Qb.1. Qb.2. · · · Qb.b.








(2.22)

where the b × b submatrix Qi.k. is of the form

Qi.k. = e∗i QtekQt + Qteke∗i Qt (2.23)

with e∗i = (0 · · · 0 1 0 · · · 0).

2.3 The Singularity of Qvec and Its Consequences

The covariance matrix Qvec is singular if non-zero b2 × 1 vectors x exist such that

Qvecx = 0 (2.24)

If we partition x as

x =








x1

x2

...
xb








(2.25)

where xk, k = 1, 2, · · · , b are b × 1 vectors, we have with (2.23) that

b∑

k=1

Qi.k.xk =

b∑

k=1

[e∗i QtekQt + Qteke∗i Qt]xk (2.26)

This can also be written as

b∑

k=1

Qi.k.xk =
(

Qtx1 Qtx2 · · · Qtxb

)








e∗i Qte1

e∗i Qte2

...
e∗i Qteb








+

b∑

k=1

Qtek(e∗i Qtxk) (2.27)
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or as

b∑

k=1

Qi.k.xk = Qt

(
x1 x2 · · · xb

)








e∗1Qtei

e∗2Qtei

...
e∗bQtei








+ Qt

(
e1 e2 · · · eb

)








x∗
1Qtei

x∗
2Qtei

...
x∗

bQtei








(2.28)

or as

b∑

k=1

Qi.k.xk = Qt

(
x1 x2 · · · xb

)








e∗1
e∗2
...
e∗b








Qtei + Qt

(
e1 e2 · · · eb

)








x∗
1

x∗
2
...

x∗
b








Qtei (2.29)

or with

X =
(

x1 x2 · · · xb

)
and I =

(
e1 e2 · · · eb

)
(2.30)

as

b∑

k=1

Qi.k.xk = QtXQtei + QtX
∗Qte

∗
i (2.31)

or finally as

b∑

k=1

Qi.k.xk = Qt(X + X∗)Qtei, i = 1, 2, . . . , b (2.32)

This result shows that the vectors x = vec(X) which satisfy (2.24), are those vectors for which
the matrix X is skew-symmetric. These vectors therefore span the nullspace of the matrix Qvec.
Now that we know the nullspace of the matrix Qvec, we can again start from model (2.8) to derive
the least squares estimators. The fact that linear functions of the observations have zero variance,
implies in general that the original linear model with singular covariance matrix can be reduced
to a linear model with constraints and a non-singular covariance matrix. To see this, consider the
linear model

E{y} = Ax, Qy (2.33)

If

Tm×m =

(
T1

T2

)

with T1T
∗
2 = 0 (2.34)

is a square and regular transformation matrix, then model (2.33) is equivalent to

E{
[

T1y
T2y

]

} =

[
T1A
T2A

]

x,

[
T1QyT

∗
1 T1QyT ∗

2

T2QyT
∗
1 T2QyT ∗

2

]

(2.35)

If we assume that the row vectors of the matrix T2 span the nullspace of Qy, i.e., QyT ∗
2 = 0, then

(2.35) reduces to

E{
[

T1y
T2y

]

} =

[
T1A
T2A

]

x,

[
T1QyT

∗
1 0

0 0

]

(2.36)

And this model is indeed of the form of observation equations with constraints on the unknown
parameter vector x. It thus seems that for our variance-component estimation problem we are
dealing with a model of the form of (2.36). A closer look at our problem shows however that this
is only part of the story! Let us go back to the b2 × 1 vector x that span the nullspace of the
covariance matrix Qvec. We know from (2.32) that these vectors are characterized by

Qvecvec(X) = 0 with X∗ = −X (2.37)

7



These vectors are in the formulation of (2.36) the row vectors of the matrix T2. In (2.36) we
need to compute the matrix T2A. For our variance-component estimation model (2.8) this means
that we need to compute the inner products of vec(X) with vec(B∗QαB), α = 1, 2, . . . , p. Thus
vec(X)∗vec(B∗QαB), α = 1, 2, . . . , p. Since

vec(X)∗vec(B∗QαB) =

b∑

i=1

x∗
i (B

∗QαB)0i (2.38)

it follows that

vec(X)∗vec(B∗QαB) = trace(X∗B∗QαB) (2.39)

Using the following two properties of the trace operator,

trace(AB) = trace(BA), and trace(A) = trace(A∗), (2.40)

it follows that

trace(X∗B∗QαB) = trace(B∗QαBX∗) = trace[(B∗QαBX∗)∗]

= trace(XB∗QαB) = −trace(X∗B∗QαB). (2.41)

Hence, with (2.39) we find that

vec(X)∗vec(B∗QαB) = 0, if X∗ = −X (2.42)

This is an important results, because it implies in the formulation of (2.36) that T2A = 0. With
T2A = 0, model (2.36) reduces to

E{T1y} = T1Ax, T1QyT
∗
1 (2.43)

which is considerably simpler to solve than model (2.36). In our variance-component estimation
problem we are thus in fact dealing with a model of the form (2.43). The least-squares estimator
of x in model (2.43) reads:

x̂ = [A∗T ∗
1 (T1QyT

∗
1 )−1T1A]−1A∗T ∗

1 (T1QyT
∗
1 )−1T1y (2.44)

In our variance-component estimation problem matrix Qvec takes the place of Qy of (2.44) and the
rows of the matrix T2 are given by a linear independent set of vectors vec(X) for which X∗ = −X .
Since we assumed that T1T

∗
2 = 0, the rows of matrix T1 are given by a linear independent set of

vectors vec(S) for which S = S∗. This follows from the fact that vec(S)∗vec(X) = 0 if S = S∗

and X∗ = −X (Confer also (2.42). Since the subspace spanned by the vectors vec(X) for which
X∗ = −X has dimension b(b − 1)/2 if X is of order b × b, it follows that the dimension of the
subspace spanned by the vectors vec(S) for which S = S∗ is given by b(b + 1)/2 if S is of order
b × b. Thus, in our variance-component estimation problem the matrix T1 of (2.44) is of order
b(b + 1)/2 × b2. The matrix to be inverted, T1QyT

∗
1 , is therefore of order b(b + 1)/2 × b(b + 1)/2.

We will now show how, without explicitly inverting the matrix T1QyT ∗
1 , the matrix A∗T ∗

1

(T1QyT
∗
1 )−1T1A and the vector A∗T ∗

1 (T1QyT ∗
1 )−1T1y of (2.44) can be computed. Consider the

system of linear equations:

Qyu = v (2.45)

We will assume that the system is consistent, i.e., that

v ∈ R(Qy) = range- or column-space of Qy (2.46)

If we reparameterize u as

u = T ∗
1 α + T ∗

2 β, (2.47)

and substitute into (2.45) we get

QyT ∗
1 α = v, (2.48)
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since QyT ∗
2 = 0. Premultiplying (2.48) with T1 and inverting the results gives

α = (T1QyT ∗
1 )−1T1v (2.49)

Substitution into (2.47) gives then

u = T ∗
1 (T1QyT

∗
1 )−1T1v + T ∗

2 β (2.50)

This is the general solution of the consistent system (2.45). The first part on the right hand side
of (2.50) represents a particular solution of (2.45) and the second part represents the homogeneous

solution, i.e., the solution of Qyu = 0. When we premultiply (2.50) with A∗, the homogeneous part
disappears since A∗T ∗

2 = 0 and we get

A∗u = A∗T ∗
1 (T1QyT

∗
1 )−1T1v (2.51)

From this result we can conclude that any particular solution (2.45) when premultiplied with A∗,
equals the righthand side of (2.51). This implies that if we are allowed to take v as one of the column
vectors of A, say the ith column vector, then the ith column vector of A∗T ∗

1 (T1QyT
∗
1 )−1T1A is ob-

tained from premultiplying an arbitrary particular solution of (2.45) with v = Aei by A∗. Similarly,
if we are allowed to take v equal to y, then A∗T ∗

1 (T1QyT
∗
1 )−1T1y is obtained from premultiplying

an arbitrary particular solution of (2.45) with v = y by A∗. What remains to be shown is therefore
whether R(A) ⊂ R(Qy) and y ∈ R(Qy). We will first proof R(A) ⊂ R(Qy). If v ∈ R(A) then v
can be written as v = Aλ for some λ. Since T2A = 0 it follows that T2v = 0. Since T is square and
regular, and T1T

∗
2 = 0 it follows that v = T ∗

1 δ for some δ. In order to continue our proof we first
proof that

Qy = T ∗
1 (T1T

∗
1 )−1T1QyT

∗
1 (T1T

∗
1 )−1T1 (2.52)

clearly

Qy = T ∗T−∗QyT−1T (2.53)

with

T−1 =

[
(T1T

∗
1 )−1T1

(T2T
∗
2 )−1T2

]∗

(2.54)

this gives

Qy = T ∗

[
(T1T

∗
1 )−1T1QyT ∗

1 (T1T
∗
1 )−1 0

0 0

]

T (2.55)

Since QyT ∗
2 = 0, from (2.55) equation (2.52) follows. We now know that if v ∈ R(A) then v = T ∗

1 δ
for some δ. But with (2.52) this implies that v ∈ R(Qy). We have therefore shown that indeed
R(A) ⊂ R(Qy). The proof that y ∈ R(Qy) goes along the same line. We know from (2.43) that
T2y = 0 = constant. Therefore y = T ∗

1 δ for some δ. And again with (2.52) this implies that
y ∈ R(Qy).

We are now ready to apply the above to our problem of variance-component estimation. That
is, in analogy with (2.45) we consider the consistent system

Qvecvec(U) = vec(V ) (2.56)

where V is chosen as (see (2.8))

V = B∗QαB, α = 1, 2, . . . , p and V = tt∗ (2.57)

According to (2.32) we can write Qvecvec(Uα) = vec(B∗QαB) as

Qt(Uα + U∗
α)Qtei = B∗QαBei, i = 1, 2, . . . , b (2.58)

or as

Qt(Uα + U∗
α)Qt = B∗QαB (2.59)
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or as

Uα + U∗
α = Q−1

t B∗QαBQ−1
t (2.60)

From our previous discussion we know that any particular solution may be taken. One such par-
ticular solution is

Uα =
1

2
Q−1

t B∗QαBQ−1
t (2.61)

The (β, α)-element of the normal matrix of our LSQ-solution of the variance-component estimation
problem reads therefore

vec(B∗QβB)∗vec(Uα) =
1

2
vec(B∗QβB)∗vec(Q−1

t B∗QαBQ−1
t ) (2.62)

If we denote this element as nβα we have

nβα =
1

2
vec(B∗QβB)∗vec(Q−1

t B∗QαBQ−1
t )

=
1

2
trace(B∗QβBQ−1

t B∗QαBQ−1
t ) (2.63)

In a similar way as above we can write Qvecvec(U) = vec(tt∗) with the help of (2.32) as

U + U∗ = Q−1
t tt∗Q−1

t (2.64)

One particular solution is

U =
1

2
Q−1

t tt∗Q−1
t (2.65)

Therefore

vec(B∗QβB)∗vec(U) =
1

2
vec(B∗QβB)∗vec(Q−1

t tt∗Q−1
t ) (2.66)

If we denote this element as lβ we have

lβ =
1

2
vec(B∗QβB)∗vec(Q−1

t tt∗Q−1
t )

=
1

2
trace(B∗QβBQ−1

t tt∗BQ−1
t )

=
1

2
trace(t∗Q−1

t B∗QβBQ−1
t t) (2.67)

=
1

2
t∗Q−1

t B∗QβBQ−1
t t

With (2.63) and (2.68) we are now able to compute the least-squares solution of the linear model
(2.8) as:








σ̂2
1

σ̂2
2
...

σ̂2
p








=








n11 · · · n1p

n21 · · · n2p

...
. . .

...
np1 · · · npp








−1 






1
2 t∗Q−1

t B∗Q1BQ−1
t t

1
2 t∗Q−1

t B∗Q2BQ−1
t t

...
1
2 t∗Q−1

t B∗QpBQ−1
t t








(2.68)

with

nkl =
1

2
trace(B∗QkBQ−1

t B∗QlBQ−1
t ) (2.69)

This solution thus replaces (2.9) where it was assumed that Qvec was invertible. Note that while
we took care of the singularity of Qvec, we also reduced the order of the matrices which need to
be inverted. In (2.9) we had to invert an b2 × b2 matrix Qvec, while in (2.68) we have to invert
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the b × b matrix Qt. It should also be noted that, since we assumed t to be normally distributed
when deriving the covariance matrix Qvec, the BLUE’s property of (2.68) is restricted to the class
of normal distributions. The LUE’s property of course still holds in general. Finally we note that
while the inverse of the normal matrix gives the covariance matrix of the variance-components, the
normal matrix itself is the covariance matrix of the p × 1 vector on the right hand side of (2.68).

Solution (2.68) can be used directly if the matrix B is available. In practice however one will
usually have the design matrix A available, instead of B. We shall therefore have to rewrite (2.68)
in terms of A. From (2.63) follows that

nβα =
1

2
trace(B∗QβBQ−1

t B∗QαBQ−1
t ) =

1

2
trace(QβBQ−1

t B∗QαBQ−1
t B∗) (2.70)

with

QyBQ−1
t B∗ = I − A(A∗Q−1

y A)−1A∗Q−1
y = P⊥

A (2.71)

follows therefore

nβα =
1

2
trace(QβQ−1

y P⊥
A QαQ−1

y P⊥
A ) (2.72)

Similarly, it follows with

ê = QyBQ−1
t B∗y = QyBQ−1

t t = P⊥
A y (2.73)

from (2.68) that

lβ =
1

2
ê∗Q−1

y QβQ−1
y ê =

1

2
y∗P⊥

A Q−1
y QβQ−1

y P⊥
A y (2.74)

As we mentioned earlier, (2.72) is the covariance matrix of (2.74). With (2.72) and (2.74), solution
(2.68) can also be written as








σ̂2
1

σ̂2
2
...

σ̂2
p








=








n11 · · · n1p

n21 · · · n2p

...
. . .

...
np1 · · · npp








−1 






1
2 ê∗Q−1

y Q1Q
−1
y ê

1
2 ê∗Q−1

y Q2Q
−1
y ê

...
1
2 ê∗Q−1

y QpQ
−1
y ê








(2.75)

with

nβα =
1

2
trace(QβQ−1

y P⊥
A QαQ−1

y P⊥
A ) (2.76)

Let us as a simple application of (2.75), assume that there is only one variance component, i.e.,
p = 1. From (2.75) follows then

σ̂2 =
1
2 ê∗Q−1

y Q1Q
−1
y ê

1
2 trace(Q1Q

−1
y P⊥

A Q1Q
−1
y P⊥

A )
(2.77)

with

E{σ̂2
1} = σ2

1 and σ2
σ̂2

1

=
2

trace(Q1Q
−1
y P⊥

A Q1Q
−1
y P⊥

A )
(2.78)

with Qy = σ2
1Q1, P⊥

A P⊥
A = P⊥

A , and trace(P⊥
A ) = rank(P⊥

A ) = m − n, the above simplifies to:

σ̂2
1 =

ê∗Q−1
1 ê

m − n
, E{σ̂2

1} = σ2
1 and σ2

σ̂2

1

=
2σ4

1

m − n
(2.79)

These are the well-known results for the estimator of the variance factor of unit weight. Our least-
squares approach implies that the above estimator is optimal in the sense that it is unbiased and
has minimum variance! With our least-squares approach we now also have a unified framework in
which the well-known estimator of the variance-factor of unit weight finds its logical place. That
is, contrary to most lecture notes, we now do not have to introduce the estimator of the variance
factor of unit weight in an ad hoc way!
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2.4 Estimation of the Covariance Matrix from Repeated Mea-
surements

In our least-squares approach we so far considered only the estimation of the variance-components
σ2

α of Qy =
∑p

α=1 σ2
αQα. The whole procedure applies however equally well to the estimation

of covariance components. In fact, the least squares approach can also be used to estimate the
covariance matrix from repeated measurements.

From our formulae (2.68) and (2.75) we see that we need Qy =
∑p

α=1 σ2
αQα in order to compute

the estimators σ̂2
α. But the components σ2

α of
∑p

α=1 σ2
αQα are unknown a-priori! One way out

of this dilemma is to perform iterations. One starts with an initial guess for the σ2
α. Using these

values, one computes with either (2.68) or (2.75) estimates for the σ2
α, which in the next cycle

are considered the improved initial guess for σ2
α. And so on. The estimators obtained in each

cycle are unbiased estimators of the σ2
α. However, they are not of minimum variance, not even

after convergence of the iterations. Convergence is achieved if the initial guess for σ2
α equals the

computed estimate σ̂2
α. But since the computed estimate σ̂2

α is not necessarily equal to σ2
α, the

property of minimum variance may not necessarily be achieved. Hence, in practice one usually will
have to be satisfied with almost minimum variance unbiased estimators. It will be clear that the
amount in which the computed estimates lack the property of minimum variance, depends on the
initial guess and the number of iterations performed. The above discussion presupposes that the
variance components σ2

α are needed in order to compute the estimators σ̂2
α. Indeed, formulae (2.68)

or (2.75) tell us that we need Qy =
∑p

α=1 σ2
αQα and thus σ2

α. There are however special cases
where the σ2

α are not needed a-priori! One such case we already met when discussing the estimator
for the variance-factor of unit weight. Another important case where this holds true occurs when
one wants to estimate the covariance matrix from repeated measurements.

consider the following model:

E{y
i
}

︸ ︷︷ ︸

m×1

= A
︸︷︷︸

m×n

xi
︸︷︷︸

n×1

, E{(y
i
− E{y

i
})(y

j
− E{y

j
})∗}

︸ ︷︷ ︸

m×m

= σijIm, i, j = 1, 2, . . . , r (2.80)

Written out in full, this model reads

E{y}
︸ ︷︷ ︸

mr×1

= E{








y
1

y
2

...
y

r







} =








A
A

. . .

A








︸ ︷︷ ︸

mr×nr








x1

x2

...
xr








︸ ︷︷ ︸

nr×1

, Qy =








σ2
1I σ12I · · · σ1rI

σ12I σ2
2I · · · σ2rI

...
...

. . .
...

σ1rI σ2rI · · · σ2
rI








︸ ︷︷ ︸

mr×mr

(2.81)

The unknowns in this model are the nr × 1-number of elements of the vector x

x =








x1

x2

...
xr








︸ ︷︷ ︸

nr×1

(2.82)

and the r(r + 1)/2 number of elements σ2
i and σij of the symmetric matrix

Q =








σ2
1 σ12 · · · σ1r

σ12 σ2
2 · · · σ2r

...
...

. . .
...

σ1r σ2r · · · σ2
r








︸ ︷︷ ︸

r×r

(2.83)

Using the Kronecker product ⊗, we can write (2.81) with (2.82) and (2.83) as

E{y}
︸ ︷︷ ︸

mr×1

= (I ⊗ A)
︸ ︷︷ ︸

mr×nr

x
︸︷︷︸

nr×1

, Qy = Q ⊗ I
︸ ︷︷ ︸

mr×mr

(2.84)
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We shall now apply (2.75) to model (2.84) in order to find unbiased and minimum variance estima-
tors for the elements of the matrix Q of (2.83). With appropriate matrices Qα, matrix Q can be
written as

Q =

r(r+1)/2
∑

α=1

σ2
αQα (2.85)

where σ2
α is respectively σ2

1 , σ12, σ13, . . . , σ2
r . Equation (2.74) reads then for the model (2.84)

lβ =
1

2
y∗P⊥∗

I⊗A.Q−1 ⊗ I.Qβ ⊗ I.Q−1 ⊗ I.P⊥
I⊗Ay (2.86)

with

P⊥
I⊗A = I ⊗ I − PI⊗A

= I ⊗ I − I ⊗ A[I ⊗ A∗.Q−1 ⊗ I.I ⊗ A]−1I ⊗ A∗.Q−1 ⊗ I (2.87)

= I ⊗ [I − A(A∗A)−1A∗] = I ⊗ P⊥
A

and

y =
r∑

i=1

ei ⊗ y
i
, with ei[r×1] = (0 · · · 0 1 0 · · · 0)∗ (2.88)

this gives

lβ =
1

2

r∑

i=1

e∗i ⊗ y∗

i
.I ⊗ P⊥∗

A .Q−1 ⊗ I.Qβ ⊗ I.Q−1 ⊗ I.I ⊗ P⊥
A .

r∑

j=1

ej ⊗ y
j

(2.89)

or

lβ =
1

2

r∑

i=1

e∗i ⊗ y∗

i
.Q−1QβQ−1 ⊗ P⊥

A .

r∑

j=1

ej ⊗ y
j

(2.90)

or

lβ =
1

2

r∑

i=1

r∑

j=1

e∗i Q
−1QβQ−1ej y∗

i
P⊥

A y
j
. (2.91)

Because of the symmetry of the matrices Q−1QβQ−1 this result can also be written as

lβ =
1

2

r∑

i=1

(e∗i Q
−1QβQ−1ei y∗

i
P⊥

A y
i
) +

1

2
.2.

r∑

i=1

r∑

j=i+1

(e∗i Q
−1QβQ−1ej y∗

i
P⊥

A y
j
) (2.92)

Let us now turn our attention to equation (2.72). This equation reads, for our model (2.84):

Nβα =
1

2
trace(Qβ ⊗ I.Q−1 ⊗ I.I ⊗ P⊥

A .Qα ⊗ I.Q−1 ⊗ I.I ⊗ P⊥
A ) (2.93)

or

Nβα =
1

2
trace(QβQ−1QαQ−1 ⊗ P⊥

A ) (2.94)

or

Nβα =
1

2
trace(QβQ−1QαQ−1)trace(P⊥

A ) (2.95)

or

Nβα =
1

2
(m − n)trace(QβQ−1QαQ−1) (2.96)
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since trace(P⊥
A ) = rank(P⊥

A ) = m − n. Since the matrices Qα, α = 1, 2, . . . , r(r + 1)/2, of (2.85)
are of the form

Qα =







eie
∗
j for σ2

α := σ2
i i = j

eie
∗
j + eje

∗
i for σ2

α := σij i 6= j
(2.97)

We may write, with the help of (2.96):

r(r+1)/2
∑

α=1

Nβασ̂2
α =

1

2
(m − n)

r∑

i=1

trace(QβQ−1eie
∗
i Q

−1)σ̂2
i

+
1

2
(m − n)

r∑

i=1

r∑

j=i+1

trace(QβQ−1(eie
∗
j + eje

∗
i )Q

−1)σ̂ij (2.98)

This can also be written as:

r(r+1)/2
∑

α=1

Nβασ̂2
α =

1

2
(m − n){

r∑

i=1

(e∗i Q
−1QβQ−1ei σ̂2

i )

+ 2

r∑

i=1

r∑

j=i+1

(e∗i Q
−1QβQ−1ej σ̂ij)} (2.99)

Since
∑r(r+1)/2

α=1 Nβασ̂2
α = lβ , it follows from (2.92) and (2.99) that the unbiased and minimum

variance estimators of the elements σij of the matrix Q of (2.83) are given by:

σ̂ij =
y∗

i
P⊥

A y
j

m − n
, and σ̂2

i =
y∗

i
P⊥

A y
i

m − n
(2.100)

Note that we need not know Q in order to compute these estimates! If we denote ŷ
i
= PAy

i
, then

(2.100) can be written as

σ̂ij =
1

m − n

m∑

k=1

(y
ki
− ŷ

ki
)(y

kj
− ŷ

kj
). (2.101)

From this follows that the covariance matrix Q is estimated as

Q
︸︷︷︸

r×r

=
1

m − n

m∑

k=1








y
k1

− ŷ
k1

y
k2

− ŷ
k2

...
y

kr
− ŷ

kr















y
k1

− ŷ
k1

y
k2

− ŷ
k2

...
y

kr
− ŷ

kr








∗

(2.102)

If we define the matrices Y = [y
1
y
2

. . . y
i

. . . y
r
] and Ŷ = [ŷ

1
ŷ
2

. . . ŷ
i

. . . ŷ
r
] then (2.102) can

alternatively be written as

Q
︸︷︷︸

r×r

=
1

m − n
(Y − Ŷ )∗
︸ ︷︷ ︸

r×m

(Y − Ŷ )
︸ ︷︷ ︸

m×r

(2.103)

In order to exemplify the theory, we consider two examples:

2.4.1 Example 1

We want to estimate the variance σ2 of a distomat by measuring an unknown distance x an m-
number of times. We assume that the observations are normally distributed. Model (2.81) reads
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then for our case:

E{y} = E{








y
1

y
2
...

y
m







} =








1
1
...
1








x, Qy = σ2Im (2.104)

Thus r = 1, n = 1 and A = [1 1 . . . 1]∗. Hence, PAy is

ŷ = PAy =








1
1
...
1








1

m

m∑

i=1

y
i
=








1
1
...
1








y (2.105)

With (2.102) the result reads then

σ̂2 =
1

m − 1

m∑

k=1

(y
k
− y)2, E{σ̂2} = σ2, σ2

σ̂2 =
2σ4

m − 1
(2.106)

Note that this result can also be obtained from (2.79), the estimator of the variance factor of unit
weight.

2.4.2 Example 2

We want to estimate the 2 × 2 variance-covariance matrix of a digitizer by measuring the coordi-
nates of an unknown point an m-number of times. We assume that the observations are normally
distributed. Model (2.81) reads then for our case

E{y} = E{
[

y
1

y
2

]

} = E{













y
11
...

y
m1

y
12
...

y
m2













} =













1 0
...

...
1 0
0 1
...

...
0 1













[
x1

x2

]

, Qy =

[
σ2

1Im σ12Im

σ12Im σ2
2Im

]

(2.107)

Thus r = 2, n = 1 and A =
[

1 · · · 1
]∗

. Hence, PAy
i
is

PAy
i
=






1
...
1






1

m

m∑

l=1

y
li

= y
i
, i = 1, 2 (2.108)

With (2.102) the results read then

[
σ̂2

1 σ̂12

σ̂12 σ̂2
2

]

=
1

m − 1

m∑

k=1

[
y

k1
− y

1
y

k2
− y

2

] [
y

k1
− y

1
y

k2
− y

2

]∗

(2.109)

The corresponding covariance matrix is given by

D{





σ̂2
1

σ̂12

σ̂2
2



} =
2

m − 1
(σ2

1σ2
2 − σ2

12)
2





σ4
2 −2σ2

2σ12 σ2
12

2(σ2
1σ2

2 + σ2
12) −2σ2

1σ12

σ4
1





−1

(2.110)

In case σ1 = σ2 = σ and σ12 = 0, it follows:

D{





σ̂2
1

σ̂12

σ̂2
2



} =
2σ4

m − 1





1 0 0
0 0.5 0
0 0 1



 (2.111)
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Chapter 3

On the Distribution of Variance
Components

3.1 Quadratic Forms in Normal Variables

If we denote the inverse of the normal matrix in (2.68) as N−1
βα , it follows that the least-squares

estimator of σ2
β is given as

σ̂2
β =

1

2

p
∑

α=1

N−1
βα t∗Q−1

t B∗QαBQ−1
t t (3.1)

or as

σ̂2
β = t∗(Q−1

t B∗ 1

2

p
∑

α=1

N−1
βα QαBQ−1

t )t (3.2)

Hence, each least-squares estimator of a variance-component can be written as a quadratic form in
the normal vector t:

σ̂2
β = t∗Aβt (3.3)

with

Aβ = Q−1
t B∗ 1

2

p
∑

α=1

N−1
βα QαBQ−1

t (3.4)

In the following, we shall assume that the symmetric matrix Aβ is non-negative definite. In practice,
this may not be the case, since, as we know, negative estimates of the variance-component are
possible. In order to derive the distribution of σ̂2

β for non-negative matrices Aβ , we need the
distribution of t∗Aβt. The following theorem gives a general representation of the distribution of
t∗At.

Theorem: Let the b×1 vector t be normally distributed with mean E{t} = t and positive definite
covariance matrix Qt. Let A be a symmetric non-negative definite matrix of order b. Then there
exists a positive-definite diagonal matrix Λr = diag(λ1, λ2, · · · , λr) and a vector u ∈ R

r such that

t∗At = (z + u)∗Λr(z + u) =

r∑

i=1

λi(zi + ui)
2 (3.5)

where z has the standard normal distribution, i.e. z ∼ N(0, Ir). The number r is the rank of
AQt or QtA. The diagonal elements of Λr are the r positive eigenvalues of AQt or QtA. And if

UrΛrU
∗
r is the singular value decomposition of Q

1/2
t AQ

1/2
t , i.e., Q

1/2
t AQ

1/2
t = UrΛrU

∗
r , with Q

1/2
t

a square-root of Qt, i.e., Qt = Q
1/2
t Q

1/2
t , then the r × 1 vector u can be computed as

u = U∗
r Q

−1/2
t t. (3.6)
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Proof: If we define the random vector x = Q
−1/2
t (t − t), then clearly x has a standard normal

distribution, i.e., x ∼ N(0, Ib). Substitution of t = t + Q
1/2
t x in t∗At gives

t∗At = t∗At + 2t∗AQ
1/2
t x + x∗Q

1/2
t AQ

1/2
t x (3.7)

Since the matrix Q
1/2
t AQ

1/2
t is symmetric and non-negative definite it has real-valued non-negative

eigenvalues and corresponding orthonormal eigenvectors. If we collect the b-number of eigenvalues
in the b × b diagonal matrix Λ and the corresponding orthonormal eigenvectors as columns in the
b × b matrix U then

Q
1/2
t AQ

1/2
t = UΛU∗ (3.8)

with

U∗U = UU∗ = Ib (3.9)

If rank(Q
1/2
t AQ

1/2
t ) = r, then r-number of eigenvalues are positive and (b−r)-number of eigenvalues

are zero. We may therefore partition (3.8) as

Q
1/2
t AQ

1/2
t = [Ur Ub−r]

[
Λr 0
0 0

] [
U∗

r

U∗
b−r

]

= UrΛrU
∗
r (3.10)

with

U∗
r Ur = Ir (3.11)

Substitution of (3.10) into (3.7) gives

t∗At = t∗At + 2t∗Q
−1/2
t UrΛrU

∗
r x + x∗UrΛrU

∗
r x (3.12)

or

t∗At = t∗At − t∗Q
−1/2
t UrΛrU

∗
r Q

−1/2
t t

+ (U∗
r x + U∗

r Q
−1/2
t t)∗Λr(U

∗
r x + U∗

r Q
−1/2
t t) (3.13)

or

t∗At = t∗At − t∗Q
−1/2
t Q

1/2
t AQ

1/2
t Q

−1/2
t t

+ (U∗
r x + U∗

r Q
−1/2
t t)∗Λr(U

∗
r x + U∗

r Q
−1/2
t t) (3.14)

or

t∗At = (z + u)∗Λr(z + u) (3.15)

with

z = U∗
r x = U∗

r Q
−1/2
t (t − t)

u = U∗
r Q

−1/2
t t (3.16)

Since x is distributed as x ∼ N(0, Ib), and U∗
r Ur = Ir, it follows that z = U∗

r x is distributed as

z ∼ N(0, Ir). Note that since |Q1/2
t AQ

1/2
t − λIb| = |AQt − λIb| = |QtA − λIb|, the eigenvalues of

Q
1/2
t AQ

1/2
t , AQt and QtA are the same. End of proof.

The above theorem says that t∗At is distributed as a linear combination of r independent non-
central χ2-distribution with 1 degree of freedom and non-centrality parameters u2

i , i = 1, 2, · · · , r,
i.e.,

t∗At ∼
r∑

i=1

λiχ
2(1, u2

i ) (3.17)
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From this follows that if all the positive eigenvalues of AQt equal 1, then t∗At is distributed
as a non-central χ2-distribution with r degrees of freedom and non-centrality parameter u∗u =

t∗Q
−1/2
t UrIrU

∗
r Q

−1/2
t t = t∗At:

t∗At ∼ χ2(r, t∗At) if Λr = Ir. (3.18)

Since the mean of a central χ2-distribution with 1 degree of freedom is 1, the mean of t∗At follows
from (3.5) as

E{t∗At} =

r∑

i=1

λi +

r∑

i=1

λiu
2
i = trace(AQt) + t∗At (3.19)

Since the variance of the non-central χ2-distribution with 1 degree of freedom and non-centrality
parameter u2

i is 2(1 + 2u2
i ), the variance of t∗At follows from (3.5) as

σ2
t∗At = 2

r∑

i=1

λ2
i + 4

r∑

i=1

λ2
i u

2
i = 2trace(AQtAQt) + 4t∗AQtAt (3.20)

3.2 The Distribution of σ̂2
β

We shall assume that the estimate σ̂2
β of σ2

β are non-negative. With the theorem of the previous
section and (3.3) and (3.4) we then have the following result:

Corollary: The variance-component estimator σ̂2
β is distributed as

σ̂2
β ∼

r∑

i=1

λiχ
2
i (1, 0) (3.21)

where the χ2
i are mutually independent and the λi are the r positive eigenvalues of

∣
∣
∣
∣
∣
B∗[

p
∑

α=1

(
1

2
N−1

βα − λσ2
α)Qα]B

∣
∣
∣
∣
∣
= 0 (3.22)

Note that since the matrix B∗ is of the order b × m, the number of positive eigenvalues, r, never
exceed b.
The result (3.22) is expressed in terms of the matrix B which however is often not explicitly available.
We shall therefore reexpress (3.22) in terms of Qy =

∑p
α=1 σ2

αQα and Qê. In order to do this, we
need the following two properties of the determinant of a matrix:

1. Let X and Y be two arbitrary matrices of order n × n. Then

|XY | = |X |.|Y | (3.23)

2. Let X and Y ∗ be any two matrices of order m × n and suppose m ≥ n. Then

|XY − λIm| = (−λ)m−n|Y X − λIn| (3.24)

The determinant of (3.22) can be written as

∣
∣
∣
∣
∣
B∗[

p
∑

α=1

(
1

2
N−1

βα − λσ2
α)Qα]B

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
B∗[

p
∑

α=1

1

2
N−1

βα Qα]B − λB∗

p
∑

α=1

σ2
αQαB

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
B∗[

p
∑

α=1

1

2
N−1

βα Qα]B − λB∗QyB

∣
∣
∣
∣
∣
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with (3.23) and (3.24) one gets

∣
∣
∣
∣
∣
B∗[

p
∑

α=1

(
1

2
N−1

βα − λσ2
α)Qα]B

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
B∗[

p
∑

α=1

1

2
N−1

βα Qα]B(B∗QyB)−1 − λIb

∣
∣
∣
∣
∣
. |B∗QyB|

= (−λ)b−m

∣
∣
∣
∣
∣

p
∑

α=1

1

2
N−1

βα QαB(B∗QyB)−1B∗ − λIm

∣
∣
∣
∣
∣
. |B∗QyB|

if λ 6= 0. From this follows that for non-zero eigenvalues, (3.22) is equivalent to
∣
∣
∣
∣
∣

p
∑

α=1

1

2
N−1

βα QαB(B∗QyB)−1B∗ − λIm

∣
∣
∣
∣
∣
= 0 (3.25)

With Qê = QyB(B∗QyB)−1B∗Qy this gives

∣
∣
∣
∣
∣

p
∑

α=1

1

2
N−1

βα QαQ−1
y QêQ

−1
y − λIm

∣
∣
∣
∣
∣
= 0 (3.26)

or with (3.24)
∣
∣
∣
∣
∣
Q−1

y (

p
∑

α=1

1

2
N−1

βα Qα)Q−1
y Qê − λIm

∣
∣
∣
∣
∣
= 0 (3.27)

The result (3.22) can therefore be rephrased as:

Final Result: The variance-component estimator σ̂2
β is distributed as

σ̂2
β ∼

r∑

i=1

λiχ
2
i (1, 0) (3.28)

where the χ2
i are mutually independent and the λi are the r positive eigenvalues of

∣
∣
∣
∣
∣
Q−1

y (

p
∑

α=1

1

2
N−1

βα Qα)Q−1
y Qê − λIm

∣
∣
∣
∣
∣
= 0 (3.29)

To see this result at work let us derive the distribution of the variance-factor of unit weight.
In this case, we have p = 1, Qy = σ2

1Q1 and N11 = 1
2 (m − n)σ−4

1 . The above eigenvalue problem
becomes then

∣
∣
∣
∣
Q−1

y

1

2
[
1

2
(m − n)σ−4

1 ]−1Q1σ
−2
1 Q−1

1 Qê − λIm

∣
∣
∣
∣
= 0 (3.30)

or

∣
∣[σ−2

1 (m − n)]−1QêQ
−1
y − λIm

∣
∣ = 0 (3.31)

or with QêQ
−1
y = P⊥

A

∣
∣P⊥

A − λσ−2
1 (m − n)Im

∣
∣ = 0 (3.32)

Since the eigenvalues of a projector are 1 or 0, it follows since rank(P⊥
A ) = m− n that the positive

eigenvalues are

λ1 = λ2 = · · · = λm−n = [σ−2
1 (m − n)]−1 (3.33)

From (3.29) follows then that the variance-factor of unit weight σ̂2
1 is distributed as

σ̂2
1 ∼ σ2

1χ2(m − n, 0)

m − n
(3.34)
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This is a well-known result and very simple indeed. For general case of more than one variance-
component, the eigenvalues λi of (3.29) will usually differ mutually and consequently the distribution
of σ̂2

β will be a very complicated one. As far as I know no practical closed form expression for the

cumulative distribution function of σ̂2
β is available. This function is needed to perform hypothesis

testing, to compute critical values and to compute the power (reliability). Fortunately, however,
asymptotic expansions which can be used for computer calculation are available1. Also suitable
(and may be practical useful) approximations are available. Once the distribution of σ̂2

β is available
one can think of testing hypotheses. One possible approach would be the following: Assume the
null hypothesis as

H0 : E{t} = 0, Qt = B∗

p
∑

α=1

σ2
αQαB,

{
σ2

α 6= 1 for α = 1, 2, · · · , p, α 6= i
σ2

α = 1 for α = i
(3.35)

Assume the alternative hypothesis as

HA : E{t} = 0, Qt = B∗

p
∑

α=1

σ2
αQαB, σ2

α 6= 1 for α = 1, 2, · · · , p (3.36)

Compute the estimator of σ2
i under HA. This estimator depends however on the unknown σ2

α, α =
1, 2, · · · , p. Approximate the estimator σ̂2

i of σ2
i under HA therefore by assuming that σ2

α = 1, α =
1, 2, · · · , p, and call this approximate estimator σ̂′2

i . As we know, this approximate estimator is still
unbiased. Then derive the distribution of σ̂′2

i . This distribution depends however under H0 still
on the unknown σ2

α, α = 1, 2, · · · , p, α 6= i. One can approximate this distribution by replacing
the unknown σ2

α by the estimates σ̂′2
α , α = 1, 2, · · · , p, α 6= i. After this one can perform the

significance test : σ2
i = 1 or σ2

i 6= 1.
Another approach would be the following: Assume the null hypothesis as

H0 : E{t} = 0, Qt = B∗

p
∑

α=1

QαB (3.37)

and the the alternative hypothesis as

HAi
: E{t} = 0, Qt = B∗(

p
∑

α=1 α6=i

Qα + σ2
i Qi)B, σ2

i 6= 1 (3.38)

This approach parallels the data snooping approach and it has some distinct advantages over the
above first approach. First of all, the null hypothesis is completely specified, it is a so-called simple

hypothesis. Secondly, there is only one unknown, namely σ2
i , in the alternative hypothesis. This

is advantageous from a computational point of view. In the following section we will consider the
case of least-squares estimation under the above HAi

.

3.3 LSQ Estimation in Case Qt = B∗(
∑p

α=1 α6=i Qα + σ2
i Qi)B

If the covariance matrix of t is assumed to take the form

E{tt∗} =

p
∑

α=1 α6=i

B∗QαB + σ2
i B∗QiB (3.39)

the observation equations of the linear model take the form

E{vec(tt∗)} − vec(

p
∑

α=1 α6=i

B∗QαB) = vec(B∗QiB)σ2
i (3.40)

Thus instead of (2.8), we now have (3.40). Note that since a constant vector is subtracted from
vec(tt∗), the covariance matrix of vec(tt∗) can still be used. With (2.63) we get for the above model

N =
1

2
trace(B∗QiBQ−1

t B∗QiBQ−1
t ) (3.41)

1N. Johnson & S. Kotz: Continuous Univariate Distributions, Vol 2, 1970
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And with (2.68) we get for the above model

l =
1

2
trace(B∗QiBQ−1

t [tt∗ −
p

∑

α=1 α6=i

B∗QαB]Q−1
t ) (3.42)

or

l =
1

2
tQ−1

t B∗QiBQ−1
t t − 1

2
trace(B∗QiBQ−1

t

p
∑

α=1 α6=i

B∗QαBQ−1
t ) (3.43)

or with Qt =
∑p

α=1 α6=i B∗QαB + σ2
i B∗QiB:

l =
1

2
tQ−1

t B∗QiBQ−1
t t − 1

2
trace(B∗QiBQ−1

t ) +
1

2
σ2

i trace(B∗QiBQ−1
t B∗QiBQ−1

t ). (3.44)

With (3.41) the estimator σ̂2
i = N−1l reads therefore:

Final Result:

σ̂2
i = σ2

i +
tQ−1

t B∗QiBQ−1
t t − trace(B∗QiBQ−1

t )

trace(B∗QiBQ−1
t B∗QiBQ−1

t )
(3.45)

with E{σ̂2
i } = σ2

i and

σ2
σ̂2

i
= 2[trace(B∗QiBQ−1

t B∗QiBQ−1
t )]−1 (3.46)

With (3.5) of the theorem of section one, the distribution of σ̂2
i follows as:

σ̂2
i ∼ σ2

i +

∑r
j=1 λjχ

2
j (1, 0) −

∑r
j=1 λj

∑r
j=1 λ2

j

(3.47)

where λj , j = 1, 2, · · · , r are the r positive eigenvalues of

|B∗QiB − λQt| = 0 (3.48)

or of

|Q−1
y QiQ

−1
y Qê − λIm| = 0 (3.49)

The problem of hypothesis testing may now be tackled as follows: Assume the null hypothesis as

H0 : E{t} = 0, Qt =

p
∑

α=1

B∗QαB (3.50)

and the the alternative hypothesis as

HAi
: E{t} = 0, Qt =

p
∑

α=1 α6=i

B∗QαB + σ2
i B∗QiB (3.51)

Note that although the estimator σ̂2
i of (3.45) can not be computed in practice because of the

unknown σ2
i , its distribution is known under H0! Instead of computing σ̂2

i we therefore approximate
this estimator by an estimator σ̂′2

i , which is obtained by setting σ2
i = 1 in (3.45). The approximate

estimator reads therefore

σ̂′2
i = 1 +

tQ̄−1
t B∗QiBQ̄−1

t t − trace(B∗QiBQ̄−1
t )

trace(B∗QiBQ̄−1
t B∗QiBQ̄−1

t )
(3.52)
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with

Q̄t =

p
∑

α=1

B∗QαB (3.53)

We know from our theory that this approximate estimator is still an unbiased estimator of σ2
i (how-

ever not of minimum variance anymore). Let us verify this for (3.52). With A = Q̄−1
t B∗QiBQ̄−1

t

and E{t} = 0, we have with (3.19):

E{t∗Q̄−1
t B∗QiBQ̄−1

t t} = trace(Q̄−1
t B∗QiBQ̄−1

t Qt) (3.54)

or with

Qt = Q̄t + (σ2
i − 1)B∗QiB (3.55)

E{t∗Q̄−1
t B∗QiBQ̄−1

t t} = trace(Q̄−1
t B∗QiB)

+ (σ2
i − 1)trace(Q̄−1

t B∗QiBQ̄−1
t B∗QiB) (3.56)

Substituting into (3.52) shows indeed that E{σ̂′2
i } = σ2

i . Since the distribution of σ̂′2
i is known

under H0 we can now perform the test: σ2
i = 1 versus σ2

i 6= 1. Note by the way that σ̂2
i and σ̂′2

i

have identical distributions under H0. By letting i range from 1 to p, we can like in data snooping

test whether additional variance-components are needed. They can also be done in an iterated way

like in the iterated data snooping approach. In this context it is also interesting to investigate the
form of the shifting variate of the linear models (2.8) and (3.40). We will return to this matter
later on.

3.4 On the Connection of Two Point Fields

As an interesting application of the theory we have the problem of estimating and testing of the
levels of precision of two pointfields which are to be connected. Let the coordinates of the two
pointfields be collected in the vectors xi, i = 1, 2, of order n× 1. We assume the xi to be normally
distributed with covariance matrices σ2

i Qi, i = 1, 2. We also assume that x1 is independent of x2.
The model reads then

E{
[

x1

x2

]

} =

[
In

In

]

x,

[
σ2

1Q1 0
0 σ2

2Q2

]

(3.57)

From this follows that matrix B∗ takes the form

B∗ = [In − In] (3.58)

and matrix Qt takes the form

Qt = σ2
1Q1 + σ2

2Q2 (3.59)

Since we have two unknowns σ2
1 and σ2

2 , the normal matrix Nβα is of order 2 × 2. With (2.63) we
get for our case:

N11 =
1

2
trace(Q1[σ

2
1Q1 + σ2

2Q2]
−1Q1[σ

2
1Q1 + σ2

2Q2]
−1)

N12 =
1

2
trace(Q1[σ

2
1Q1 + σ2

2Q2]
−1Q2[σ

2
1Q1 + σ2

2Q2]
−1) (3.60)

N22 =
1

2
trace(Q2[σ

2
1Q1 + σ2

2Q2]
−1Q2[σ

2
1Q1 + σ2

2Q2]
−1)

To simplify things, let us assume that Q1 = Q2. The result (3.60) simplifies then to:

N11 =
1

2
n(σ2

1 + σ2
2)−2

N12 =
1

2
n(σ2

1 + σ2
2)−2 (3.61)

N22 =
1

2
n(σ2

1 + σ2
2)−2
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Hence, the normal matrix becomes singular! Thus if Q1 = Q2 the two components σ2
1 and σ2

2 of
model (3.57) are not separately estimable (this also makes sense). Later on we will consider the
estimability problem for the general model (2.8). For the moment, let us change model (3.57) to
overcome the estimability problem. Instead of (3.57) we take

E{
[

x1

x2

]

} =

[
In

In

]

x,

[
Q 0
0 σ2Q

]

(3.62)

Instead of (3.59) we then get

Qt = (1 + σ2)Q (3.63)

We now have one unknown, σ2, and are in the situation as described in Section 3. We therefore
can apply formula (3.45). For our case we have:

t∗Q−1
t B∗QiBQ−1

t t = (1 + σ2)−2(x1 − x2)
∗Q−1(x1 − x2)

trace(B∗QiBQ−1
t ) = (1 + σ2)−1n (3.64)

trace(B∗QiBQ−1
t B∗QiBQ−1

t ) = (1 + σ2)−2n

Substituting (3.64) into (3.45) gives

σ̂2 = σ2 +
(1 + σ2)−2(x1 − x2)

∗Q−1(x1 − x2) − (1 + σ2)−1n

(1 + σ2)−2n
(3.65)

or

σ̂2 =
(x1 − x2)

∗Q−1(x1 − x2)

n
− 1 (3.66)

Application of (3.47) shows that r = n and

λ1 = λ2 = · · · = λn = (1 + σ2)−1 (3.67)

Hence,

σ̂2 ∼ σ2 +
(1 + σ2)−1χ2(n, 0) − (1 + σ2)−1n

(1 + σ2)−2n
(3.68)

or

σ̂2 ∼ 1 + σ2

n
χ2(n, 0) − 1 (3.69)

Note that 1 + σ̂2 is the estimator of the variance factor of unit weight in the model

E{x1 − x2} = 0, (1 + σ2)Q (3.70)

Although the above example is a rather trivial one, it is of interest to elaborate the theory for the
case of digitizing and connecting maps.

3.5 VCE and the wi-Test Statistics

Let us assume that the matrix Qi of section 3 takes the form

Qi = cic
∗
i , with ci = [0 · · · 0 1 0 · · · 0]∗ (3.71)

This implies that we want to estimate the variance σ2
i of one single observation. Since we have only

one unknown variance-component, we can apply the result (3.45). Before doing this, we first note
that in our case

Qt = B∗

p
∑

α=1 α6=i

QαB + σ2
i B∗cic

∗
i B (3.72)

23



This we write as

Qt = Q̄t + (σ2
i − 1)B∗cic

∗
i B (3.73)

with

Q̄t =

p
∑

α=1

B∗QαB (3.74)

In (3.45) we need the inverse of Qt. Using the matrix-identity

(A − BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1 (3.75)

the inverse of (3.73) follows as

Q−1
t = Q̄−1

t − Q̄−1
t B∗cic

∗
i BQ̄−1

t

(σ2
i − 1)−1 + c∗i BQ̄−1

t B∗ci

(3.76)

Using this together with (3.71) enables us to write

t∗Q−1
t B∗QiBQ−1

t t = [(1 − c∗i BQ̄−1
t B∗ci

(σ2
i − 1)−1 + c∗i BQ̄−1

t B∗ci

)(c∗i BQ̄−1
t t)]2 (3.77)

In a similar way, we find

trace(B∗QiBQ−1
t ) = [(1 − c∗i BQ̄−1

t B∗ci

(σ2
i − 1)−1 + c∗i BQ̄−1

t B∗ci

)(c∗i BQ̄−1
t B∗ci)] (3.78)

and

trace(B∗QiBQ−1
t B∗QiBQ−1

t ) = [(1 − c∗i BQ̄−1
t B∗ci

(σ2
i − 1)−1 + c∗i BQ̄−1

t B∗ci

)(c∗i BQ̄−1
t B∗ci)]

2 (3.79)

Substitution of (3.77), (3.78) and (3.79) into (3.45) gives

σ̂2
i = σ2

i +
(c∗i BQ̄−1

t t)2

(c∗i BQ̄−1
t B∗ci)2

− [(1 − c∗i BQ̄−1
t B∗ci

(σ2
i − 1)−1 + c∗i BQ̄−1

t B∗ci

)(c∗i BQ̄−1
t B∗ci)]

−1 (3.80)

With

[(1 − c∗i BQ̄−1
t B∗ci

(σ2
i − 1)−1 + c∗i BQ̄−1

t B∗ci

)(c∗i BQ̄−1
t B∗ci)]

−1 = (σ2
i − 1) + (c∗i BQ̄−1

t B∗ci)
−1 (3.81)

equation (3.80) simplifies to

σ̂2
i = 1 +

(c∗i BQ̄−1
t t)2

c∗i BQ̄−1
t B∗ci

− 1

c∗i BQ̄−1
t B∗ci

(3.82)

Note that this estimator is independent of the unknown σ2
i . We also note, that since our well-known

wi-test statistics reads

wi =
c∗i BQ̄−1

t t

(c∗i BQ̄−1
t B∗ci)1/2

(3.83)

the result (3.82) can be written as

σ̂2
i = 1 +

w2
i − 1

c∗i BQ̄−1
t B∗ci

(3.84)

This result also makes clear the sensitivity of the variance-component estimation for misspecifica-
tions in the functional model ; a fact which also follows from the last theorem. With this theorem
follows namely that if E{t} 6= 0, then the variance-component estimators are distributed as a linear
combination of non-central χ2-distributions. Finally note that we did not make use in the above
derivation of the fact that ci = [0 · · · 0 1 0 · · · 0]∗.
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3.6 CoVCE and the wi-Test Statistics

Let us assume that we want to estimate the covariance between two observations, say observation
k and observation l. Matrix Qi of section 3 takes then the form

Qi = ckc∗l + clc
∗
k, with ck = [0 · · · 0 1 0 · · · 0]∗ (3.85)

The unknown covariance σkl can then be estimated according to (3.45) as

σ̂kl = σkl +
t∗Q−1

t B∗QiBQ−1
t t − trace(B∗QiBQ−1

t )

trace(B∗QiBQ−1
t B∗QiBQ−1

t )
(3.86)

where

Qt = Q̄t + σklB
∗(ckc∗l + clc

∗
k)B (3.87)

and Q̄t is the covariance matrix of t in case σkl = 0. Note that σkl is allowed to be positive

and negative. Hence the problem of negative variance components does not occur here. Also note
that σkl need not be the total covariance. That is, if a covariance between observations k and l
is included in Q̄t, then σkl of (3.87) should be interpreted as a perturbation or increment. The
estimator σ̂kl follows if we substitute (3.85) and (3.87) into (3.86). As it turns out however the
result unfortunately depends on the unknown σkl. Instead of the optimal estimator σ̂kl, we therefore
take an approximate, but still unbiased, σ̂′

kl by choosing σkl = 0 in (3.86). This gives

σ̂′
kl =

t∗Q̄−1
t B∗QiBQ̄−1

t t − trace(B∗QiBQ̄−1
t )

trace(B∗QiBQ̄−1
t B∗QiBQ̄−1

t )
(3.88)

With (3.85) we have

t∗Q̄−1
t B∗QiBQ̄−1

t t = 2(c∗kBQ̄−1
t t)(c∗l BQ̄−1

t t)

trace(B∗QiBQ̄−1
t ) = 2c∗kBQ̄−1

t B∗cl

trace(B∗QiBQ̄−1
t B∗QiBQ̄−1

t ) = 2(c∗kBQ̄−1
t B∗cl)

2 + 2(c∗kBQ̄−1
t B∗ck)(c∗l BQ̄−1

t B∗cl)

Substituting this into (3.88) gives

σ̂′
kl =

(c∗kBQ̄−1
t t)(c∗l BQ̄−1

t t) − c∗kBQ̄−1
t B∗cl

(c∗kBQ̄−1
t B∗cl)2 + (c∗kBQ̄−1

t B∗ck)(c∗l BQ̄−1
t B∗cl)

(3.89)

Let us verify the unbiasedness of the estimator σ̂′
kl. With (3.87) we have

E{(c∗kBQ̄−1
t t)(c∗l BQ̄−1

t t)} = E{(c∗kBQ̄−1
t tt∗Q̄−1

t B∗cl)} = c∗kBQ̄−1
t QtQ̄

−1
t B∗cl

= c∗kBQ̄−1
t B∗cl + c∗kBQ̄−1

t [σklB
∗(ckc∗l + clc

∗
k)B]Q̄−1

t B∗cl

= c∗kBQ̄−1
t B∗cl + σkl[(c

∗
kBQ̄−1

t B∗cl)
2

+ (c∗kBQ̄−1
t B∗ck)(c∗l BQ̄−1

t B∗cl)]

With this result and (3.89) it follows that indeed E{σ̂′
kl} = σkl. If we use the abbreviation

nkl = c∗kBQ̄−1
t B∗cl (3.90)

and remember that

wk =
c∗kBQ̄−1

t t√
nkk

(3.91)

we can write (3.89) also as

σ̂′
kl =

wkwl −
nkl√

nkk
√

nll

n2
kl√

nkk
√

nll
+
√

nkk
√

nll

(3.92)
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Note that under the hypothesis that σkl = 0, we have

E{wkwl} = Cov{wk , wl} =
nkl√

nkk
√

nll
, if σkl = 0. (3.93)

This term equals the cosine of the angle between the two vectors ck and cl when projected with
P⊥

A . It is closely related to the error of the third kind. That is, if (3.93) is too large one will have
difficulty in discriminating between two hypotheses E{t} = B∗ck∇k and E{t} = B∗cl∇l.
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Chapter 4

Estimating and Testing σ2
1 and σ2

2
in σ2

0i = σ2
1 + σ2

2x
q
i for EDM’s

4.1 VCE from Repeated Measurements

According to the Least-Squares Estimators of the variance-components, σ2
α, α = 1, 2, · · · , p in the

model

E{y} = Ax, E{(y − Ax)(y − Ax)∗} =

p
∑

α=1

σ2
αQα (4.1)

are given as








σ̂2
1

σ̂2
2
...

σ̂2
p








=








n11 n12 · · · n1p

n21 n22 · · · n2p

...
...

. . .
...

np1 np2 · · · npp








−1 






1
2 ê∗Q−1

y Q1Q
−1
y ê

1
2 ê∗Q−1

y Q2Q
−1
y ê

...
1
2 ê∗Q−1

y QpQ
−1
y ê








(4.2)

with:

nβα =
1

2
trace(QβQ−1

y P⊥
A QαQ−1

y P⊥
A ) (4.3)

and with

Qy =

p
∑

α=1

σ2
αQα; P⊥

A = I − A(A∗Q−1
y A)−1A∗Q−1

y ; ê = P⊥
A y (4.4)

We will apply the above results to the model

E{y} = E{








y
1

y
2
...

y
r








︸ ︷︷ ︸

m r×1

} =








e 0 · · · 0
0 e · · · 0
...

...
. . .

...
0 0 · · · e








︸ ︷︷ ︸

m r×r








x1

x2

...
xr








︸ ︷︷ ︸

r×1

, Qy =








σ2
01Im 0 · · · 0
0 σ2

02Im · · · 0
...

...
. . .

...
0 0 · · · σ2

0rIm








︸ ︷︷ ︸

m r×m r

(4.5)

with:

e = [1 1 · · · 1]∗, σ2
0i = σ2

1 + σ2
2xq

i , i = 1, 2, · · · , r (4.6)

Model (4.5) is valid for the case where one measures an r-number of unknown distances xi, i =
1, 2, · · · , r, each an m-number of times. It is assumed that all the observations are uncorrelated.
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Furthermore it is assumed that all the precision of the measurements is constant for a constant
distance, but that it varies with the distance according to the law

σ2
0i = σ2

1 + σ2
2xq

i , i = 1, 2, · · · , r (4.7)

where q is an exponent of the distance which one can choose and σ2
1 and σ2

2 are the unknown
variance-components which need to be estimated. Thus in our case we have two unknowns and the
matrices Qα, α = 1, 2 of (4.1) take the form

Q1 =








Im 0 · · · 0
0 Im · · · 0
...

...
. . .

...
0 0 · · · Im








︸ ︷︷ ︸

m r×m r

, Q2 =








xq
1Im 0 · · · 0
0 xq

2Im · · · 0
...

...
. . .

...
0 0 · · · xq

rIm








︸ ︷︷ ︸

m r×m r

(4.8)

In order to apply (4.2) we need P⊥
A of (4.4). This matrix takes in our case a very simple form:

P⊥
A =








P⊥
e 0 · · · 0
0 P⊥

e · · · 0
...

...
. . .

...
0 0 · · · P⊥

e








︸ ︷︷ ︸

m r×m r

(4.9)

with P⊥
e = Im − 1

mee∗. Note that P⊥
A is independent of the σ2

0i, i = 1, 2, · · · , r. Also note that
the block matrices P⊥

e of P⊥
A correspond to the separate adjustment of each unknown distance.

That is, per unknown distance we have an adjustment-problem with m-number of observations,
one unknown distance and one variance-factor of unit weight σ2

0i. From adjustment theory we know
that the variance factor of unit weight can be estimated rather straightforward. In our case the
separate estimators of σ2

0i, i = 1, 2, · · · , r become

σ̂2
0i =

y∗
i
P⊥

e y
i

m − 1
with E{σ̂2

0i} = σ2
0i, σ2

σ2

0i
=

2σ4
0i

m − 1
, i = 1, 2, · · · , r (4.10)

This result may be used to perform a global test for each distance separately. It may also be used for
obtaining a reasonable value for m, i.e., the number of measurements. Parallel to (4.10) we may also
perform data snooping for each distance separately. The w-test statistics for the kth-observation in
the ith-distance reads

wki =
y

ki
− 1

m

∑m
l=1 y

li

σ0i

√

1 − 1
m

, i = 1, 2, · · · , r, k = 1, 2, · · · , m (4.11)

Once the r-number of estimates σ̂2
0i of (4.10) are available, they may be used to get a first indication

of whether law (4.7) holds or not. This may be done by plotting the σ̂2
0i against the xq

i . Of course,
xi is unknown, but here one can use the mean of the m-number of observed distances. The plot
should then look something like:

By interpreting the estimates σ̂2
0i of (4.10) as observations, we can now with the help of (4.7)

construct the following linear model of observation equations:

E{








σ̂2
01

σ̂2
02
...

σ̂2
0r







} =








1 xq
1

1 xq
2

...
...

1 xq
r








[
σ2

1

σ2
2

]

, Qσ̂2

0i
=

2

m − 1








σ4
01 0 · · · 0
0 σ4

02 · · · 0
...

...
. . .

...
0 0 · · · σ4

0r








︸ ︷︷ ︸

r×r

(4.12)
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Note that because of our assumptions in (4.5), the σ̂2
0i are distributed as independent χ2-variables.

The matrix Qσ̂2

0i
is therefore diagonal! In order to find estimators for σ2

1 and σ2
2 we can now apply

all sorts of estimation principles (robust methods, maximum likelihood, least squares etc). We will
solve (4.12) using the least-squares principle. The normal matrix of (4.12) reads

N =
m − 1

2





∑r
i=1 σ−4

0i

∑r
i=1 σ−4

0i xq
i

∑r
i=1 σ−4

0i xq
i

∑r
i=1 σ−4

0i x2q
i



 (4.13)

Its inverse reads

N−1 =
2

m − 1
[(

r∑

i=1

σ−4
0i )(

r∑

i=1

σ−4
0i x2q

i ) − (

r∑

i=1

σ−4
0i xq

i )
2]−1





∑r
i=1 σ−4

0i x2q
i −

∑r
i=1 σ−4

0i xq
i

−∑r
i=1 σ−4

0i xq
i

∑r
i=1 σ−4

0i



(4.14)

The right-hand side of the normal equations reads:

l =
m − 1

2





∑r
i=1 σ−4

0i σ̂2
0i

∑r
i=1 σ−4

0i xq
i σ̂

2
0i



 (4.15)

With (4.14) and (4.15) the solution of (4.12) follows as





σ̂2
1

σ̂2
2



 = N−1l, E{





σ̂2
1

σ̂2
2



} =





σ2
1

σ2
2



 , D{





σ̂2
1

σ̂2
2



} = N−1 (4.16)

We have now devised a two-step or phased procedure for estimating the variance-components σ2
1

and σ2
2 . First (4.10) is used to compute the σ̂2

0i, i = 1, 2, · · · , r. Then in a second step the variance-
components are computed according to (4.16). The solution so obtained is identical to the solution
one gets when applying (4.2) and (4.5)!! Note that in the second step iterations are needed since
the variances 2

m−1σ2
0i of (4.12) are unknown a-priori. In fact also the xq

i in the design matrix of
(4.12) are unknown, but here it probably suffices to take the mean of the observed distances.

In order that the two estimators σ̂2
1 and σ̂2

2 are well-separated their correlation coefficient should
be small enough. From (4.14) this correlation coefficient follows as

ρ12 =
−∑r

i=1 σ−4
0i xq

i
√

∑r
i=1 σ−4

0i x2q
i

√
∑r

i=1 σ−4
0i

(4.17)

This correlation coefficient depends on the angle between the two column vectors of the design
matrix of (4.12). More precisely: the correlation coefficient ρ12 is small if the distances xi, i =
1, 2, · · · , r are chosen such that the angle between the two vectors








σ−2
01

σ−2
02
...

σ−2
0r








and








σ−2
01 x2

1

σ−2
01 x2

2
...

σ−2
01 x2

r








(4.18)

is large. Once the estimates σ̂2
1 and σ̂2

1 are computed, one can try to test their significance with
respect to the values given by the manufacturer. If we denote the values given by the manufacturer
as σ̄2

1 and σ̄2
2 , the test statistic may take the form:

νi =
σ̂2

i − σ̄2
i

σσ̂2

i

, i = 1, 2 (4.19)

Although the distribution of νi is unknown, we may try the standard normal distribution as a crude
approximation. With this approximation the test can be performed.
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Final Remarks

1. From the structure of (4.12) follows that it is not necessary to assume that the number of
observation per unknown distance is constant.

2. The structure of model (4.12) resembles the 1-D Helmert-transformation E{σ̂2
0i} = σ2

1 +xq
i σ

2
2 .

If xq
i is considered to be stochastic, the model can be written in the form of the 1-D symmetric

Helmert transformation E{σ̂2
0i} = σ2

1 +E{xq
i }σ2

2 . The solution method of (Teunissen: The 1-
and 2-D symmetric Helmert transformation, report 87.1, Delft) can then be applied.

3. Note that (4.12) may also be solved recursively. This may be of use if one wants to update
the estimates of σ2

1 and σ2
2 if a new unknown distance is measured.

30



Chapter 5

Estimation and Testing of
Covariance Matrices

5.1 Introduction

Consider the following two hypotheses:







H0 : E{y} = Ax, B∗x = b, D{y} = Qy

HA : E{y} = Ax, D{y} = Qy

(5.1)

We assume that y is normally distributed. The appropriate test statistic is then given by [see lecture
notes MGII]:







T = [B∗x̂A − b]∗(B∗Qx̂A
B)−1[B∗x̂A − b], with

x̂A = Qx̂A
A∗Q−1

y y, Qx̂A
= (A∗Q−1

y A)−1
(5.2)

T has the following distribution:







H0 : T ∼ χ2(b, 0)

HA : T ∼ χ2(b, λ), with λ = [B∗x − b]∗(B∗QyB)−1[B∗x − b]
(5.3)

The test statistic T also follows from the Generalized Likelihood Ratio Test.
Note: b= number of parameters under HA minus number of parameters under H0.

5.2 The Model and Its Solution

As model we consider

E{ y
︸︷︷︸

rm×1

} = (Ir ⊗ A)
︸ ︷︷ ︸

rm×rn

x
︸︷︷︸

rn×1

, D{y} = Q ⊗ Im
︸ ︷︷ ︸

rm×rm

(5.4)

According to [Teunissen, 1988]:

1

2
tr(QαQ−1

y P⊥
A QβQ−1

y P⊥
A )

︸ ︷︷ ︸

Nαβ

σ̂2
β =

1

2
ê∗Q−1

y QαQ−1
y ê

︸ ︷︷ ︸

lα

(5.5)

From (5.4) follows that

Qy = Q ⊗ Im, PA = Ir ⊗ A(A∗A)−1A∗, Qα = Qα ⊗ Im (5.6)
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This gives

Nαβ =
1

2
tr(Qα ⊗ ImQ−1 ⊗ ImIr ⊗ P⊥

A Qβ ⊗ ImQ−1 ⊗ ImIr ⊗ P⊥
A )

=
1

2
tr(QαQ−1QβQ−1 ⊗ P⊥

A )

=
1

2
tr(QαQ−1QβQ−1)tr(P⊥

A )

or

Nαβ =
1

2
(m − n)tr(QαQ−1QβQ−1) (5.7)

In our case

σ̂2 = (σ̂2
β) =

(
σ̂11 σ̂21 ... σ̂r1 σ̂22 ... σ̂r2 ... σ̂rr

)∗
(5.8)

We define the matrix L as:

L
︸︷︷︸

r2×r(r+1)/2

∇(X)
︸ ︷︷ ︸

r(r+1)/2×1

= vec(X)
︸ ︷︷ ︸

r2×1

for any symmetric Xr×r . (5.9)

Since the matrix L has full rank r(r + 1)/2, it follows from (5.9) that

∇(X) = (L∗L)−1L∗vec(X) for any symmetric X (5.10)

With the projector P [ P vec(X) = vec(X) for any X = X∗] and (5.9) follows that

P L∇(X) = P vec(X) = vec(X) = L∇(X) for any X∗ = X (5.11)

and thus

PL = L or R(L) ⊂ R(P ) (5.12)

Since rank(P ) = rank(L) = r(r + 1)/2 or dim(R(P )) = dim(R(L)) it follows with (5.12) that

R(P ) = R(L) (5.13)

This shows, since P is a projector that

P = L(L∗L)−1L∗ (5.14)

We will now derive the inverse of (Nαβ). From (5.7) and (5.9) follows that

Nαβ =
1

2
(m − n)(vec(Qα))∗Q−1 ⊗ Q−1(vec(Qβ))

=
1

2
(m − n)∇(Qα)∗L∗(Q−1 ⊗ Q−1)L∇(Qβ)

Note that ∇(Qβ) is the identity matrix of order r(r + 1)/2. Hence:

Q
∇(Q̂) = (Nαβ)−1 = [L∗(Q−1 ⊗ Q−1)L]−1 2

m − n
(5.15)

or

L∗(Q−1 ⊗ Q−1)LQ∇(Q̂) =
2

m − n
I (5.16)

or

L(L∗L)−1L∗

︸ ︷︷ ︸

P

(Q−1 ⊗ Q−1)LQ
∇(Q̂) =

2

m − n
L(L∗L)−1 (5.17)
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or

(Q−1 ⊗ Q−1)PLQ
∇(Q̂) =

2

m − n
L(L∗L)−1 (5.18)

or

PLQ∇(Q̂) =
2

m − n
(Q ⊗ Q)L(L∗L)−1 (5.19)

or

Q
∇(Q̂)

︸ ︷︷ ︸

r(r+1)/2×r(r+1)/2

=
2

m − n
(L∗L)−1L∗(Q ⊗ Q)L(L∗L)−1 (5.20)

From (5.5) and (5.6) follows that

lα =
1

2
y∗Ir ⊗ P⊥

A Q−1 ⊗ ImQα ⊗ ImQ−1 ⊗ ImIr ⊗ P⊥
A y

=
1

2
y∗(Q−1QαQ−1 ⊗ P⊥

A )y (5.21)

With y =
∑r

i=1 ei ⊗ yi =
∑r

i=1 vec(yie
∗
i ) this gives

lα =
1

2
(vec

r∑

i=1

yie
∗
i )

∗(Q−1QαQ−1 ⊗ P⊥
A )(vec

r∑

j=1

yje
∗
j )

=
1

2
trace[Q−1QαQ−1(

r∑

j=1

yje
∗
j )

∗P⊥
A (

r∑

i=1

yie
∗
i )] (5.22)

With Y
︸︷︷︸

m×r

= [y1, y2, ..., yr] =
∑r

i=1 yie
∗
i this gives

lα =
1

2
trace[Q−1QαQ−1Y ∗P⊥

A Y ]

=
1

2
[vec(Q−1QαQ−1)]∗[vecY ∗P⊥

A Y ] (5.23)

=
1

2
[Q−1 ⊗ Q−1vecQα]∗[vecY ∗P⊥

A Y ]

or

lα =
1

2
vec(Qα)∗Q−1 ⊗ Q−1vec(Y ∗P⊥

A Y ) (5.24)

with vec(Qα) = L∇(Qα) = L.Identity, this gives

l =
1

2
L∗(Q−1 ⊗ Q−1)L∇(Y ∗P⊥

A Y ) (5.25)

From (5.20) and (5.25) follows that:

∇(Q̂) =
2

m − n
(L∗L)−1L∗(Q ⊗ Q)L(L∗L)−1.

1

2
L∗(Q−1 ⊗ Q−1)L∇(Y ∗P⊥

A Y )

=
2

m − n
.
1

2
(L∗L)−1L∗(Q ⊗ Q)P (Q−1 ⊗ Q−1)L∇(Y ∗P⊥

A Y ) (5.26)

=
1

m − n
(L∗L)−1L∗PL∇(Y ∗P⊥

A Y )

or

Q̂
︸︷︷︸

r×r

=
1

m − n
Y ∗P⊥

A Y (5.27)

Q̂ has a Wishart distribution. For later use it is important to know when ∇(Q̂) can be approximated
by a normal distribution.
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5.3 The Teststatistic & Restrictions B∗QB = φ0

The following two hypotheses will be considered:






H0 : E{y} = (Ir ⊗ A)x, D{y} = Q ⊗ Im, B∗QB = φ0

HA : E{y} = (Ir ⊗ A)x, D{y} = Q ⊗ Im,
(5.28)

The restrictions B∗QB = φ0 can be written as vec(B∗QB) = vec(φ0) or as the linear restrictions

B∗ ⊗ B∗vec(Q) = vec(φ0) (5.29)

Since Q is symmetric, (5.29) does not contain independent restrictions. Therefore

(B∗ ⊗ B∗)Lr∇Q = Lp∇φ0 (5.30)

or

(L∗
pLp)

−1L∗
p(B

∗ ⊗ B∗)Lr∇Q = ∇φ0 (5.31)

The teststatistic [see (5.2)] follows then as:

T = L+
p (B∗ ⊗ B∗)Lr∇(Q̂) −∇φ0]

∗[L+
p (B∗ ⊗ B∗)LrQ∇(Q̂)Lr(B ⊗ B)L+∗

p ]−1 (5.32)

[L+
p (B∗ ⊗ B∗)Lr∇(Q̂)∇φ0] (5.33)

This gives with (5.20):

T =
m − n

2
[L+

p (B∗ ⊗ B∗)Lr∇(Q̂) −∇(φ0)]
∗[L+

p (B∗ ⊗ B∗)PrQ ⊗ QPr(B ⊗ B)L+∗
p ]−1(5.34)

[L+
p (B∗ ⊗ B∗)Lr∇(Q̂)∇(φ0)]

with

Pr =
1

2
[Ir2 + Krr]

Krr(B ⊗ B) = (B ⊗ B)Kpp

Pr(B ⊗ B) = (B ⊗ B)Pp

follows from (5.35) that

T =
m − n

2
[L+

p (B∗ ⊗ B∗)Lr∇(Q̂) −∇(φ0)]
∗[L+

p (B∗QB ⊗ B∗QB)L+∗
p ]−1 (5.35)

[L+
p (B∗ ⊗ B∗)Lr∇(Q̂)∇(φ0)]

Since

[L+
p (B∗QB ⊗ B∗QB)L+∗

p ]−1 = L∗
p(B

∗QB)−1 ⊗ (B∗QB)−1Lp (5.36)

and

∇(φ0) = L+
p (B∗ ⊗ B∗)Lr∇(Q0) (5.37)

Equation (5.36) can be written as

T =
m − n

2
[∇(Q̂ − Q0)

∗Lr(B ⊗ B)L+∗
p L∗

p(B
∗QB)−1 (5.38)

⊗(B∗QB)−1LpL
+
p (B∗ ⊗ B∗)Lr∇(Q̂ − Q0)]

or as

T =
m − n

2
[∇(Q̂ − Q0)

∗L∗
r [B(B∗QB)−1B∗] ⊗ [B(B∗QB)−1B∗]Lr∇(Q̂ − Q0)

=
m − n

2
[vec(Q̂ − Q0)]

∗[B(B∗QB)−1B∗] ⊗ [B(B∗QB)−1B∗][vec(Q̂ − Q0)] (5.39)

=
m − n

2
trace[B(B∗QB)−1B∗ (Q̂ − Q0)B(B∗QB)−1B∗ (Q̂ − Q0)]

=
m − n

2
trace[(B∗QB)−1(B∗Q̂B − B∗Q0B) (B∗QB)−1(B∗Q̂B − B∗Q0B)]
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Under H0 we have B∗QB = B∗Q0B = φ0. Thus under H0 we get

TH0
=

m − n

2
trace[[(B∗Q0B)−1(B∗Q̂B) − Ip][(B

∗Q0B)−1(B∗Q̂B) − Ip]] (5.40)

with

|B∗Q̂B − λ̂i

φ0

︷ ︸︸ ︷

B∗Q0B | = 0, i = 1, 2, ..., p (5.41)

We may write (5.40) also as

TH0
=

m − n

2

p
∑

i=1

(λ̂i − 1)2 (5.42)

Since the difference in the number of parameters between HA and H0 is r(r + 1)/2−{r(r + 1)/2−
p(p + 1)/2}, the form of the teststatistic suggests that IH0

is approximately distributed as

H0 : TH0
∼ χ2(p(p + 1)/2, 0) (5.43)

5.4 A Comparison with the Restricted Generalized Likeli-

hood Ratio Test

If we define t = (Ir ⊗ B∗)y [do not confuse this B, with B of section 3], with B∗A = 0, it follows
from (5.4) that

E{t}
︸ ︷︷ ︸

r(m−n)×1

= 0, D{t} = Q
︸︷︷︸

r×r

⊗ B∗B
︸ ︷︷ ︸

(m−n)×(m−n)

(5.44)

The following hypotheses will be considered

H ′
0 : D{t} = Q0 ⊗ B∗B, H ′

A : D{t} = Q ⊗ B∗B (5.45)

The restricted likelihood function reads then

log ρt(t/Q) = −1

2
log 2π − 1

2
log |Q ⊗ B∗B| − 1

2
t∗Q−1 ⊗ (B∗B)−1t (5.46)

From this follows that

−2 log
ρt(t/Q0)

ρt(t/Q̂)
= log |Q0Q̂

−1 ⊗ Im−n| + t∗[(Q−1
0 − Q̂−1) ⊗ (B∗B)]t

= (m − n) log |Q0Q̂
−1| + y∗[(Q−1

0 − Q̂−1) ⊗ PB ]y (5.47)

With y =
∑r

i=1 ei ⊗ yi =
∑r

i vec(yie
∗
i ) this gives

−2 log
ρt(t/Q0)

ρt(t/Q̂)
= (m − n) log |Q0Q̂

−1| + (vec

r∑

i=1

yie
∗
i )

∗[(Q−1
0 − Q̂−1) ⊗ PB ](vec

r∑

i=1

yie
∗
i )

= (m − n) log |Q0Q̂
−1| + trace[(Q−1

0 − Q̂−1)

r∑

j=1

yje
∗
jPB

r∑

i

yie
∗
i ]

= (m − n) log |Q0Q̂
−1| + trace[(Q−1

0 − Q̂−1)Y ∗P⊥
A Y ] (5.48)

= (m − n){log |Q0Q̂
−1| + trace[Q−1

0 Q̂ − I]}
= −(m − n){log |Q−1

0 Q̂| + trace[I − Q−1
0 Q̂]}

Hence

−2 log
ρt(t/Q0)

ρt(t/Q̂)
= −(m − n){

r∑

i=1

log λ̂i +
r∑

i=1

(1 − λ̂i)} (5.49)
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Substitution of

log λ̂i = log 1 + (λ̂i − 1) − 1

2
(λ̂i − 1)2 + ... (5.50)

into (5.49) shows that

−2 log
ρt(t/Q0)

ρt(t/Q̂)
=̇

m − n

2

r∑

i=1

(λ̂i − 1)2 = IH0
(5.51)

5.5 The Teststatistic and Restrictions B∗QC = 0

The following two hypotheses will be considered:







H0 : E{y} = (Ir ⊗ A)x D{y} = Q ⊗ Im B∗QC = 0

HA : E{y} = (Ir ⊗ A)x D{y} = Q ⊗ Im

(5.52)

The restriction B∗QC = 0 can be written as vec(B∗QC) = vec(Q) = 0 or as the linear restrictions:

(C∗ ⊗ B∗)vec(Q) = 0 or (C∗ ⊗ B∗)Lr∇(Q) = 0 (5.53)

The teststatistic [see (5.2)] follows then as:

T =
m − n

2
[C∗ ⊗ B∗vec(Q̂)]∗[C∗ ⊗ B∗PrQ ⊗ QPrC ⊗ B]−1[C∗ ⊗ B∗vec(Q̂)] (5.54)

with






Pr = 1
2 (Ir2+Krr

) PrQ ⊗ QPr = Q ⊗ QPr

Krr(C ⊗ B) = (B ⊗ C)Kpq

(5.55)

follows from (5.54) that

T =
m − n

2
[C∗ ⊗ B∗vec(Q̂)]∗[C∗ ⊗ B∗Q ⊗ Q{1

2
C ⊗ B +

1

2
B ⊗ CKpq}]−1[C∗ ⊗ B∗vec(Q̂)] (5.56)

or

T = (m − n)[C∗ ⊗ B∗vec(Q̂)]∗[C∗QC ⊗ B∗QB + C∗QB ⊗ B∗QCKpq]
−1[C∗ ⊗ B∗vec(Q̂)] (5.57)

Therefore, under H0:

TH0
= (m − n)vec(Q̂)∗C ⊗ B(C∗QC)−1 ⊗ (B∗QB)−1C∗ ⊗ B∗vec(Q̂)

= (m − n)vec(Q̂)∗C(C∗QC)−1C∗ ⊗ B(B∗QB)−1B∗vec(Q̂) (5.58)

= (m − n)trace[C(C∗QC)−1C∗Q̂B(B∗QB)−1B∗Q̂]

or

TH0
= (m − n)trace[(C∗QC)−1C∗Q̂B (B∗QB)−1B∗Q̂C] (5.59)

The form of (5.54) suggests that

H0 : TH0
∼ χ2(pq, 0) (5.60)
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Chapter 6

A New Method for Estimating and
Testing the Substitute Matrix H

6.1 The Generalized Eigenvalue Problem

Let x be a random n-vector with variance matrix Qx. Let Hx be a substitute (or criterion) matrix.
The precision of x is then said to satisfy the criterion if

a∗Qxa ≤ a∗Hxa ∀ a ∈ Rn (6.1)

or if

a∗Qxa

a∗Hxa
≤ 1, ∀ a ∈ Rn (6.2)

since

max
a∈Rn

a∗Qxa

a∗Hxa
= λmax (6.3)

where λmax is the maximum eigenvalue of the generalized eigenvalue problem

|Qx − λHx| = 0 (6.4)

it follows that (6.2) is equivalent to

λmax ≤ 1 (6.5)

6.2 Invariance of λ

An advantage of the generalized eigenvalue problem approach is that the eigenvalues of (6.4) are
independent of the chosen S-system. We will prove the following theorem:

Theorem:

The non-zero eigenvalues of |HxA∗Q−1
y A − µI| = 0 are the reciprocals of the non-zero eigenvalues

of |QS
x − λHS

x | = 0, where

QS
x = S[S∗A∗Q−1

y AS]−1S∗, Rn = R(S) ⊕ N(A)

HS
x = PR(S),N(A)HxP ∗

R(S),N(A)

PR(S),N(A) = S(V ∗
0 S)−1V ∗

0 = I − V1[(S
⊥)∗V1]

−1(S⊥)∗

and

R(V1) = N(A), R(V0) = N(A)⊥, R(S⊥) = R(S)⊥
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Proof:

|HxA∗Q−1
y A − µI| = |HxV0(S

∗V0)
−1S∗A∗Q−1

y A − µI| = 0 (6.6)

Since
[

(V ∗
0 S)−1V ∗

0

[(S⊥)∗V1]
−1(S⊥)∗

] [

S
...V1

]

=

[
I 0
0 I

]

(6.7)

we get

0 =

∣
∣
∣
∣
∣
∣





[(V ∗
0 S)−1V ∗

0 HxV0(S
∗V0)

−1S∗A∗Q−1
y AS − µI] 0

[(S⊥)∗V1]
−1(S⊥)∗HxV0(S

∗V0)
−1S∗A∗Q−1

y AS −µI





∣
∣
∣
∣
∣
∣

(6.8)

=
∣
∣[(V ∗

0 S)−1V ∗
0 HxV0(S

∗V0)
−1S∗A∗Q−1

y AS − µI]
∣
∣ |−µI| for µ 6= 0 (6.9)

This gives with λ = 1
µ :

0 =
∣
∣[S∗A∗Q−1

y AS]−1 − λ(V ∗
0 S)−1V ∗

0 HxV0(S
∗V0)

−1
∣
∣

=

∣
∣
∣
∣

[
V ∗

0 S[S∗A∗Q−1
y AS]−1S∗V0 − λV ∗

0 HxV0 0
0 λI

]∣
∣
∣
∣

=

∣
∣
∣
∣

[
V ∗

0

S⊥∗

]
[
S[S∗A∗Q−1

y AS]−1S∗ − λS(V ∗
0 S)−1V ∗

0 HxV0(S
∗V0)

−1S∗
]
[

V0

...S⊥

]∣
∣
∣
∣

=
∣
∣QS

x − λHS
x

∣
∣

6.3 The Alberda-Baarda Substitute Martix

For a two dimensional planar geodetic network, the Alberda-Baarda substitute matrix takes the
form

Hx =
























d2 + ∆d2
1 d2 − d2

12 · · · d2 − d2
1n

d2 − d2
21 d2 + ∆d2

2 · · · d2 − d2
2n

...
...

. . .
...

d2 − d2
n1 d2 − d2

n2 · · · d2 + ∆d2
n








0

0








d2 + ∆d2
1 d2 − d2

12 · · · d2 − d2
1n

d2 − d2
21 d2 + ∆d2

2 · · · d2 − d2
2n

...
...

. . .
...

d2 − d2
n1 d2 − d2

n2 · · · d2 + ∆d2
n
























where

• d2 disappears when Hx is formulated in an S-system

• ∆d2
i is a parameter per point i

• d2
ij is a function of the relative positions of points i and j, e.g. d2

ij = c0 + c1lij

Remark: c0, c1, and ∆d2
i can be considered parameters θ in Hx(θ).

6.4 A LSQ-Approach for Estimating θ in Hx(θ)

Our objective is to estimate θ such that the difference Qx − Hx(θ) is minimal in a least-squares
sense. We formulate the following linearized model of observation equations:

E{vec[Qx − Hx(θ0)]} = vec(∂αHx(θ0)∆θα) (6.10)
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Note: both Qx and Hx(θ) should be defined in the same S-system.
We will take the unit matrix as weight matrix. Then, according to Teunissen [1988] the system

of normal equations reads:

1

2
tr[∂βHx(θ0)]∆θ̂β =

1

2
tr[∂αHx(θ0)∂βHx(θ0)[Qx − Hx(θ0)]] (6.11)

If the model is linear :

Hx(θ) =
∑

α

Hαθα (6.12)

We get instead of (6.11):

1

2
tr[HαHβ ]θ̂β =

1

2
tr[HαQx] (6.13)

A disadvantages of the above procedure is that θ̂β is not independent of the chosen S-system.

6.5 Our Proposal

Let x̂ be the least-squares solution to

E{y} = Ax D{y} = Qy (6.14)

and define

∆x = x̂ − E{x̂} (6.15)

Then:

E{∆x∆x∗} = Qx̂ (6.16)

Although (6.16) holds we will consider the model

E{∆x∆x∗} = Hx(θ) (6.17)

Note: both Qx̂ and Hx(θ) in the same S-system.
This gives after linearization

E{vec[∆x∆x∗ − Hx(θ0)]} = vec(∂αHx(θ0))∆θα (6.18)

Taking the inverse of (6.16) as weight matrix, application of our theory gives:

1

2
tr[∂αHx(θ0)Q

−1
x̂ ∂βHx(θ0)Q

−1
x̂ ]∆θ̂

β
=

1

2
tr[∂αHx(θ0)Q

−1
x̂ [∆x∆x∗ − Hx(θ0)]Q

−1
x̂ ] (6.19)

Unfortunately this result cannot be used since ∆x∆x∗ is unknown in general. However, its ex-
pectation E{∆x∆x∗} is known [see (6.16)]. We therefore propose to replace ∆x∆x∗ in (6.19) by
its expectation Qx̂ [This is not an unusual procedure; think of eccentrincity errors and Kalman
filtering]. We then get instead of (6.19):

1

2
tr[∂αHx(θ0)Q

−1
x̂ ∂βHx(θ0)Q

−1
x̂ ]∆θ̂

β
=

1

2
tr[∂αHx(θ0)Q

−1
x̂ [Qx̂ − Hx(θ0)]Q

−1
x̂ ] (6.20)

If the model is linear :

Hx(θ) =
∑

α

Hαθα (6.21)

we get instead of (6.20):

1

2
tr[HαQ−1

x̂ HβQ−1
x̂ ]θ̂β =

1

2
tr[HαQ−1

x̂ ] (6.22)

Compare this results with (6.13). The above described method has the following advantages:
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• All the least-squares diagnostics can be applied.

• No generalized eigenvalue problem needs to be solved for.

• The estimate θ̂β is independent of the chosen S-system. This can be seen as follows. Let R
be a square and regular matrix. Then:

tr[RHαR∗[RQx̂R∗]−1RHβR∗[RQx̂R∗]−1] = tr[HαQ−1
x̂ HβQ−1

x̂ ]

tr[RHαR∗[RQx̂R∗]−1] = tr[HαQ−1
x̂ ]

The normal matrix 1
2 tr[HαNHβN ] is singular if and only if there exist xα, α = 1, 2, ..., n such

that:

1

2
xαtr[HαNHβN ]xβ = 0 (6.23)

or

1

2
tr[HαxαNHβxβN ] = 0 (6.24)

If λi, i = 1, 2, ..., n are the eigenvalues of HαxαN then

1

2
tr[HαxαNHβxβN ] =

n∑

i=1

λ2
i (6.25)

Hence, (6.24) can only be true if

λi = 0 ∀ i = 1, 2, ..., n (6.26)

or if

HαxαN = 0 (6.27)

For instance: ∃ xα such that R(Hαxα) ⊂ N(N)

Example A closed levelling loop with 3 observations.

N =





2 −1 −1
−1 2 −1
−1 −1 2



 ∆d2H1 =





∆d2 0 0
0 ∆d2 0
0 0 ∆d2



 c1H2 =





0 −c1ℓ −c1ℓ
−c1ℓ 0 −c1ℓ
−c1ℓ −c1ℓ 0



(6.28)

Remark: This singularity does not occur in the set up of 6.4.

No S-transformation needs to be applied a priori. This can be seen as follows: Substitution of

Hα := (V ∗
0 S)−1V ∗

0 HαV0(S
∗V0)

−1 and Q−1
x̂ := S∗A∗Q−1

y AS (6.29)

into (15) gives

1

2
tr[(V ∗

0 S)−1V ∗
0 HαV0(S

∗V0)
−1.S∗A∗Q−1

y AS(V ∗
0 S)−1V ∗

0 HβV0(S
∗V0)

−1.S∗A∗Q−1
y AS]θ̂β =

1

2
tr[(V ∗

0 S)−1V ∗
0 HαV0(S

∗V0)
−1.S∗A∗Q−1

y AS] (6.30)

or

1

2
tr[(V ∗

0 S)−1V ∗
0 HαA∗Q−1

y AHβA∗Q−1
y AS]θ̂β =

1

2
tr[(V ∗

0 S)−1V ∗
0 HαA∗Q−1

y AS] (6.31)

or

1

2
tr[HαA∗Q−1

y AHβA∗Q−1
y A]θ̂β =

1

2
tr[HαA∗Q−1

y A] (6.32)

Note that Qx̂ is not needed explicitly. Only the (reduced) normal matrix A∗Q−1
y A is needed.
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Remark: It has been assumed that the normal matrix is invertible.

Remark: In practice one will have Hx(θ) = H0 +
∑

Hαθα instead of Hx(θ) =
∑

Hαθα.

Remark: In the special case that Hx(θ) = Hθ we get

θ̂ =

∑

i λi
∑

i λ2
i

(6.33)

If θ̂ = 1 then the precision test is accepted. with:

|HA∗Q−1
y A − λiI| = 0 (6.34)

If we write this as |(A∗Q−1
y A)− − µiH | = 0, (6.33) becomes

θ̂ =

∑

i
1
µi

∑

i
1

µ2

i

(6.35)

From this follows that:

θ̂ =

1
µmax

[
∑

i
µmax

µi
]

1
µ2

max
[
∑

i
µ2

max

µ2

i

]
< µmax (6.36)

since

[
∑

i

µ2
max

µ2
i

] > [
∑

i

µmax

µi
] (6.37)

Thus:

θ̂ < µmax (6.38)

Remark: With (6.32) one can still study partial networks instead of the total network. In this
case one needs the reduced normal matrix.

Remark: If one considers instead of ∆x the (estimable) linear functions B∗∆x, then (6.22) should
be replaced by:

1

2
tr[B∗HαB[B∗Qx̂B]−1B∗HβB[B∗Qx̂B]−1]θ̂β =

1

2
tr[B∗HαB[B∗Qx̂B]−1] (6.39)

6.6 On the Teststatistics Tm−n & w

According to previous section, the solution of the minimization problem

min
θ

T (θ) (6.40)

with

T (θ) = [vec(Qx − Hαθα)]∗Q−1
x ⊗ Q−1

x [vec(Qx − Hαθα)] (6.41)

is given by

θ̂β = [tr(HαQ−1
x HβQ−1

x )]−1tr(HαQ−1
x ) (6.42)

If we use the notation

Ĥ = Hαθ̂α (6.43)
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it follows with (6.41) that:

T (θ̂) = [vec(Qx − Ĥ)]∗Q−1
x ⊗ Q−1

x [vec(Qx − Ĥ)] (6.44)

with the property:

tr(ABCD) = vec(D)∗(A ⊗ C∗)vec(B∗) (6.45)

we may write (6.44) as

T (θ̂) = tr[Q−1
x (Qx − Ĥ)Q−1

x (Qx − Ĥ)] (6.46)

or as

T (θ̂) = tr[(I − Q−1
x Ĥ)(I − Q−1

x Ĥ)] =

n∑

i=1

(1 − λ̂i)
2 (6.47)

where λ̂i, i = 1, 2, ..., n are the eigenvalues of

|Qx − λ̂iĤ| = 0 (6.48)

Although expression (6.47) looks already rather simple, it can be simplified still a bit further. From
(6.47) follows that

T (θ̂) = tr[In − 2Q−1
x Ĥ + Q−1

x ĤQ−1
x Ĥ ] = n − 2tr(Q−1

x Ĥ) + tr(Q−1
x ĤQ−1

x Ĥ) (6.49)

Substitution of (6.43) gives

T (θ̂) = n − 2tr(Q−1
x Hα)θ̂α + θ̂αtr(Q−1

x HαQ−1
x Hβ)θ̂β (6.50)

But according to (6.42):

tr(Q−1
x HαQ−1

x Hβ)θ̂β = tr(HαQ−1
x ) (6.51)

Substitution of (6.51) into (6.50) gives:

T (θ̂) = n − 2tr(Q−1
x Hα)θ̂α + tr(HαQ−1

x )θ̂α (6.52)

From this follows that:

T (θ̂) = n − tr(Q−1
x Hα)θ̂α

= n − tr(Q−1
x Ĥ) (6.53)

= n −
n∑

i=1

λ̂i (6.54)

Remark: For leveling networks one should take n of (6.54) equal to n − 1, and for 2D planer
networks one should take n of (6.54) equal to 2n− 4.

Remark: In the special case that H(θ) = Hθ, we have θ̂ =
∑

i λi/
∑

i λ2
i , with |Q−1

x H −λI| = 0,
and therefore

T (θ̂) = n − (
∑

i λi)
2

(
∑

i λ2
i )

(6.55)

Remark: Note that we may write

tr[Q−1
x Ĥ ] = tr[A∗Q−1

y AĤ ] = tr[AĤA∗Q−1
y ] (6.56)

If Ĥ is close to Qx, then AĤA∗Q−1
y is close to PA, and we know that tr(PA) = n.
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Remark: A comparison of (6.47) and (6.54) shows that
∑n

i=1 λ̂i =
∑n

i=1 λ̂2
i or tr(Q−1

x Ĥ) =

tr(Q−1
x ĤQ−1

x Ĥ).

Remark: Expression (6.47) [but not (6.54)] can probably be used for testing the precision. Let
H = Hαθα be the criterion matrix with α = 1, 2, ..., p. The following criterion may then be useful:

tr[(I − Q−1
x H)(I − Q−1

x H)]

n(n + 1)/2 − p
=̇ 1 (6.57)

We will now derive the equivalent of the w-teststatistic. We have

c∗yi
Q−1

y QêQ
−1
y cyi

= [vec(eie
∗
j + eje

∗
i )]

∗[Q−1
x ⊗ Q−1

x − (Q−1
x ⊗ Q−1

x )vec(Hα)

(tr[Q−1
x HβQ−1

x Hα])−1vec(Hβ)∗(Q−1
x ⊗ Q−1

x )][vec(eie
∗
j + eje

∗
i )] (6.58)

or

c∗yi
Q−1

y QêQ
−1
y cyi

= tr[Q−1
x (eie

∗
j + eje

∗
i )Q

−1
x (eie

∗
j + eje

∗
i )] − tr[Q−1

x HαQ−1
x (eie

∗
j + eje

∗
i )]

[tr(Q−1
x HβQ−1

x Hα)]−1tr[Q−1
x (eie

∗
j + eje

∗
i )Q

−1
x Hβ ] (6.59)

or

c∗yi
Q−1

y QêQ
−1
y cyi

= 2(e∗jQ
−1
x ei)

2 + 2e∗i Q
−1
x eie

∗
jQ

−1
x ej −

4 [e∗jQ
−1
x HαQ−1

x ei][tr(Q
−1
x HβQ−1

x Hα)]−1[e∗jQ
−1
x HβQ−1

x ei] (6.60)

and

c∗yi
Q−1

y ê = [vec(eie
∗
j + eje

∗
i )]

∗Q−1
x ⊗ Q−1

x [vec(Qx − Hαθ̂α)]

= tr[Q−1
x (Qx − Hαθ̂α)Q−1

x (eie
∗
j + eje

∗
i )]

= 2e∗j(I − Hαθ̂αQ−1
x )ei (6.61)

= 2δij − 2e∗i Q
−1
x Hαθ̂αej

From (6.60) and (6.62) follows that:

w =
δij − e∗i Q

−1
x Hαθ̂αej

s
(6.62)

with

s = [(e∗jQ
−1
x ei)

2 + e∗i Q
−1
x eie

∗
jQ

−1
x ej − 2[e∗jQ

−1
x HαQ−1

x ei]

[tr(Q−1
x HβQ−1

x Hα)]−1[e∗jQ
−1
x HβQ−1

x ei]]
1/2 (6.63)

Remark: This result can possibly be used for testing whether individual elements of Qx are close
enough to the corresponding elements of Hαθ̂α.

Wrong! The correct answer is:

w =
a∗[Q−1

x − Q−1
x ĤQ−1

x ]a

[(a∗Q−1
x a)2 − (a∗Q−1

x HαQ−1
x a)(tr[Q−1

x HβQ−1
x Hα])−1(a∗Q−1

x HβQ−1
x a)]1/2

(6.64)

or with ā = Q−1
x a:

w =
ā∗[Qx − Ĥ ]ā

[(ā∗Qxā)2 − (ā∗Hαā)(tr[Q−1
x HβQ−1

x Hα])−1(ā∗Hβ ā)]1/2
(6.65)

Note that the equation (6.65) can also be written as:

w =

ā∗Qxā

ā∗Ĥā
− 1

[

( ā∗Qxā

ā∗Ĥā
)2 − ā∗Hαā

ā∗Ĥā
(tr[Q−1

x HβQ−1
x Hα])−1 ā∗Hαā

ā∗Ĥā

]1/2
(6.66)
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If we use the approximation

w =
c∗yQ

−1
y ê

(c∗yQ−1
y QêQ

−1
y cy

)1/2=̇
c∗yQ−1

y ê

(c∗yQ−1
y cy

)1/2 (6.67)

Then equation (6.66) reduces to

w=̇1 − ā∗Ĥā

ā∗Qxā
(6.68)

Hence:

wmax=̇1 − 1

λmax
(6.69)

6.7 On the Choice of a Scaled Unit Weight Matrix

According to previous subsections, the following holds:

1

2
tr[HαQ−1

x HβQ−1
x ]θ̂

β
=

1

2
tr[HαQ−1

x ∆x∆x∗Q−1
x ] (6.70)

where both H and Qx are in the same S-system excluding the S-basis. Thus for an H and a Qx in
an arbitrary S-system including the S-basis, equation (6.70) should be read as:

1

2
tr[(V ∗

0 S)−1V ∗
0 HαV0(S

∗V0)
−1.S∗A∗Q−1

y AS.(V ∗
0 S)−1V ∗

0 HβV0(S
∗V0)

−1.S∗A∗Q−1
y AS]θ̂

β

=
1

2
tr[(V ∗

0 S)−1V ∗
0 HαV0(S

∗V0)
−1.S∗A∗Q−1

y AS.∆x∆x∗.S∗A∗Q−1
y AS] (6.71)

In this equation matrix S∗A∗Q−1
y AS plays the role of weight matrix. Thus (S∗A∗Q−1

y AS)−1 plays
the role of variance matrix. We will now investigate the consequences if one replaces or approximates
(S∗A∗Q−1

y AS)−1 by

[(V ∗
0 S)−1V ∗

0 σ2IV0(S
∗V0)

−1] (6.72)

If we replace S∗A∗Q−1
y AS in (6.71) by the inverse of (6.72) we get:

1

2
tr[(V ∗

0 S)−1V ∗
0 HαV0(S

∗V0)
−1.(S∗V0)(σ

2V ∗
0 V0)

−1(V ∗
0 S)...

...(V ∗
0 S)−1V ∗

0 HβV0(S
∗V0)

−1.(S∗V0)(σ
2V ∗

0 V0)
−1(V ∗

0 S)]θ̂
β

=

1

2
tr[(V ∗

0 S)−1V ∗
0 HαV0(S

∗V0)
−1.(S∗V0)(σ

2V ∗
0 V0)

−1(V ∗
0 S).∆x∆x∗.(S∗V0)(σ

2V ∗
0 V0)

−1(V ∗
0 S)] (6.73)

or

1

2
σ−4tr[V ∗

0 HαV0(V
∗
0 V0)

−1V ∗
0 HβV0(V

∗
0 V0)

−1]θ̂
β

=

1

2
σ−4tr[V ∗

0 HαV0(V
∗
0 V0)

−1V ∗
0 S.∆x∆x∗S∗V0(V

∗
0 V0)

−1] (6.74)

Note that the projector

PR(A∗),N(A) = V0(V
∗
0 V0)

−1V ∗
0 = I − V1(V

∗
1 V1)

−1V ∗
1 (6.75)

is the S-transformation that corresponds with the minimum-norm solution. With (6.75), equation
(6.74) may be written as

tr[HαPHβP ]θ̂
β

= tr[HαPS.∆x∆x∗S∗P ] (6.76)

If we replace ∆x∆x∗ by its expectation (S∗A∗Q−1
y AS)−1, we get

tr[HαPHβP ]θ̂
β

= tr[HαPS(S∗A∗Q−1
y AS)−1S∗P ] (6.77)
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or with Qx = S(S∗A∗Q−1
y AS)−1S∗,

tr[HαPHβP ]θ̂
β

= tr[HαPQxP ] (6.78)

This shows that:

1. The solution is independent of the chosen S-system, because of the occurrence of P in (6.78),

2. The solution corresponds to the case that H and Qx are defined in the minimum-norm S-
system.

Remark: Because of the structure of the normal matrix in (6.78), it will be possible for some
cases to solve (6.78) analytically. For example consider a leveling network of n points with the
simplest substitute matrix H . Then

H = ∆d2In, and P = In − e(e∗e)−1e∗ (6.79)

with

e = (1, 1, ..., 1)∗ (6.80)

Substitution of (6.79) into (6.78) gives

tr[P ]∆d̂2 = tr[PQxP ] (6.81)

or

∆d̂2 =
tr[PQxP ]

n − 1

σ2
∆d̂2

=
2σ4

n − 1

(6.82)

Note 1: Here we have a link with the minimum trace.

Note 2: This ∆d̂2 is related to Helmert’s mittler punktfehler.
We will now derive the with (6.78) corresponding teststatistic Tm−n. We have

T (θ̂) = [vec((V ∗
0 S)−1V ∗

0 (Qx − Ĥ)V0(S
∗V0)

−1)]∗[(V ∗
0 S)−1V ∗

0 σ2IV0(S
∗V0)

−1]−1 ⊗
....[(V ∗

0 S)−1V ∗
0 σ2IV0(S

∗V0)
−1]−1[vec((V ∗

0 S)−1V ∗
0 (Qx − Ĥ)V0(S

∗V0)
−1] (6.83)

or

T (θ̂) = tr
{

[(V ∗
0 S)−1V ∗

0 σ2IV0(S
∗V0)

−1]−1[(V ∗
0 S)−1V ∗

0 (Qx − Ĥ)V0(S
∗V0)

−1]

.... [(V ∗
0 S)−1V ∗

0 σ2V0(S
∗V0)

−1]−1[(V ∗
0 S)−1V ∗

0 (Qx − Ĥ)V0(S
∗V0)

−1]
}

(6.84)

or

T (θ̂) = σ−4tr[P (Qx − Ĥ)P (Qx − Ĥ)] (6.85)

We may write (6.85) also as

T (θ̂) = σ−4
{

tr[PQxPQx] − tr[PQxPĤ] − tr[PĤPQx] + tr[PĤPĤ ]
}

= σ−4
{

tr[PQxPQx] − 2tr[PQxPĤ ] + tr[PĤPĤ]
}

(6.86)
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And with (6.78), this simplifies to

T (θ̂) = σ−4tr[PQx(PQx − PĤ)] (6.87)

We will now derive with (6.78) the corresponding teststatistic w: Let us assume that we want to
test how well the variance a∗Qxa of an estimable function a∗x fits the model value a∗Ĥa. Then,
the following two hypotheses should be considered:







H0 : E{vec(∆x∆x∗)} = vec(Hα)θα

HA : E{vec(∆x∆x∗)} = vec(Hα)θα + vec(aa∗)
(6.88)

These hypotheses should actually be read as:






H0 : E{vec[S∗A∗Q−1
y AS]} = vec[(V ∗

0 S)−1V ∗
0 HαV0(S

∗V0)
−1]θα

HA : E{vec[S∗A∗Q−1
y AS]} = vec[(V ∗

0 S)−1V ∗
0 HαV0(S

∗V0)
−1]θα

+ vec[(V ∗
0 S)−1V ∗

0 aa∗V0(S
∗V0)

−1]

(6.89)

As covariance matrix, we take

[(V ∗
0 S)−1V ∗

0 σ2IV0(S
∗V0)

−1] ⊗ [(V ∗
0 S)−1V ∗

0 σ2IV0(S
∗V0)

−1] (6.90)

with (6.89) and (6.90), it follows that:

c∗yQ−1
y QêQ

−1
y cy = vec[(V ∗

0 S)−1V ∗
0 aa∗V0(S

∗V0)
−1]∗[[(V ∗

0 S)−1V ∗
0 σ2V0(S

∗V0)
−1]−1 ⊗

[(V ∗
0 S)−1V ∗

0 σ2V0(S
∗V0)

−1]−1 − [(V ∗
0 S)−1V ∗

0 σ2V0(S
∗V0)

−1]−1 ⊗ [(V ∗
0 S)−1V ∗

0 σ2V0(S
∗V0)

−1]−1

vec[(V ∗
0 S)−1V ∗

0 HαV0(S
∗V0)

−1][tr(HαPHβP )]−1vec[(V ∗
0 S)−1V ∗

0 HβV0(S
∗V0)

−1]∗

[(V ∗
0 S)−1V ∗

0 σ2V0(S
∗V0)

−1]−1 ⊗ [(V ∗
0 S)−1V ∗

0 σ2V0(S
∗V0)

−1]−1]vec[(V ∗
0 S)−1V ∗

0 aa∗V0(S
∗V0)

−1]

or

c∗yQ−1
y QêQ

−1
y cy =

1

2
tr

{
(S∗V0σ

−2(V ∗
0 V0)

−1V ∗
0 S)(V ∗

0 S)−1V ∗
0 aa∗V0(S

∗V0)
−1 ...

(S∗V0)σ
−2(V ∗

0 V0)
−1V ∗

0 S)(V ∗
0 S)−1V ∗

0 aa∗V0(S
∗V0)

−1
}

−1

2
tr

{
(S∗V0)σ

−2(V ∗
0 V0)

−1V ∗
0 S.(V ∗

0 S)−1V ∗
0 HαV0(S

∗V0)
−1 ...

(S∗V0)σ
−2(V ∗

0 V0)
−1V ∗

0 S.(V ∗
0 S)−1V ∗

0 aa∗V0(S
∗V0)

−1
}

2σ4[tr(HαPHβP )]−1...

1

2
tr

{
(S∗V0)σ

−2(V ∗
0 V0)

−1V ∗
0 S.(V ∗

0 S)−1V ∗
0 aa∗V0(S

∗V0)
−1 ...

(S∗V0)σ
−2(V ∗

0 V0)
−1V ∗

0 S.(V ∗
0 S)−1V ∗

0 HβV0(S
∗V0)

−1
}

(6.91)

or

c∗yQ−1
y QêQ

−1
y cy =

1

2
σ−4(a∗Pa)2 − 1

2
σ−4(a∗PHαPa)2σ4(tr[HαPHβP ])−1 1

2
σ−4(a∗PHβPa)

=
1

2
σ−4

{
(a∗a)2 − (a∗Hαa)(tr[HαPHβP ])−1(a∗Hβa)

}
(6.92)

since a is an estimable function, i.e., Pa = a.

c∗yQ−1
y ê =

1

2
vec[(V ∗

0 S)−1V ∗
0 aa∗V0(S

∗V0)
−1]∗[(S∗V0)σ

−2(V ∗
0 V0)

−1(V ∗
0 S)] ⊗

[(S∗V0)σ
−2(V ∗

0 V0)
−1(V ∗

0 S)][vec[(V ∗
0 S)−1V ∗

0 (Qx − Ĥ)V0(S
∗V0)

−1]] (6.93)

or

c∗yQ−1
y ê =

1

2
tr[(S∗V0)(V

∗
0 V0)

−1(V ∗
0 S).(V ∗

0 S)−1V ∗
0 (Qx − Ĥ)V0(S

∗V0)
−1.

(S∗V0)(V
∗
0 V0)

−1(V ∗
0 S).(V ∗

0 S)−1V ∗
0 aa∗V0(S

∗V0)
−1]σ−4 (6.94)
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or

c∗yQ−1
y ê =

1

2
σ−4a∗P (Qx − Ĥ)Pa =

1

2
σ−4a∗(Qx − Ĥ)a (6.95)

From (6.92) and (6.95) follows that:

w =
1√
2σ2

.
a∗(Qx − Ĥ)a

[(a∗a)2 − (a∗Hαa)(tr[HαPHβP ])−1(a∗Hβa)]1/2
(6.96)

Example: If H = ∆d2In and P = In − e(e∗e)e∗, then

w =
1√
2σ2

.
a∗(Qx − Ĥ)a

a∗a
.

(
n − 1

n − 2

)1/2

(6.97)

Note that wmax in this case is related to the generalized eigenvalue problem |Qx −λĤ | = 0. Hence,
we have established a like with the ordinary procedure of the generalized eigenvalue problem

wmax =
1√
2σ2

.

(
n − 1

n − 2

)1/2

(λmax − 1)∆d̂2 (6.98)

47



Appendix A

Backgrounds

A.1 The Moments of t ∼ N(0, Qt)

The moment generating function of t is defined as

Φ(s) = E{exp[s∗t]} =

∫

pt(t) exp[s∗t]dt, (A.1)

with

pt(t) = (2π)−1/2|Qt|−1/2 exp[−1

2
t∗Q−1

t t] (A.2)

Substitution of (A.2) into (A.1) gives

Φ(s) =

∫

(2π)−1/2|Qt|−1/2 exp[−1

2
{t∗Q−1

t t − 2s∗t}]dt, (A.3)

Substitution of

exp[−1

2
{t∗Q−1

t t − 2s∗t}] = exp[−1

2
(t − Qts)

∗Q−1
t (t − Qts)] exp[−1

2
s∗Qts] (A.4)

into (A.3) gives

Φ(s) = exp[
1

2
s∗Qts] (A.5)

From (A.1) follows that:

∂α
i1,...,iα

Φ(s) =

∫

pt(t)∂
α
i1,...,iα

[exp(s∗t)]dt, i1, ..., iα = 1, 2, ..., b (A.6)

Substitution of

∂α
i1,...,iα

[exp(s∗t)] = ti1ti2 ...tiα
exp(s∗t) (A.7)

into (A.6) gives:

∂α
i1,...,iα

Φ(s) =

∫

pt(t)ti1ti2 ...tiα
exp(s∗t)dt (A.8)

Evaluation at s = 0, shows that

∂α
i1,...,iα

Φ(s)
∣
∣
s=0

= E{ti1ti2 ...tiα
} (A.9)

If we write (A.5) in index notation like

Φ(s) = exp[
1

2
qijsisj ], i, j = 1, 2, ..., b (A.10)
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it follows that

∂iΦ(s)|s=0 = 0, ∂2
ijΦ(s)

∣
∣
s=0

= qij

∂3
ijkΦ(s)

∣
∣
∣
s=0

= 0, ∂4
ijklΦ(s)

∣
∣
∣
s=0

= qijqkl + qikqjl + qilqjk
(A.11)

This, together with (A.9) shows that

E{ti} = 0, E{titj} = qij

E{titjtk} = 0, E{titjtktl} = qijqkl + qikqjl + qilqjk
(A.12)

A.2 The Variance Matrix of vec(tt∗), with t ∼ N(0, Qt)

First some standard results on the vec-operator and the Kronecker product. Consider a matrix
A = [aij ] of order m × n and a matrix B = [bij ] of order r × s. The Kronecker product of the two
matrices, denoted by A ⊗ B is defined as the partitioned matrix

A ⊗ B =








a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB








(A.13)

A⊗B is seen to be a matrix of order mr × ns. It has mn blocks, the ijth block is the matrix aijB
of the order r × s. The following properties hold for the Kronecker product:

vec(ABC) = (C∗ ⊗ A)vec(B)

vec(A)∗vec(B) = trace(A∗B)

trace(ABCD) = vec(D∗)∗(C∗ ⊗ A)vec(B)

= vec(D)∗(A ⊗ C∗)vec(B∗)

vec(ab∗) = b ⊗ a

(A ⊗ B)∗ = A∗ ⊗ B∗

rank(A ⊗ B) = rank(A)rank(B)

(A ⊗ B)−1 = A−1 ⊗ B−1

trace(A ⊗ B) = trace(A)trace(B)

(A1 + A2) ⊗ B = A1 ⊗ B + A2 ⊗ B

A ⊗ (B1 + B2) = A ⊗ B1 + A ⊗ B2

(A1A2) ⊗ (B1B2) = (A1 ⊗ B1)(A2 ⊗ B2)

(A.14)

The variance matrix of vec(tt∗) consists of terms like

E{[titj − E{titj}][tktl − E{tktl}]} i, j, k, l = 1, 2, ..., b (A.15)

Since

E{[titj − E{titj}][tktl − E{tktl}]} = E{titjtktl} − E{titj}E{tktl} (A.16)

substitution of (A.12) gives

E{[titj − E{titj}][tktl − E{tktl}]} = qikqjl + qilqjk (A.17)

From (A.17) follows that

E{[tit − E{tit}][tkt − E{tkt}]∗} = e∗i QtekQt + Qteke∗i Qt (A.18)
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with

ei = (0, ..., 0, 1, 0, ..., 0)
∗

(A.19)

From (A.18) follows that

Qvec(tt∗) =
∑

i

∑

k

eie
∗
k ⊗ e∗i QtekQt +

∑

i

∑

k

eie
∗
k ⊗ Qteke∗i Qt (A.20)

Since
∑

i

∑

k

eie
∗
k ⊗ e∗i QtekQt =

∑

i

∑

k

(e∗i Qtek)eie
∗
k ⊗ Qt (A.21)

and

Qt =
∑

i

∑

k

(e∗i Qtek)eie
∗
k (A.22)

it follows that
∑

i

∑

k

eie
∗
k ⊗ e∗i QtekQt = Qt ⊗ Qt (A.23)

With (A.18), it follows that

∑

i

∑

k

eie
∗
k ⊗ Qteke∗i Qt =

∑

i

∑

k

eie
∗
kI ⊗ Qteke∗i Qt

=
∑

i

∑

k

(eie
∗
k ⊗ Qt)(I ⊗ eke∗i Qt)

=
∑

i

∑

k

(Ieie
∗
k ⊗ QtI)(II ⊗ eke∗i Qt)

=
∑

i

∑

k

(I ⊗ Qt)(eie
∗
k ⊗ I)(I ⊗ eke∗i )(I ⊗ Qt)

or
∑

i

∑

k

eie
∗
k ⊗ Qteke∗i Qt = (I ⊗ Qt)(

∑

i

∑

k

eie
∗
k ⊗ eke∗i )(I ⊗ Qt) (A.24)

Matrix
∑

i

∑

k eie
∗
k ⊗ eke∗i has the following properties:

1.
∑

i

∑

k

eie
∗
k ⊗ eke∗i = symmetric (A.25)

2.

(
∑

i

∑

k

eie
∗
k ⊗ eke∗i )(

∑

j

∑

l

eje
∗
l ⊗ ele

∗
j ) = I (A.26)

3.

(
∑

i

∑

k

eie
∗
k ⊗ eke∗i )(a ⊗ b) = b ⊗ a (A.27)

4.

(
∑

i

∑

k

eie
∗
k ⊗ eke∗i )(A ⊗ B) = (B ⊗ A)(

∑

i

∑

k

eie
∗
k ⊗ eke∗i (A.28)
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Proof of (1): Trivial

Proof of (2):

(
∑

i

∑

k

eie
∗
k ⊗ eke∗i )(

∑

j

∑

l

eje
∗
l ⊗ ele

∗
j ) =

∑

i

∑

k

∑

j

∑

l

(eie
∗
keje

∗
l ⊗ eke∗i ele

∗
j )

=
∑

i

∑

k

∑

j

∑

l

(δkjδileie
∗
l ⊗ eke∗j)

=
∑

i

∑

k

eie
∗
i ⊗ eke∗k

= (
∑

i

eie
∗
i ⊗

∑

k

eke∗k)

= I ⊗ I = I (A.29)

Proof of (3):

(
∑

i

∑

k

eie
∗
k ⊗ eke∗i )(a ⊗ b) =

∑

i

∑

k

eie
∗
ka ⊗ eke∗i b

=
∑

i

∑

k

akei ⊗ biek

= (
∑

i

biei) ⊗ (
∑

k

akek) = b ⊗ a (A.30)

Proof of (4): A =
∑

α aαe∗α; B =
∑

β bβe∗β;

(
∑

i

∑

k

eie
∗
k ⊗ eke∗i )(A ⊗ B) = (

∑

i

∑

k

eie
∗
k ⊗ eke∗i )(

∑

α

∑

β

aαe∗α ⊗ bβe∗β)

= (
∑

i

∑

k

eie
∗
k ⊗ eke∗i )(

∑

α

∑

β

(aα ⊗ bβ)(e∗α ⊗ e∗β))

=
∑

α

∑

β

bβ ⊗ aα(e∗α ⊗ e∗β)

=
∑

α

∑

β

bβ ⊗ aα[(
∑

i

∑

k

eie
∗
k ⊗ eke∗i )(eβ ⊗ eα)]∗

=
∑

α

∑

β

(bβ ⊗ aα)(e∗β ⊗ e∗α)
∑

i

∑

k

eie
∗
k ⊗ eke∗i

=
∑

α

∑

β

(bβe∗β ⊗ aαe∗α)(
∑

i

∑

k

eie
∗
k ⊗ eke∗i )

= (B ⊗ A)(
∑

i

∑

k

eie
∗
k ⊗ eke∗i ) (A.31)

Using (A.28) we may write (A.24) as
∑

i

∑

k

eie
∗
k ⊗ Qteke∗i Qt = (

∑

i

∑

k

eie
∗
k ⊗ eke∗i )(Qt ⊗ Qt) (A.32)

Substitution of (A.23) and (A.32) into (A.20) finally gives

Qvec(tt∗) = [I +
∑

i

∑

k

eie
∗
k ⊗ eke∗i ][Qt ⊗ Qt]

= [Qt ⊗ Qt][I +
∑

i

∑

k

eie
∗
k ⊗ eke∗i ] (A.33)

=
1

2
[I +

∑

i

∑

k

eie
∗
k ⊗ eke∗i ][Qt ⊗ Qt][I +

∑

i

∑

k

eie
∗
k ⊗ eke∗i ]
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A.3 The Singularity of Qvec

It will be clear that the matrix Qvec has to be singular. Since Qt ⊗ Qt is regular, the matrix

[I +
∑

i

∑

k

eie
∗
k ⊗ eke∗i ] (A.34)

has to be singular. Since (see also (A.25, A.26, A.27 and A.28))

[I +
∑

i

∑

k

eie
∗
k ⊗ eke∗i ][I +

∑

i

∑

k

eie
∗
k ⊗ eke∗i ] = 2[I +

∑

i

∑

k

eie
∗
k ⊗ eke∗i ] (A.35)

it follows that the matrix

Pb2×b2 =
1

2
[I +

∑

i

∑

k

eie
∗
k ⊗ eke∗i ] (A.36)

is a projector (idempotent). We will know derive some properties of the projector P . Since the rank
of a projector equals its trace, we have:

rank(P ) =
1

2
trace[Ib2 +

∑

i

∑

k

eie
∗
k ⊗ eke∗i ]

=
1

2
b2 +

1

2
trace[

∑

i

∑

k

eie
∗
k ⊗ eke∗i ]

=
1

2
b2 +

1

2

∑

i

∑

k

trace[eie
∗
k]trace[eke∗i ] (A.37)

=
1

2
b2 +

1

2

∑

i

∑

k

(trace[eie
∗
k])2

or

rank(P ) =
1

2
b(b + 1) (A.38)

From this follows that the dimension of the range space and null space of P are

dimR(P ) = 1
2b(b + 1)

dimN(P ) = b2 − 1
2b(b + 1) = 1

2b(b − 1)
(A.39)

Since

P (a ⊗ b) =
1

2
(a ⊗ b + b ⊗ a) (A.40)

and

a ⊗ b = vec(ba∗) (A.41)

it follows that

Pvec(ba∗) =
1

2
vec(ba∗ + ab∗) (A.42)

Let X be an arbitrary matrix of order b2 × b2 with column vectors xi, i = 1, 2, ..., b2. Then
X =

∑

i xie
∗
i and thus vec(X) =

∑

i vec(xie
∗
i ) =

∑

i ei ⊗ xi. This shows with (A.42) that

Pvec(X) =
1

2

∑

i

vec(xie
∗
i + eix

∗
i ) =

1

2
vec[

∑

i

xie
∗
i + (

∑

i

xie
∗
i )

∗] (A.43)
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or

Pvec(X) =
1

2
(X + X∗) (A.44)

From this follows that

Pvec(X) = vec(X) if X = X∗

Pvec(X) = 0 if X = −X∗

(A.45)

Thus the range space of P is spanned by vectors vec(X) with X symmetric, and the null space of
P is spanned by vectors vec(X), with X skew-symmetric. It will be clear from the above that the
null spaces of P and Qvec are identical. Thus

N(P ) = N(Qvec) (A.46)

Proof:
If x ∈ N(P ) → Px = 0 → (Qt ⊗ Qt)Px = 0 → Qvecx = 0 → x ∈ N(Qvec)

If x ∈ N(Qvec) → (Qt ⊗ Qt)Px = 0 → Px = 0 → x ∈ N(P )

A.4 The Solution

Consider the linear model

E{y} = Ax, D{y} = Qy (A.47)

Let T = [T ∗
1 T ∗

2 ]∗ be a square and full rank matrix. Then with (A.47):

E{
[

T1y
T2y

]

} =

[
T1A
T2A

]

x, D{
[

T1y
T2y

]

} =

[
T1QyT ∗

1 T1QyT ∗
2

T2QyT ∗
1 T2QyT ∗

2

]

(A.48)

Now assume that

N(Qy) = R(T ∗
2 ), R(T ∗

2 ) ⊂ N(A∗) (A.49)

Then with (A.48)

E{
[

T1y
T2y

]

} =

[
T1Ax

0

]

, D{
[

T1y
T2y

]

} =

[
T1QyT ∗

1 0
0 0

]

(A.50)

or

E{T1y} = T1Ax, D{T1y} = T1QyT
∗
1 (A.51)

The solution of this model reads:

x̂ = [A∗T ∗
1 (T1QyT

∗
1 )−1T1A]−1A∗T ∗

1 (T1QyT
∗
1 )−1T1y

Qx̂ = [A∗T ∗
1 (T1QyT

∗
1 )−1T1A]−1 (A.52)

If we translate the above model to our situation, then

R(T ∗
1 ) = R(P ), R(T ∗

2 ) = N(P ) = N(Qvec) (A.53)

Since R(T ∗
1 ) = R(P ), we have

P = T ∗
1 (T1T

∗
1 )−1T1 (A.54)
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Hence, with

Qvec = PQt ⊗ Qt = Qt ⊗ QtP (A.55)

we get

T ∗
1 (T1T

∗
1 )−1T1QvecT

∗
1 = Qt ⊗ QtT

∗
1 (A.56)

From this follows that

Q−1
t ⊗ Q−1

t T ∗
1 (T1T

∗
1 )−1 = T ∗

1 [T1QvecT
∗
1 ]−1 (A.57)

or

Q−1
t ⊗ Q−1

t T ∗
1 (T1T

∗
1 )−1T1 = T ∗

1 [T1QvecT
∗
1 ]−1T1 (A.58)

Hence

T ∗
1 [T1QvecT

∗
1 ]−1T1 = PQ−1

t ⊗ Q−1
t P (A.59)
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