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Introduction

This research memo should be seen as a first attempt to formulate an unified framework for the
adjustment and testing of both the functional and stochastic models. In this memo we concentrate
on the problem of estimating parts of the stochastic model. The unification is based on the method
of least-squares. Our idea, which is worked out in this memo, was to investigate weather it is
possible to use the method of least-squares adjustment also for the problem of variance component
estimation. This turns out to be the case. As a consequence, we have the possibility of applying
one estimation principle, namely our well-known and well understood method of least-squares, to
both the problem of estimating the functional model and stochastic model.

Delft, 1988

The present document is a reprint of the original 1988 MGP-report "Towards a Least-Squares
Framework for Adjusting and Testing of both Functional and Stochastic Models’. Since the theory
developed in this report is still considered to be relevant for many modern applications, it was
decided to produce a more accessible format of the report. The original format turned out to be
poorly reproducible electronically using modern day typesetting system. For the reprint we have
chosen to use the popular XTEXtypesetting system. I am greatful to AliReza Amiri-Simkooei who
took the painstaking task upon him to transform the original document into a I¥TEXversion. This
work is greatly acknowledged. To keep the flavor of the original report in tact (including its flaws),
the current document is a complete one-to-one reprint of the original version. The current document
is thus the I¥TEXreprint of the original report.

Delft, 2004



Chapter 1

The Model: y ~ N(Az,Qy)

1.1 Linear Unbiased Estimators (LUE’s)

Consider the linear model of observation equations:

E{y} = Az, Qy (1.1)

where A is assumed to have full rank and the covariance matrix of y is assumed to be positive
definite. Any linear unbiased estimator of z can then be expressed as

&= (L*A)"'L*y, (1.2)

where the m x n matrix L is arbitrary provided that (L*A)~! exists. The property of unbiasedness
is easily verified with (1.1) and (1.2):

E{g} = (L*A)'L*E{y} = (L*A)"'L*Az =« (1.3)
The covariance matrix of &, @z, follows from applying the error propagation law to (1.2):
Qs = (L*A) ' L*QyL(A" L)~ (1.4)

The results (1.3) and (1.4) are independent of the distribution of y. Since the estimator & of (1.2)
is a linear estimator, it follows that if y is normally distributed then so is Z. In this case, the
distribution of Z is completely specified by its first two moments, i.e., x and Q3.

1.2 Least-Squares Estimators (BLUE’s)

Consider again model (1.1). The least squares (LSQ) estimator of z reads then:
b= (AQy A A Q; Yy, (1.5)

Comparison of (1.2) with (1.5) shows that the least-squares estimator is a linear unbiased estimator.
The corresponding choice for L is:

L=Q,'A (1.6)
substitution of (1.6) into (1.4) shows that the covariance matrix of the least-squares estimator reads
Qs = (A"Q; A)~! (L.7)

It can be shown that of all linear unbiased estimators, the LSQ-estimator has minimum variance. It
is therefore a minimum variance linear unbiased estimator, also known in the literatures as BLUE
(Best Linear Unbiased Estimator). This property of minimum variance is also independent of the
distribution of y.



Chapter 2

The Model: y ~ N(Az, >’ 62Qa)

2.1 Least-Squares Estimation of 02, a =1,2,--- ,p

Consider the linear model of observation equations:

p
E{y}=_A =, E{ly—Az)(y—Ax)"} => 02 Qa (2.1)
:;/1 mxn?X’l/ mxm a=1 7?;71

where A is assumed to have full rank and the matrices @), are assumed to be non-negative definite
such that the sum Y7 _, 02@Q, is non-negative definite. Note that in this case, we have two sets
of unknowns: the parameter vector x and the variance components 02, o = 1,2,...,p. The idea
of our least-squares approach to variance-component estimation is now to interpret the matrix
equation of (2.1), which represents the covariance matrix of y, as a set of m2-number of observation
equations. Thus, just like we interpret the functional model E{y} = Az as a set of m-number
of observation equations with the observation vector y, we are going to interpret the stochastic
model E{(y — Az)(y — Az)*} = P, 02Qq as a set of m?-number of observation equations
with the observation matrix (y — Az)(y — Az)*. There is however one complication: the matrix
(y — Ax)(y — Az)* is not observable since the vector x is unknown a-priori. This problem can
however be circumvented by transforming model (2.1) into a model of condition equations. In
terms of condition equations, model (2.1) reads

p
B*E{y} =0, E{B*yy*B} = Y 02B*QuB (2.2)
a=1
where matrix B satisfies
B*A =0, with rank(B) =15 (2.3)

Note that the unknown parameter vector x has now been eliminated from the model. If we define
the vector of misclosures, t, as

B*y =t, (2.4)
We can write (2.2) more compactly as
P
E{t} =0, B{tt"} =) 0ZB"Q.B (2.5)
a=1

Note that there is no adjustment needed for the first part, i.e., the functional part, of model (2.5).
There is no redundancy and there are no unknowns. We may therefore concentrate on the second
part, i.e., the stochastic part. The matrix equation of (2.5) can be recast into a set of b2-number



of observation equations by stacking the b-number of b x 1 column vectors of E{ttT} into a b% x 1
observation vector. This results in the linear model of observation equations:

4t (B*@Q1B)or -+ (B*QpB)n Ui
tot (B*Q1B)o2 -+ (B*QpB)o2 o
Bl 7 = . . 5 2 (2.6)
tyt (B*@1B)oy -+ (B*QpB)os o
————
b2x1 b2xp px1

The notation (B*QaB)o1, (B*QaB)o2, etc indicates the first, the second, etc column vector of the
matrix B*Q,B. If we denote the operator which transforms a matrix into a vector by vec, i.e.,

T11 Z12 ot Tin
To1 Loz v Tap .

vec | .. o=l o ma w12 o Ta2 o @m0 Tan | (2.7)
Tnl Tn2 ot Tnn

Equation (2.6) can be written more compactly as

Efvec(tt*)} = [ vee(B*Q1B) wec(B*Q2B) --- wvec(B*Q,B) | } (2.8)
2
P
Having established this results, we can now apply the estimation methods of Section I.1 and I.2.
That is, we can now compute linear unbiased estimators of the variance components and also, if
the covariance matrix of vec(tt*) is known, the least squares estimators (BLUE’s) of the variance

components. If we denote the covariance matrix of vec(tt*) by Quec, the least-squares estimators
of the variance components read:

a1 nip o Nip vee (B*Q1B)* Q. .vec(tt”)
Qg no1 - Ngy vec (B*Q2B)*Q; Lvec(tt*) 2.9)
Qi Np1 -+ Npp vec (B*QpB)* Qo vec(tt)
where
nw = vec(B*QrB)*Q, lvec(B*QB), k,1=1,2,--- ,p (2.10)

The above given least squares approach to variance component estimation has a number of attractive
features:

1. Since the approach is based on the least squares principle, we know without any additional
derivation that the estimators of (2.9) are unbiased and of minimum variance. These prop-
erties are independent of the distribution of vec(tt*). Note by the way that if ¢ is normally
distributed then vec(#t*) is certainly not normally distributed.

2. Since the approach is based on the least squares principle, the inverse of the normal matrix
in (2.9) automatically gives us the covariance matrix of the variance components.

3. Since the approach is based on the least squares principle, parts of standard software can be
used for computing the variance components.

4. Since the approach is based on the least squares principle, parts of our standard quality control
theory (unfortunately only a few parts) can be applied to model (2.8) and the result (2.9).

5. The linear model of observation equations (2.8) makes it in principle rather straightforward
to apply estimation methods other than least squares. One could in particular think of robust



estimation methods. This may turn out to be an important alternative if one wants to be
guarded against misspecifications in the functional part of model (2.8).

In order to insure non negative variance components, one can also incorporate non-negativity
constraints 02 >0, a = 1,2,---,p in the model (2.8).

6. Finally, the least squares approach to variance component estimation is also attractive from
a didactic point of view.

2.2 The Covariance Matrix of vec(tt")

In order to be able to compute the LSQ-estimators of the variance components in (2.9), we need
to know the b? x b? covariance matrix of vec(tt*), Quec. In fact we need its inverse, QL. In (2.9)

we silently assumed that this inverse exist. It is however not difficult to show that the covariance
matrix Qe is singular! Recall that

tyt
tot
vec(tt*) = ) (2.11)
tyt
Now define a b? x 1 vector as:
a1
a2
a= . (2.12)
ap

where a;, i = 1,2,--- ,b are vectors of order b x 1. Taking the inner product of (2.11) and (2.12)
gives

b ait aj
a*vec(tt*) = Zﬁiaﬁ = [ ty - 1 } =t* t (2.13)
= ait i
If we define
aj
A= | ¢ (2.14)
a,
we have
a*vec(tt™) = t* At (2.15)

It will be clear that the covariance matrix of vec(tt*) is singular, if vector a exist such that a*vec(tt*)
is zero. From (2.15) follows that such vectors indeed exist. For instance, if we take the b x b matrix
A to be skew-symmetric, i.e., A* = — A, then

At = (t"AL)" =t" A"t = —t" At (2.16)
and thus !
a*vec(tt™) = 0. (2.17)

It seems that the singularity of @, makes things drastically more complicated. We will return to
this matter in the next subsection. Let us however first derive the covariance matrix of vec(tt*).
The elements of the covariance matrix @Q,e. are by definition given as

vec

INote that this property is independent of the distribution of ¢



If we factor the right hand side we get

QUK = B{titth !y — B{t'YE{t" '}, .5,k 1=1,2,--- b (2.19)
This result shows that we need the second and the fourth multivariate central moments of the
random vector . If we assume that ¢ is normally distributed with mean zero and covariance matrix
Q)+, the first four multivariate central moments read

E{t'y = 0

E{t't} = ¢”
E{t'Yt"}y = 0 (2-20)
E{Ytty = ¢7¢" + ¢ + ¢Fq"

ijkl = 1,2, b

where ¢ represents Q; in index notation. For a proof of (2.20) we refer to Appendix A. With
(2.20), equation (2.19) can be written as

Qi = ¢ + d*¢" (2.21)

From this results follows that the b? x b? covariance matrix Que. is composed of b%-number b x b
submatrices, i.e., as

1.1. (2L2. . (QLb
Q2,1. Q2.2. . QQ.b.
Quec = : TR (2.22)
(9&1. (232. . (QAU
where the b x b submatrix Q""" is of the form
Q" = €] Qrex Qs + Qrere; Qy (2.23)

withef=(0 --- 010 --- 0).

2.3 The Singularity of @),.. and Its Consequences

The covariance matrix Q. is singular if non-zero b? x 1 vectors x exist such that

Quecr =0 (2.24)
If we partition = as
Z1
T2
T = (2.25)
Ty
where z, k=1,2,--- b are b x 1 vectors, we have with (2.23) that
b b
Z Q" Fay = Z[etheth + Qrere; Qt)rk (2.26)
k=1 k=1
This can also be written as
e; Qe
b . €?Qt€2
ZQM'% = ( Qixr1 Qiza - Qi ) . + ZQtek Qtiﬂk (2-27)
k=1 :
e;Qiep



or as

STQtei ITQt@i
b e5Qe; O
) 2&t€; 2%t
Z Qz.k.xk — Qt ( T1 X2 cee Ty ) : + Qt ( €1 €2 et € ) : (228)
k=1 | '
epQie; | Tp Qe
or as
el [ T3
b . es T35
Z Qz. ‘T = Qt ( 1 T ST ) : Qtei —+ Qt ( ey es e € ) . Qtei (229)
k=1 ) '
e L %
or with
X = ( 1 X2 s Tp ) and I = ( €1 €2 €y ) (2'30)
as
b .
Z Q" ap = QX Quei + QX Que} (2.31)
k=1
or finally as
b .
Do Q= Qu(X + X*)Ques, i =1,2,...,b (2.32)
k=1

This result shows that the vectors x = vec(X) which satisfy (2.24), are those vectors for which
the matrix X is skew-symmetric. These vectors therefore span the nullspace of the matrix Qyec-
Now that we know the nullspace of the matrix @Q,., we can again start from model (2.8) to derive
the least squares estimators. The fact that linear functions of the observations have zero variance,
implies in general that the original linear model with singular covariance matrix can be reduced
to a linear model with constraints and a non-singular covariance matrix. To see this, consider the
linear model

E{y} = Az, Q, (2.33)
If
T . N
Ty = with TyT3 =0 (2.34)
T

is a square and regular transformation matrix, then model (2.33) is equivalent to

le TlA TlQ T TlQ T
B{| 2|1 = vl v2 2.35
{[ng}} [TQA]“"”’ [TzQny 10, Ty (2.35)

If we assume that the row vectors of the matrix 75 span the nullspace of @y, i.e., Q,T5 = 0, then
(2.35) reduces to

B[54 )

And this model is indeed of the form of observation equations with constraints on the unknown
parameter vector x. It thus seems that for our variance-component estimation problem we are
dealing with a model of the form of (2.36). A closer look at our problem shows however that this
is only part of the story! Let us go back to the b2 x 1 vector x that span the nullspace of the
covariance matrix Q,e.. We know from (2.32) that these vectors are characterized by

| Quecvee(X) =0 with X* = —X (2.37)




These vectors are in the formulation of (2.36) the row vectors of the matrix T5. In (2.36) we
need to compute the matrix 7oA. For our variance-component estimation model (2.8) this means
that we need to compute the inner products of vec(X) with vec(B*Qn.B), a = 1,2,...,p. Thus
vece(X)*vee(B*Q.B), a«=1,2,...,p. Since

b
vee(X) vec(B*QaB) =Y 27 (B*QaB)o; (2.38)
i=1
it follows that
vec(X) vee(B*QaB) = trace(X*B*Q.B) (2.39)

Using the following two properties of the trace operator,
trace(AB) = trace(BA), and trace(A) = trace(A"), (2.40)
it follows that
trace(X*B*QoB) = trace(B*QoBX™) = trace[(B*Q.BX™*)*]
= trace(XB*QqB) = —trace(X*B*Q.B). (2.41)
Hence, with (2.39) we find that
vee(X) vee(B*QnB) =0, if X*=-X (2.42)

This is an important results, because it implies in the formulation of (2.36) that 7oA = 0. With
T>A = 0, model (2.36) reduces to

which is considerably simpler to solve than model (2.36). In our variance-component estimation
problem we are thus in fact dealing with a model of the form (2.43). The least-squares estimator
of 2 in model (2.43) reads:

&= [AT(MQTT) " T AI AT (ThQyT) ' Thy (2.44)

In our variance-component estimation problem matrix Q.. takes the place of @, of (2.44) and the
rows of the matrix T, are given by a linear independent set of vectors vec(X) for which X* = —X.
Since we assumed that 7775 = 0, the rows of matrix T are given by a linear independent set of
vectors vec(S) for which S = S*. This follows from the fact that vec(S)*vec(X) = 0 if § = S*
and X* = —X (Confer also (2.42). Since the subspace spanned by the vectors vec(X) for which
X* = —X has dimension b(b — 1)/2 if X is of order b x b, it follows that the dimension of the
subspace spanned by the vectors vec(S) for which S = S* is given by b(b + 1)/2 if S is of order
b x b. Thus, in our variance-component estimation problem the matrix T} of (2.44) is of order
b(b+ 1)/2 x b2. The matrix to be inverted, T1Q, Ty, is therefore of order b(b+1)/2 x b(b+ 1)/2.

We will now show how, without explicitly inverting the matrix T7Q,T}, the matrix A*TY
(TQ,Ty) T A and the vector A*T7(T1Q,T7) 'Tiy of (2.44) can be computed. Consider the
system of linear equations: B

Quu=1v (2.45)
We will assume that the system is consistent, i.e., that
v € R(Q,) = range- or column-space of @, (2.46)
If we reparameterize u as
u=Tra+T50, (2.47)
and substitute into (2.45) we get

QI =v, (2.48)



since Q,T5 = 0. Premultiplying (2.48) with 77 and inverting the results gives
a=(T1Q,T}) 'Tv (2.49)
Substitution into (2.47) gives then
w =T} (T1Q,T}) " Tyv + T3 8 (2.50)

This is the general solution of the consistent system (2.45). The first part on the right hand side
of (2.50) represents a particular solution of (2.45) and the second part represents the homogeneous
solution, i.e., the solution of Qyu = 0. When we premultiply (2.50) with A*, the homogeneous part
disappears since A*Ty = 0 and we get

A*u = ATy (ThQ,T5) ' T (2.51)

From this result we can conclude that any particular solution (2.45) when premultiplied with A*,
equals the righthand side of (2.51). This implies that if we are allowed to take v as one of the column
vectors of A, say the i*" column vector, then the i'" column vector of A*T} (T1Q,T;) 11 A is ob-
tained from premultiplying an arbitrary particular solution of (2.45) with v = Ae; by A*. Similarly,
if we are allowed to take v equal to y, then A*T}(T1Q,T;) 'Tiy is obtained from premultiplying
an arbitrary particular solution of (2._45) with v = y by A*. What remains to be shown is therefore
whether R(4) C R(Q,) and y € R(Q,). We will first proof R(A) C R(Q,). If v € R(A) then v
can be written as v = A\ for some A. Since ThA = 0 it follows that Thv = 0. Since T is square and
regular, and 11Ty = 0 it follows that v = T}§ for some §. In order to continue our proof we first
proof that

Qy =Ty (T TY) ' TiQ, Ty (WVTY) ™ 'Th (2.52)
clearly
Q,=TT*Q, T 'T (2.53)
with
o [ w7y 17
T = [ (TS T (2.54)
this gives
*\—1 * *\—1
Q=T [ OI R TIRT)™ O }T (2.55)

Since Q15 = 0, from (2.55) equation (2.52) follows. We now know that if v € R(A) then v = T7¢
for some §. But with (2.52) this implies that v € R(Q,). We have therefore shown that indeed
R(A) C R(Qy). The proof that y € R(Q,) goes along the same line. We know from (2.43) that
Toy = 0 = constant. Therefore y = T} for some 6. And again with (2.52) this implies that

Y € R(Qu)
We are now ready to apply the above to our problem of variance-component estimation. That
is, in analogy with (2.45) we consider the consistent system

Quecvec(U) = vee(V) (2.56)
where V is chosen as (see (2.8))
V =B*QuB, a=1,2,...,p and V = tt* (2.57)
According to (2.32) we can write Quecvec(Uy) = vec(B*QaB) as
QiU +US)Que; = B QaBes, i=1,2,...,b (2.58)
or as

Qit(Ua +U3)Q: = B*QuB (2.59)



or as
Ua + U5 = Q' B*QuBQ; (2.60)

From our previous discussion we know that any particular solution may be taken. One such par-
ticular solution is

1, _
Ua = 500 ' B QuBQ; (2.61)

The (8, @)-element of the normal matrix of our LSQ-solution of the variance-component estimation
problem reads therefore

1
vec(B*QpB) vec(Uy,) = §Uec(B*QﬁB)*vec(Q[lB*QQBQ;1) (2.62)
If we denote this element as ng, we have
1 * * — * _
Ngo = Evec(B QpB)*vec(Q; ' B*QaBQ; )
1
= Etmce(B*QgBQt_lB*QaBQt_l) (2.63)

In a similar way as above we can write Quecvec(U) = vec(tt*) with the help of (2.32) as

U+U* =Q; 'tt" Q" (2.64)
One particular solution is
U= 0! (2.65)
Therefore
vec(B*QpB)*vec(U) = %vec(B*QﬁB)*vec(Qt_lﬁ*Qt_l) (2.66)

If we denote this element as [; we have
1 AN e
ls = ivec(B QpB)*vec(Q; 't Q; 1)

1

= itrace(B*QgBQflﬁ*Ble)
1

= itrace(I*Qle*QﬁBQfli) (2.67)
1. _

= 52 Qy 'B QRpBQ, 12

With (2.63) and (2.68) we are now able to compute the least-squares solution of the linear model
(2.8) as:

gz n o onip | %i*Q{iB*QlBini
~ 1yx)— * -
for Nap -+ N2 5t"Q; B*Q2BQ; "t

2| P S K (2.68)

52 Mt e Ty Q' B*Q,BQ; 't
with

1 . . _
ng = Etrace(B QxBQ;'B*QBQ; ") (2.69)

This solution thus replaces (2.9) where it was assumed that Qe was invertible. Note that while
we took care of the singularity of Quec, we also reduced the order of the matrices which need to
be inverted. In (2.9) we had to invert an b* x b? matrix Quec, while in (2.68) we have to invert

10



the b x b matrix Q;. It should also be noted that, since we assumed ¢ to be normally distributed
when deriving the covariance matrix Qyec, the BLUE’s property of (2.68) is restricted to the class
of normal distributions. The LUE’s property of course still holds in general. Finally we note that
while the inverse of the normal matrix gives the covariance matrix of the variance-components, the
normal matrix itself is the covariance matrix of the p x 1 vector on the right hand side of (2.68).

Solution (2.68) can be used directly if the matrix B is available. In practice however one will
usually have the design matrix A available, instead of B. We shall therefore have to rewrite (2.68)
in terms of A. From (2.63) follows that

1 1
Nga = §trace(B*QgBQ{1B*QQBQ;1) = Etmce(QﬁBQ;lB*QaBQ;lB*) (2.70)
with
QuBQ;'B* =1— A(A*Q,'A) T A*Q, " = Py (2.71)
follows therefore
1 _ _
NBa = §trace(Qng 1Pj{QaQy 1Pj{) (2.72)
Similarly, it follows with
¢=Q,BQ;'B'y = Q,BQ; 't = Pyy (2.73)
from (2.68) that
1., 4.1, _ _
ly=58°Q,'QsQ, e = 5y P1Q, ' QsQ, ' Piy (2.74)

As we mentioned earlier, (2.72) is the covariance matrix of (2.74). With (2.72) and (2.74), solution
(2.68) can also be written as

~2 —1

o niy o Nip %é Q,'Q1Q,'e
05 |t e Mg §§*Q;1Q2Q;1§ (2.75)
Qﬁ Np1 -+ MNpp %E*leQpleé
with
1 _ _
NBa = §trace(Qng 1PanQy 1Pj) (2.76)

Let us as a simple application of (2.75), assume that there is only one variance component, i.e.,
p = 1. From (2.75) follows then

o 38°Q, ' Q1Q, e
g = 1 —1pl —1pl
strace(Q1Qy Py Q1Qy Px)

(2.77)

with
E{5?} =02 and o2, = 2
=1 ! 71 trace(QngleQle_le)

with Q, = 07Q1, P P+ = Px, and trace(Py) = rank(P3) = m — n, the above simplifies to:

(2.78)

4
207

Ak y—1 A
o Q¢
1 — m—n

, E{53} =0? and o?
m—n

Yy =
a1

(2.79)

These are the well-known results for the estimator of the variance factor of unit weight. Our least-
squares approach implies that the above estimator is optimal in the sense that it is unbiased and
has minimum variance! With our least-squares approach we now also have a unified framework in
which the well-known estimator of the variance-factor of unit weight finds its logical place. That
is, contrary to most lecture notes, we now do not have to introduce the estimator of the variance
factor of unit weight in an ad hoc way!
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2.4 Estimation of the Covariance Matrix from Repeated Mea-
surements

In our least-squares approach we so far considered only the estimation of the variance-components
02 of Qy = > _,062Q4. The whole procedure applies however equally well to the estimation
of covariance components. In fact, the least squares approach can also be used to estimate the
covariance matriz from repeated measurements.

From our formulae (2.68) and (2.75) we see that we need Q, = Y.»_, 62@Q, in order to compute
the estimators 2. But the components 02 of 32| 62Q, are unknown a-priori! One way out
of this dilemma is to perform iterations. One starts with an initial guess for the o2. Using these
values, one computes with either (2.68) or (2.75) estimates for the 2, which in the next cycle
are considered the improved initial guess for 2. And so on. The estimators obtained in each
cycle are unbiased estimators of the o2. However, they are not of minimum variance, not even
after convergence of the iterations. Convergence is achieved if the initial guess for o2 equals the
computed estimate QZ. But since the computed estimate QZ is not necessarily equal to 02, the
property of minimum variance may not necessarily be achieved. Hence, in practice one usually will
have to be satisfied with almost minimum variance unbiased estimators. It will be clear that the
amount in which the computed estimates lack the property of minimum variance, depends on the
initial guess and the number of iterations performed. The above discussion presupposes that the
variance components o2 are needed in order to compute the estimators Qi. Indeed, formulae (2.68)
or (2.75) tell us that we need @, = Y7 _, 02Q, and thus o2. There are however special cases
where the o2 are not needed a-priori! One such case we already met when discussing the estimator
for the variance-factor of unit weight. Another important case where this holds true occurs when
one wants to estimate the covariance matrix from repeated measurements.

consider the following model:

Bly)= A i, By~ By, — )} =oyle, ij=12...r (280
mx1 XT X1 mxm

Written out in full, this model reads

gl A X O'%I 0’12[ e 0'17«[
QQ A i) 0’12[ 0'%] e 0'27«[
E{yy=E{| 7 |} = , S, Q= . . , (2.81)
—— : .. : : : .. .
mrx1 v, A T, o1l ool - 03]
mrXxXnr nrxl mrXxXmr

The unknowns in this model are the nr x 1-number of elements of the vector x

Z1
€2

= (2.82)

Lo

——
nrx1

and the r(r + 1)/2 number of elements o2 and 0;; of the symmetric matrix

2
gy 012 -+ O1r
2
Q 012 03 o O2p (283)
2
O1r O2r 0,
TXTr

Using the Kronecker product ®, we can write (2.81) with (2.82) and (2.83) as

Elyt=I®A) = _, Q=0Q®I (2.84)
—~— X nrxl ’ X
mrx1 mrXxXnr mrXxmnr

12



We shall now apply (2.75) to model (2.84) in order to find unbiased and minimum variance estima-
tors for the elements of the matrix @ of (2.83). With appropriate matrices @, matrix @ can be
written as

r(r+1)/2
Q= > 02Qa (2.85)
a=1
where o2 is respectively 0%, 012, 013, ..., 02. Equation (2.74) reads then for the model (2.84)
1
ly= ig*PﬁgA.Q’l ®1.Q3®1.Q7" ®I.Pjg,y (2.86)
with
Pigy = I®I1—Piga
= IQI-IQRAIAQ'RII®A ' TeA* Q' 'al (2.87)
= I@[[-AA"A) A | =1® Py
and
y=> €@y, with ey =(0---010---0) (2.88)
i=1
this gives
1 T kA
ly=5> 6 QU leP" Q@ LQs@ QT @ IIQ Py.) ¢ ®y, (2.89)
i=1 j=1
or
L PR -
iﬁ:§zei ®y.Q ' QpQ 1®Pj.Zej®gj (2.90)
i=1 j=1
or
1 T T L B .
Iy =3 YN Qs ey Pj‘gj. (2.91)
i=1 j=1

Because of the symmetry of the matrices Q7 'QzQ ™" this result can also be written as

T

1 * )— — * 1 - : * )— — *
lg= 52(61-62 'QsQ e Qipiyi)ﬂLg?-Z > (e;Q7'QQ e y;Pry;) (2.92)

i=1 i=1 j=i+1

Let us now turn our attention to equation (2.72). This equation reads, for our model (2.84):

Npo = %trace(Qg RI.Q '@ II®PH.QueI1.Q ' ®I.I® Py) (2.93)

or
Noo = 5race(QsQ ' QuQ ™" @ P1) (2.94)

or
Ngo = %trace(QﬁQ_lQQQ_l)trace(Pj‘) (2.95)

or
Noo = g (m = n)trace(QsQ Q@) (2.96)
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since trace(P1) = rank(P;) = m — n. Since the matrices Qn, o = 1,2,...,7(r + 1)/2, of (2.85)

are of the form

eie; for 02:=02 i=j
Qo = (2.97)
e;e; +eje;  for o2 =0y 1#]
We may write, with the help of (2.96):
r(r+1)/2 1 r
Ngod2 = =(m—n trace “leerQ 16?2
; baly = 5l )E (QsQ " ese; Qa3
1 . - —1 * * —1\4
+ g(m —n) Z Z trace(QpQ " (eie; +e;e] ) Q™ ")d,; (2.98)
1=1 j=1+1
This can also be written as:
r(r+1)/2 1 r
> Npabl = 5(m = m{> (e;Q7'QsQ ei67)
a=1 =1
+ 2> Y (QT'QQe;645)} (2.99)

i=1 j=i+1

Since Zg(;rl)/z Npad2 = L, it follows from (2.92) and (2.99) that the unbiased and minimum
variance estimators of the elements o;; of the matrix @ of (2.83) are given by:

I
AY AQ_E:PXE‘

T

m—-—n

(2.100)

Note that we need not know @ in order to compute these estimates! If we denote gl = PAEZ" then

(2.100) can be written as

) 1 < A X
%ii = _q ;@ki — 9., — U,)- (2.101)
From this follows that the covariance matrix @) is estimated as
~ N *
Y1 7 Y Y1 7 Y
1 & Yo 7Y Yo 7Y
0 = Z k2 Sk2 K2 k2 (2.102)
et = : :
TXT A A
ykr - gkr gkr - ykr
If we define the matrices ¥ = [y, y, ...y, ...y land Y = [§ g, ... g, ... § ] then (2.102) can

alternatively be written as

In order to exemplify the theory, we consider two examples:

2.4.1 Example 1

Q = Y -Y) (Y -Y) (2.103)
—~— M — T N e !
TXT TXm mxr

We want to estimate the variance o2 of a distomat by measuring an unknown distance = an m-
number of times. We assume that the observations are normally distributed. Model (2.81) reads

14



then for our case:

Y, 1
Yy 1
Elyb=E{| T |}=|. | Q=0"In (2.104)
1

Thusr =1, n=1and A=[11 ... 1]*. Hence, Pay is

1 1
1 1 & 1
§="Pay= —> y= 7 (2.105)
i=1
1 1
With (2.102) the result reads then
1 i 204
52 - 72 A2y _ 2 2 _
Q—m_lz_;(gk—g)=E{2}—070&z—m_1 (2.106)

Note that this result can also be obtained from (2.79), the estimator of the variance factor of unit
weight.

2.4.2 Example 2

We want to estimate the 2 x 2 variance-covariance matrix of a digitizer by measuring the coordi-
nates of an unknown point an m-number of times. We assume that the observations are normally
distributed. Model (2.81) reads then for our case

Yiu 10
_ gl _ yml _ 10 Z1 _ U%Im 012Im
Ely} = E{[ Y, ]} =B Yoo b= 0 1 z2 |’ @y = o12lm 031y (2.107)
Ly, ., | L0 1]
Thus r =2, n=1and A=[1 --- 1]". Hence, Pay, is
1 Lo
Pay,= | & | = 9, =T, i=12 (2.108)
1 =1
With (2.102) the results read then
~2 ~ 1 m _ = = *
{ &l } _ 3 [ Yy ~ I, ] [ Yy ~ L, } (2.109)
Oi12 0 m=1=1 Y=Y Yo ~ Yy
The corresponding covariance matrix is given by
&1 9 03 —203012 ot B
D{| 61, |}= —1(U%U§ —0ts)? 2(0f03 +0%,) —20%012 (2.110)
&3 e ot
In case 01 = 09 = 0 and o012 = 0, it follows:
52 9ot |1 0 0
D{| 615 |} = 1 0 05 0 (2.111)
o M=o 0 1
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Chapter 3

On the Distribution of Variance
Components

3.1 Quadratic Forms in Normal Variables

If we denote the inverse of the normal matrix in (2.68) as N ﬁa, it follows that the least-squares
estimator of 0% is given as

T _
Q% = 5 ZN[}O}E Qt lB Q(!BQt li (31)
a=1
or as
1 p
~2 *
65 =1(Q; "By Z N;lQaBQ )t (3:2)

Hence, each least-squares estimator of a variance-component can be written as a quadratic form in
the normal vector t:

6% =t Agt (3.3)
with
1 p
Ag = Q;lB*5 > NGl QaBQ;! (3.4)
a=1

In the following, we shall assume that the symmetric matrix Ag is non-negative definite. In practice,
this may not be the case, since, as we know, negative estimates of the variance-component are
possible. In order to derive the distribution of Q?, for non-negative matrices Ag, we need the
distribution of t*Agt. The following theorem gives a general representation of the distribution of
t* At.

Theorem: Let the bx 1 vector ¢ be normally distributed with mean E{¢} = t and positive definite
covariance matrix Q;. Let A be a symmetric non-negative definite matrix of order b. Then there
exists a positive-definite diagonal matrix A, = diag(A1, A2, -+, ) and a vector u € R" such that

At = (z + u)"Ar (2 + u) Z/\ 2 +ug)? (3.5)

where z has the standard normal distribution, i.e. z ~ N(0,I;). The number r is the rank of
AQ;: or Q+A. The diagonal elements of A, are the r positive eigenvalues of AQ; or Q:A. And if
U, A, U is the singular value decomposition of Ql/zAQl/Q, i 1/2AQ1/2 U, AU}, with Q1/2

1/2 41/2
Q/ t/

a square-root of @y, i.e., Q; = , then the r x 1 vector u can be computed as

uw=UrQ; . (3.6)

16



Proof: If we define the random vector x = Q; 1/2 (t —t), then clearly z has a standard normal
distribution, i.e., z ~ N(0,1,). Substitution of £ =t + Q}/z in t* At gives

AL =t At + 267 AQ Pz + 27 Q1P AQ (3.7)
Since the matrix Q,} / 2AQ,} /% i symmetric and non-negative definite it has real-valued non-negative
eigenvalues and corresponding orthonormal eigenvectors. If we collect the b-number of eigenvalues

in the b x b diagonal matrix A and the corresponding orthonormal eigenvectors as columns in the
b x b matrix U then

Q;/?AQ? = UAU™ (3.8)
with
UU = UU* = I, (3.9)

If rank( z / 2AQ; / ?) = r, then r-number of eigenvalues are positive and (b—r)-number of eigenvalues
are zero. We may therefore partition (3.8) as

g = o) [ 0] ]
_ AT N (3.10)
with
U, = 1, (3.11)

Substitution of (3.10) into (3.7) gives

AL = t* At + 267 Q; VPUMN Uz + 2 U A Ul (3.12)
or
AL = tAt- QU AU P
+ (Urz+URQ; P A (Urz + U Q, V) (3.13)
or
rA = AL QP02 AQ QM
+ (Urz+URQ; P AUz + UFQ, V) (3.14)
or
At = (z+u)"Ar(z + ) (3.15)
with
z o= Uz=UrQ;"*(t—1)

w o= UrQ 'Vt (3.16)

Since z is distributed as z ~ N(0,1), and U}U, = I, it follows that z = Uz is distributed as
z ~ N(0,1,). Note that since |Qi/2AQi/2 — M| = |AQ: — M| = |QrA — M), the eigenvalues of
Qi/2AQ:/2, AQ; and QA are the same. End of proof.

The above theorem says that t* At is distributed as a linear combination of r independent non-

central y2-distribution with 1 degree of freedom and non-centrality parameters uf, i=1,2,--- 7,
ie.,
T
AL~ XX (1, u7) (3.17)
i=1

17



From this follows that if all the positive eigenvalues of AQ; equal 1, then t*At is distributed
as a non-central y2-distribution with r degrees of freedom and non-centrality parameter u*u =

tQ; PUL LU Q. Pt =t At:
At ~ X2 (r, t*AL) if A, =1, (3.18)

Since the mean of a central x2-distribution with 1 degree of freedom is 1, the mean of t* At follows
from (3.5) as

E{t*At} = Z i + Z \u? = trace(AQy) + t* At (3.19)

=1 =1

Since the variance of the non-central y2-distribution with 1 degree of freedom and non-centrality
parameter u? is 2(1 + 2u?), the variance of t* At follows from (3.5) as

0foar =2) A +4Y Nul = 2trace(AQiAQy) + 4" AQ At (3.20)
=1 =1

3.2 The Distribution of Q%

We shall assume that the estimate Q% of a?, are non-negative. With the theorem of the previous
section and (3.3) and (3.4) we then have the following result:

Corollary: The variance-component estimator Qé is distributed as

65 ~ Y Aixi(1,0) (3.21)
=1

where the x? are mutually independent and the \; are the r positive eigenvalues of
"1
B 1Y _(5N5a = A02)QalB| =0 (3.22)
a=1

Note that since the matrix B* is of the order b x m, the number of positive eigenvalues, r, never
exceed b.

The result (3.22) is expressed in terms of the matrix B which however is often not explicitly available.
We shall therefore reexpress (3.22) in terms of Qy = >2_, 02Q, and Q. In order to do this, we
need the following two properties of the determinant of a matrix:

1. Let X and Y be two arbitrary matrices of order n x n. Then

XY = |X]|Y] (3.23)

2. Let X and Y* be any two matrices of order m x n and suppose m > n. Then

XY = M| = (=N)™ Y X = \L,| (3.24)

The determinant of (3.22) can be written as

p
BIY (5N~ A02)QulB

a=1

p p
1
B*[E ENg;Qa]B — \B* § 0.QaB
a=1

a=1

p
* 1. *
B[ 5N;QulB - AB"Q, B
a=1

18



with (3.23) and (3.24) one gets

Z 02)Qa)B

a=1

p
1
B*[Z 5N—alQa]B(B*QyB)*l —\|.|B*Q,B|

b m

Z B(B*Q,B)"'B* — A,.|.|B*Q,B|

if A # 0. From this follows that for non-zero eigenvalues, (3.22) is equivalent to

B(B*Q,B) 'B* — \I,,| = (3.25)
With Qs = QyB(B*QyB)’lB*Qy this gives
-1 1_ _
Z S1QeQy =0 (3.26)
or with (3.24)
| Z Qa Q Qe —AMp|=0 (327)
The result (3.22) can therefore be rephrased as:
Final Result: The variance-component estimator Q% is distributed as
&5 ~ Y Aixi(1,0) (3.28)
i=1
where the x? are mutually independent and the \; are the r positive eigenvalues of
N
0 (0 5N Q)@ Qe = Al| = 0 (3.20)
a=1

To see this result at work let us derive the distribution of the variance-factor of unit weight.
In this case, we have p = 1, Q, = 0Q; and Ny; = %(m —n)o;*. The above eigenvalue problem
becomes then

‘Qu ' ; [i( —n)or 7 Qo701 Qe — AIm’ =0 (3.30)

or
lo72(m —n)] 7' QeQyt — M| =0 (3.31)
or with QéQ;l =Py
|Px — Aoy ?(m —n)Ln| =0 (3.32)

Since the eigenvalues of a projector are 1 or 0, it follows since rcmk(Pj) = m — n that the positive
eigenvalues are

M=X==N\yp =[072(m —n)]* (3.33)

From (3.29) follows then that the variance-factor of unit weight &7 is distributed as

2.2
—n,0

m—n

19



This is a well-known result and very simple indeed. For general case of more than one variance-
component, the eigenvalues \; of (3.29) will usually differ mutually and consequently the distribution
of Q% will be a very complicated one. As far as I know no practical closed form expression for the

cumulative distribution function of Q?, is available. This function is needed to perform hypothesis
testing, to compute critical values and to compute the power (reliability). Fortunately, however,
asymptotic expansions which can be used for computer calculation are available!. Also suitable
(and may be practical useful) approximations are available. Once the distribution of Q% is available
one can think of testing hypotheses. One possible approach would be the following: Assume the
null hypothesis as

#1 for a=1,2,---,p, a#£i

p 2
HO : E{E} = O, Qt = B* Z UiQaBa { Z% —1 for a—i (335)
a=1 «

Assume the alternative hypothesis as

P
HA: E{E}:Oa Qt:B*ZgiQaBa 0.34#1 for 0121,2,"'71) (336)
a=1

Compute the estimator of 0 under H4. This estimator depends however on the unknown o2,

1,2,---,p. Approximate the estimator &> of o under H, therefore by assuming that o2 =1, a =
1,2,--- ,p, and call this approzimate estimator Q’Z—Q. As we know, this approximate estimator is still
unbiased. Then derive the distribution of Qf. This distribution depends however under Hj still
on the unknown o2, a = 1,2,--- ,p, a # i. One can approximate this distribution by replacing
the unknown o2 by the estimates 62, a = 1,2,---,p, o # i. After this one can perform the
significance test: 02 =1 or 07 # 1.

Another approach would be the following: Assume the null hypothesis as

o =

P
Hy: E{t} =0, Q:=B"Y Q.B (3.37)
a=1
and the the alternative hypothesis as
P
Ha @ BE{t} =0, Q=B*( Y  Qu+0/Q)B, o] #1 (3.38)
a=1a#i

This approach parallels the data snooping approach and it has some distinct advantages over the
above first approach. First of all, the null hypothesis is completely specified, it is a so-called simple
hypothesis. Secondly, there is only one unknown, namely o2, in the alternative hypothesis. This

79

is advantageous from a computational point of view. In the following section we will consider the
case of least-squares estimation under the above Hy4,.

3.3 LSQ Estimation in Case Q; = B*(ZZ:M# Qu +02Q;)B

If the covariance matrix of ¢ is assumed to take the form
P
E{tt'} = Y  B'QuB+0B*Q:B (3.39)
a=1a#i
the observation equations of the linear model take the form
P
E{vec(tt*)} — vec( Z B*QaB) = vec(B*Q;B)o? (3.40)
a=1a#i
Thus instead of (2.8), we now have (3.40). Note that since a constant vector is subtracted from

vec(tt*), the covariance matrix of vec(tt*) can still be used. With (2.63) we get for the above model

N = %tmce(B*QiBQ;lB*QiBQ{l) (3.41)

IN. Johnson & S. Kotz: Continuous Univariate Distributions, Vol 2, 1970
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And with (2.68) we get for the above model

1 p
L:?mce(B*QiBQt_l[ﬁ*— > BQuBIQ; ) (3.42)
a=1a#i
or
1 1 L
L= StQr ' B'QiBQ; 't — Strace(B*QiBQ; ' Y B'QaBQr) (3.43)
a=1a#i

or with @, =>"_, azi B"QaB + 0?B*Q;B:
1 1 1
l= 5;@#3*@3@;@ - §tmce(B*QiBQt_1) + 503 trace(B*Q;BQ; 'B*Q;BQ; ). (3.44)
With (3.41) the estimator 7 = N '] reads therefore:

i =

Final Result:

—1 ). -1, *O. —1
52 = o2 4 [QUBQiBQ L — trace(BQiBQ; ) (3.45)
trace(B*@Q; BQ; "B*Q;BQ; )

with E{6?} = 07 and
03, = 2[trace(B*Q; BQ; ' B*Q;BQ; )] ! (3.46)

With (3.5) of the theorem of section one, the distribution of &7 follows as:

52 gz g T WL~ 5 )
o PP
where A\;, j =1,2,---,r are the r positive eigenvalues of
|B*QiB — AQ:¢| =0 (3.48)
or of
1Q,'Q:iQ, Qe — AlL,| = 0 (3.49)

The problem of hypothesis testing may now be tackled as follows: Assume the null hypothesis as
P
Hy: E{t} =0, Q=) _ B*Q.B (3.50)
a=1
and the the alternative hypothesis as
P
Hy, : B{t}=0, Q= Y  B'QuB+0!B*Q;B (3.51)
a=1a#i
Note that although the estimator QZZ of (3.45) can not be computed in practice because of the
unknown o2, its distribution is known under Hp! Instead of computing QZZ we therefore approximate

this estimator by an estimator 672, which is obtained by setting o2 = 1 in (3.45). The approximate
estimator reads therefore

tQ; 'B*Q:BQ; 't — trace(B*Q:BQ; ")
trace(B*Q; BQ; ' B*Q;BQ; ")

67 =1+

(3.52)
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with
N p
Q=) B*QuB (3.53)
a=1

We know from our theory that this approximate estimator is still an unbiased estimator of o? (h9w—
ever not of minimum variance anymore). Let us verify this for (3.52). With A = Q; 'B*Q;BQ; "
and E{t} = 0, we have with (3.19):

E{t*Q; 'B*Q:BQ; 't} = trace(Q; ' B*Q;BQ; 'Q:) (3.54)
or with
Qi =Qi+ (0] —1)B*Q;B (3.55)
E{t*Q;'B*Q:BQ; 't} = trace(Q;'B*Q;B)
+ (07 — Dtrace(Q; 'B*Q:BQ; 'B*Q;B) (3.56)

Substituting into (3.52) shows indeed that E{5}*} = o2. Since the distribution of &/ is known

2.
under Hy we can now perform the test: o2 = 1 versus o2 # 1. Note by the way that 67 and &/

have identical distributions under Hy. By letting 7 range from 1 to p, we can like in data snooping
test whether additional variance-components are needed. They can also be done in an iterated way
like in the iterated data snooping approach. In this context it is also interesting to investigate the
form of the shifting variate of the linear models (2.8) and (3.40). We will return to this matter
later on.

3.4 On the Connection of Two Point Fields

As an interesting application of the theory we have the problem of estimating and testing of the
levels of precision of two pointfields which are to be connected. Let the coordinates of the two
pointfields be collected in the vectors z;, ¢ = 1,2, of order n x 1. We assume the z, to be normally
distributed with covariance matrices 02Q;, i = 1,2. We also assume that z; is independent of z,.

The model reads then
2y _ I, U%Ql 0
E{{b]}—[jn}x, [ B, (3.57)

From this follows that matrix B* takes the form
B*=[I, —1,] (3.58)
and matrix @ takes the form

Q= 0iQ1 +03Q> (3.59)

Since we have two unknowns 0% and o3, the normal matrix Ng, is of order 2 x 2. With (2.63) we
get for our case:

Ny = %trace(Ql[afCh +03Q2) T Q1[0 Q1 + 03Q2] )
Nip = %trace(Ql[afCh +05Q2) ' Q2[07Q1 + 05Q2) ) (3.60)
Nop = %trace(Qg[an1 +05Q2) 71 Q2[07 Q1 + 03Q2] )
To simplify things, let us assume that @1 = Q2. The result (3.60) simplifies then to:
Nip = %”(Uf +03)7?
Nig = %n(a% +03)72 (3.61)

1 _
Ny = 5”(0'% +03)7?
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Hence, the normal matrix becomes singular! Thus if Q1 = Q2 the two components 7 and o3 of
model (3.57) are not separately estimable (this also makes sense). Later on we will consider the
estimability problem for the general model (2.8). For the moment, let us change model (3.57) to
overcome the estimability problem. Instead of (3.57) we take

E{[z]}_[ﬁ]x {Cg USQ] (3.62)
Instead of (3.59) we then get

Qr=(1+0%)Q (3.63)

We now have one unknown, o2, and are in the situation as described in Section 3. We therefore
can apply formula (3.45). For our case we have:

FQYIB* QB = (14+0%) 2y — 25)"Q 7 (2 — 1)
trace(B*Q;BQ;Y) = (1+0%)7'n (3.64)
trace(B*Q;BQ; 'B*Q;BQ;") = (1+40*)?n

Substituting (3.64) into (3.45) gives

(1+0*) (2 —2)'Q Mz —2y) —(14+0°)"'n

) 2
= 3.65
g =0 (14+02)72n (3.65)
or
Q2 — (zl _£2)*Q71(£1 - £2) -1 (366)
n
Application of (3.47) shows that r = n and
M=X==X =1+ (3.67)
Hence,
o o (14+0%)N*(n,0)— (1+0%)"'n
~ 3.68
g ~o”+ (1+02)n ( )
or
o 1407,
&'~ ——x"(n,0)~1 (3.69)
Note that 1 + 6% is the estimator of the variance factor of unit weight in the model
Bz, —z,} =0, (1+ 02)@ (3.70)

Although the above example is a rather trivial one, it is of interest to elaborate the theory for the
case of digitizing and connecting maps.

3.5 VCE and the w;-Test Statistics

Let us assume that the matrix @; of section 3 takes the form

Qi = cict, with ¢;=[0---010--- 0] (3.71)

7

This implies that we want to estimate the variance o2 of one single observation. Since we have only
one unknown variance-component, we can apply the result (3.45). Before doing this, we first note
that in our case

p
Q:=B" > QuaB+0BcicB (3.72)
a=1a#i
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This we write as

Qi = Qi+ (07 —1)B*cic B (3.73)
with
3 p
Q=) B'Q.B (3.74)
a=1

In (3.45) we need the inverse of Q;. Using the matrix-identity
(A-BD'C)'=A"1'+A'B(D-CcA'B)"lcA? (3.75)
the inverse of (3.73) follows as

Q' B*cict BQ;

-1 _ ;-1
= — ~ 3.76
@ @ (62 —1)~1 4+ ¢ BQ; 'B*¢; (3.76)
Using this together with (3.71) enables us to write
*BQ; ' B*¢; _
FQUBQBQ =1 - DI (B ) (3.77)

(62 —1)"1+ C’Z-*BQ;IB*CZ-
In a similar way, we find

* — C;FBQ_lB*Ci * ~N— *
trace(B*Q;BQ; ") = [(1 — EEnE —l—tc*BQ_lB*c-)(ci BQ;'B*c;)] (3.78)
% i t i

and
ctBQ; ' B*¢;
(02 —1)~1 + ¢ BQ; ' B*c;
Substitution of (3.77), (3.78) and (3.79) into (3.45) gives
* R)—14\2
(c; BQ; B*ci)?
. ¢!BQ, Bci
(02 —1)~! + ¢t BQ; ' B*c;

trace(B*Q:BQy ' B*Q:BQ; ") = [(1 - )(€;BQy ' Bre))]*  (3.79)

)(c; BQy ' B e)] ™ (3.80)
With

ctBQ;'B*¢;
(62 —1)~1 4+ ¢ BQ; 'B*¢;
equation (3.80) simplifies to

(- )i BQr ' BYei)] ™ = (0] = 1)+ (; BQy 'B i)™t (3.81)

(c; BQy't)?

* A—1 o« ._
& =1 c BQti B; ci

ciBQ; " B*c;

(3.82)

Note that this estimator is independent of the unknown o2?. We also note, that since our well-known
w;-test statistics reads

* ~—1
w; = — B (3.83)
" (¢ BQy ' Brei)'?
the result (3.82) can be written as
2
F—1
=t (3.84)
ciBQ; B*c

This result also makes clear the sensitivity of the variance-component estimation for misspecifica-
tions in the functional model; a fact which also follows from the last theorem. With this theorem
follows namely that if E{t} # 0, then the variance-component estimators are distributed as a linear
combination of non-central y2-distributions. Finally note that we did not make use in the above
derivation of the fact that ¢; =[0--- 010 --- 0]*.
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3.6 CoVCE and the w;-Test Statistics

Let us assume that we want to estimate the covariance between two observations, say observation
k and observation [. Matrix @; of section 3 takes then the form

Q; = cxe] + ey, with ¢ =[0---010---0]" (3.85)
The unknown covariance oy; can then be estimated according to (3.45) as

ﬁ*Q;lB*QiBQflﬁ — trace(B*QiBQfl)

Opl = Okl + trace(B*Q,BQ "B Q:BQ; ) (3.86)

where
Qi = Qi + o B*(cref + cicp)B (3.87)
and Q; is the covariance matrix of ¢ in case oy = 0. Note that oy is allowed to be positive

and negative. Hence the problem of negative variance components does not occur here. Also note
that oy; need not be the total covariance. That is, if a covariance between observations k and [
is included in Q;, then oj; of (3.87) should be interpreted as a perturbation or increment. The
estimator &,, follows if we substitute (3.85) and (3.87) into (3.86). As it turns out however the
result unfortunately depends on the unknown oy;. Instead of the optimal estimator ,;, we therefore
take an approximate, but still unbiased, &}, by choosing oy = 0 in (3.86). This gives

., Q7 'B*Q;BQ; 't — trace(B*Q; BQ; ")

Ok = trace(B*QiBQ,f_lB*QiBQt_l) (3'88)

With (3.85) we have

QB Q:BQ 't = 2(ciBQ, 't)(¢]BQ 1)
trace(B*Q;BQ; ') = 2¢;BQ;'B*¢
trace(B*QiBQ; \BrQiBQ;Y) = 2ciBQI B @) +2(cLBQ; B ex) (¢} BQ; B er)

Substituting this into (3.88) gives

= (¢t BQy 'B*¢;)? + (¢, BQ; ' B*cr,)(c; BQ; ' B*ey)

Let us verify the unbiasedness of the estimator &},. With (3.87) we have
E{(c;BQ'1)(;BQy ')} = E{(ciBQy 't Q' B )} = ¢ BQ; 'QiQy ' By
= ¢ BQ;'B*c; + ¢ BQ; Y ouB* (ckc; + cic;)B|Q; ' B¢
= CZBQt_lB*Cl + U;YCl[(C;;BQt_lB*Cl)2
+(BQT B o) (e BQT B )
With this result and (3.89) it follows that indeed E{5};} = ox. If we use the abbreviation
Nk = CZBQ;IB*Q (3.90)
and remember that
1 BQ; 't
wy = CkiQt— (3.91)
VMkk

we can write (3.89) also as

Nkl
WpWy — —(——
Gl = ——y VT (392)

N
—————+ Nk
VNkkn/N
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Note that under the hypothesis that o = 0, we have
Nk

NV

This term equals the cosine of the angle between the two vectors ¢, and ¢; when projected with
Pi. Tt is closely related to the error of the third kind. That is, if (3.93) is too large one will have
difficulty in discriminating between two hypotheses E{t} = B*¢;Vy and E{t} = B*¢/V;.

E{ww,} = Cov{wy, , wi} = if o =0. (3.93)
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Chapter 4
Estimating and Testing O'% and 0%

in O%@' = O'% + O%xg for EDM’s

4.1 VCE from Repeated Measurements

According to the Least-Squares Estimators of the variance-components, 62, o = 1,2,--- ,p in the
model
P
E{y} = Av, B{(y—Az)(y—Ax)'} =) 02Qa (4.1)
a=1

are given as

~ —1 Ak — —1A
Qi nir N2 - Nip %Q QyinQy 1@
fox n21 N2z - N2 38°Q,1Q2Q,'e
.2 _ 7 2 Yy . Yy (4.2)
é}% Np1 Mp2 -+ Npp %Q*leQqujlé
with:
1 _ _
NBa = §trace(Qng 1PanQy 1Pj) (4.3)
and with
P
Qy= 02Qu; Pi=1-AAQ, 'A)'A"Q,"; e=Piy (4.4)
a=1
We will apply the above results to the model
Y, e 0 --- 0 T 031 Im 0 0
v, 0 e 0| | 0 %Ly - 0
=B 2 =1, . T e T | e
y 0 0 --- e Ty 0 0 coo0d Iy,
Zr
mrx1 mrXr rx1 mrxXxmnr
with:
e=[11--- 1", o8 =0i+osxl, i=1,2,---,r (4.6)

Model (4.5) is valid for the case where one measures an r-number of unknown distances z;, i =
1,2,---,r, each an m-number of times. It is assumed that all the observations are uncorrelated.
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Furthermore it is assumed that all the precision of the measurements is constant for a constant
distance, but that it varies with the distance according to the law

0'(2)1':0-%—’—051.?7 i:1,2,"'7’]" (47)

where ¢ is an exponent of the distance which one can choose and o7 and o3 are the unknown
variance-components which need to be estimated. Thus in our case we have two unknowns and the
matrices Qn, @ =1,2 of (4.1) take the form

In 0 0 2, 0 0
0 In 0 0 2l 0
Ql - ) Q? = . : . : (4‘ 8)
0 0 - I, 0 0 - a9,
mrxmr mrxmr

In order to apply (4.2) we need P73 of (4.4). This matrix takes in our case a very simple form:

Pt 0 - 0
0 P- -~ 0
Py=1| . . . (4.9)
0 0 --- Pt
mrXmrm
with P+ = I,,, — %ee*. Note that Pj is independent of the o3, i = 1,2,---,r. Also note that

the block matrices P of Pj correspond to the separate adjustment of each unknown distance.
That is, per unknown distance we have an adjustment-problem with m-number of observations,
one unknown distance and one variance-factor of unit weight o2;. From adjustment theory we know
that the variance factor of unit weight can be estimated rather straightforward. In our case the

separate estimators of Ugi, i=1,2,---,r become

y*Ply. 2054
55 = % with B{o3} =03, 0% =—C i=12.. 7 (4.10)

This result may be used to perform a global test for each distance separately. It may also be used for
obtaining a reasonable value for m, i.e., the number of measurements. Parallel to (4.10) we may also
perform data snooping for each distance separately. The w-test statistics for the k**-observation in
the i*'-distance reads

_ i N5m
Wy = . _-, i:1527"'77"7 k:1,2,~-~,m (4_11)

Once the r-number of estimates 63; of (4.10) are available, they may be used to get a first indication
of whether law (4.7) holds or not. This may be done by plotting the 63, against the z. Of course,
x; is unknown, but here one can use the mean of the m-number of observed distances. The plot
should then look something like:

By interpreting the estimates 63; of (4.10) as observations, we can now with the help of (4.7)
construct the following linear model of observation equations:

é(2)1 1 I({ 001 0 0
T2 1 3 o? 2 0 o5 - 0
E{ : }= [ o3 } ; Qosz, = 1 : S (4.12)
G 1z 0 0 ol
TXT

28



Note that because of our assumptions in (4.5), the 631 are distributed as mdependent x>2-variables.
The matrix Qaz is therefore diagonal! In order to find estimators for 07 and 03 we can now apply
all sorts of estimation principles (robust methods, maximum likelihood, least squares etc). We will
solve (4.12) using the least-squares principle. The normal matrix of (4.12) reads

r —4 T —4
m—1 2i=190; 2lim100; T
N=— 4.13
2 T —4,_q T —4_2q ( )
D ie100i T D im100i T;

Its inverse reads

r i 00_14qu — izt Uo_i4$g
N~ ZUOZ 2074 24) (Z oo ad)? ! (4.14)
i=1

—4 —4
=2 im1 00 T 2o 00
The right-hand side of the normal equations reads:

m—1 E: 1 0&4031
1= (4.15)

2 r 4
—4 _qa2
Zz 100; Li%0i

With (4.14) and (4.15) the solution of (4.12) follows as

~2 ~2 2 ~2
[oX] g, o1 93
=N, E{ b= , D }=N"" (4.16)
~2 ~2 2 A2
09 09 g2 09

We have now devised a two-step or phased procedure for estimating the variance-components o?
and o3. First (4.10) is used to compute the QSZ—, t=1,2,---,r. Then in a second step the variance-
components are computed according to (4.16). The solution so obtained is identical to the solution
one gets when applying (4.2) and (4.5)!! Note that in the second step iterations are needed since
the variances —2-03; of (4.12) are unknown a-priori. In fact also the z{ in the design matrix of
(4.12) are unknown, but here it probably suffices to take the mean of the observed distances.

In order that the two estimators &7 and &3 are well-separated their correlation coefficient should

be small enough. From (4.14) this correlation coefficient follows as

— i 1001 i (4.17)
— 2
\/Z’L 1 0014 ! \/Z’L 1 001

This correlation coefficient depends on the angle between the two column vectors of the design
matrix of (4.12). More precisely: the correlation coefficient p1o is small if the distances x;, i =

1,2,--- ,r are chosen such that the angle between the two vectors
—2 -2 9
To1 Op1 11
‘70_22 0'012172
and i (4.18)
—2 2 22
Tor o1

is large. Once the estimates 67 and 67 are computed, one can try to test their significance with
respect to the values given by the manufacturer. If we denote the values given by the manufacturer
as 67 and 73, the test statistic may take the form:

v,o=—t =12 (4.19)

Although the distribution of v, is unknown, we may try the standard normal distribution as a crude
approximation. With this approximation the test can be performed.
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Final Remarks

1. From the structure of (4.12) follows that it is not necessary to assume that the number of
observation per unknown distance is constant.

2. The structure of model (4.12) resembles the 1-D Helmert-transformation E{g5;} = 03 +al03.
If 27 is considered to be stochastic, the model can be written in the form of the 1-D symmetric
Helmert transformation E{&5;} = o7 + E{z?}03. The solution method of (Teunissen: The 1-
and 2-D symmetric Helmert transformation, report 87.1, Delft) can then be applied.

3. Note that (4.12) may also be solved recursively. This may be of use if one wants to update
the estimates of o7 and o3 if a new unknown distance is measured.
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Chapter 5

Estimation and Testing of
Covariance Matrices

5.1 Introduction
Consider the following two hypotheses:
{ Ho: FE{y}=Az, B'z=b, D{y}=0Q,

Hy: E{y} = Az, D{y}=Q,

(5.1)

We assume that y is normally distributed. The appropriate test statistic is then given by [see lecture

notes MGII]:
T =[B*%, —b*(B*Qz,B)"'[B*%, — b], with
{ By =Qs,A"Q) "y, Qan = (A"Q 1 A)!
T has the following distribution:
Hy: T ~x*(,0)
Ha: T ~x%*b,\), with A= [B*z—b*(B*Q,B)"[B*z — b]
The test statistic T also follows from the Generalized Likelihood Ratio Test.

Note: b= number of parameters under H 4 minus number of parameters under H.

5.2 The Model and Its Solution

As model we consider

E{\y_/}z(b@A)\:c/, D{y} =Q® I

rmx1 rmxrn TNX1 rmxXrm

According to [Teunissen, 1988]:

1 _ _ . 1., 14
Str(Qu@Qy PHQsQ;  PE) 6 = 57 Q51 Qu@y e
| S —
Nocﬁ la

From (5.4) follows that

Qy:Q®Ima PA:IT®A(A*A)71A*5 Qa:Qa®Im
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This gives

1
Nog = 5tr(Qa ®1nQ ' @ Inl, ® Py Qs © [nQ ™" © LI, ® P1)

Sr(Qu@7'QsQ ™ ® Ph)
$1r(QuQ ™ QsQ ir(P)

or
1 _ _
Nag = E(m —n)tr(QaQ 'QsQ ™) (5.7)
In our case

6°=(63)=(611 621 .. 6r1 G2 .. G2 .. Gpp ) (5.8)

We define the matrix L as:
L V(X) =wec(X) for any symmetric X, | (5.9)

~~ ——
r2xr(r+1)/2 r(r+1)/2x1 r2x1

Since the matrix L has full rank r(r 4+ 1)/2, it follows from (5.9) that
V(X) = (L*L) 'L*vec(X) for any symmetric X (5.10)
With the projector P [ Pvec(X) = vee(X) for any X = X*] and (5.9) follows that
PLV(X)=Puvec(X)=vec(X)=LV(X) forany X" =X (5.11)
and thus
PL=L or R(L)C R(P) (5.12)
Since rank(P) = rank(L) = r(r +1)/2 or dim(R(P)) = dim(R(L)) it follows with (5.12) that
R(P) = R(L) (5.13)

This shows, since P is a projector that

P=rLL)'L (5.14)
We will now derive the inverse of (Nag). From (5.7) and (5.9) follows that
Nag = 50m—m)(ec(@u)' Q™" & Q" (vec(Qs)
= - VQ.) QT @ QTHLV(Qy)
Note that V(Qg) is the identity matriz of order r(r 4+ 1)/2. Hence:
o —1 _ px(n-1 “1y-1_ 2
Qe = Nop) ™ = (@7 £ Q) (5.15)
or
% — _ 2
QT @Q NLQy ) = pre | (5.16)
or
LIL* D) 'L Q'@ Q HNLQos = 2 L(L*L)™* (5.17)
. () R :
P
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or

_ _ 2 .y —
Q' ©Q PLQg ) = —— LL"L) ! (5.18)
or
PLQg(g) = ——(Q®Q)L(L"L) " (5.19)
or
2 _
Qey = (D) LHQO QL) (5.20)
——
r(r+1)/2xr(r+1)/2
From (5.5) and (5.6) follows that
1
lo = YL ®PrQ " ®InQa®1nQ ™" @ Inl: @ Pyy
1, _
= Q7@ e Phly (521)
Withy =31 e; @y; = .., vec(y;e}) this gives
l, = vecZyl Q1Q.Q7! ®PA vecZyJ €;
7j=1
1
= gtrace[Q Q7 'Q.Q Zyj e5) Py Zyl (5.22)
With Y = [y1,¥2, ... yr] = D, i€} this gives
mxXr
lo = %trace[@leanlY*PjY]
1 — — * *
= 5[’080(@ 1QaQ 1) [vecY* P1Y] (5.23)
1
= 5{@*1 ® Q  wecQ ] [vecY * P1Y]
or
1 * —1 —1 * oL
lo = §Uec(Qa) Q7 ®@Q vec(Y*PyY) (5.24)
with vec(Qq) = LV(Qo) = L.Identity, this gives
L'(Q '@ Q YH)LV(Y*PiY) (5.25)
From (5.20) and (5.25) follows that:
A 2 7 \—171* * T\ — 1o — *
V@) = (D) Qe QLI L QT e QTYIV(YPLY)
_ 2 1 * —1 7= —1 —1 * pL
= —— (L)' QeQPQ T ®Q T )LV(Y PLY) (5.26)
_ 1 * —17x* * L
= ——(L"L)T'L"PLY(YP}Y)
or
A 1 * L
O = Y*Ply (5.27)

~— m-—n

TXT

Q has a Wishart distribution. For later use it is important to know when V(Q) can be approximated
by a normal distribution.
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5.3 The Teststatistic & Restrictions B*QB = ¢,

The following two hypotheses will be considered:

{ Ho: E{y} =L @Az, D{y}t=Q®In, B'QB=¢o
(5.28)
Ha: E{y}= @A)z, Dy} =Q&In,

The restrictions B*QB = ¢ can be written as vec(B*QB) = vec(¢y) or as the linear restrictions

B* ® B*vec(Q) = vec(d) (5.29)
Since @ is symmetric, (5.29) does not contain independent restrictions. Therefore
(B* ® B*)L,VQ = L,V (5.30)
or
(LyLp)'L3(B* ® B*)L,VQ = V¢y (5.31)
The teststatistic [see (5.2)] follows then as:
T = Lj(B*®B")LV(Q)— Vo' [L} (B* © B*)L.Qg @ L(B® B)L}*]™"  (5.32)
(L} (B* @ B*)L.V(Q) V] (5.33)
This gives with (5.20):
I = TSELE(B @ BYLV(Q) - Vi) [Lf (B' ® B)P.Q© QP(B® B)L"|"(5.34)
(L3 (B* @ B*)L,V(Q)V(¢)]
with
Pro= Sl K
K.w(B®B) = (B®B)Ky,
P.(B®B) = (B®B)P,
follows from (5.35) that
I = “SLi(B @ B)LV(Q) - Vs [L; (B' QB2 B'QB)L" ) (5.35)
(L (B @ B*)L,V(Q)V ()]
Since
(L} (B*QB ® B*QB)L}*| "' = L;(B*QB) ' @ (B*QB) 'L, (5.36)
and
V(¢o) = L, (B* ® B*)L,V(Qo) (5.37)
Equation (5.36) can be written as
T =T 2V(Q- Qo) Li(B® B)L"Ly(B'QB) ™ (5.38)
®(B*QB) 'L, L} (B* ® B*)L:V(Q — Qo)]
or as
I = Z5=VQ- Qo) LIB(B'QB) B @ [B(B'QB) ' B'ILV(Q - Qo)

—n

- n 5 [vee(Q — Qo)]*[B(B*QB) ™' B*| @ [B(B*QB) ' B*|[vec(Q — Q)] (5.39)
= T —trace[B(B*QB)T B (Q — Qo) B(B"QB)'B" (Q - Qu)]

m—n

- 5 trace[(B*QB) " (B*QB — B*QoB) (B*QB)"'(B*QB — B*QyB)]
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Under Hy we have B*QB = B*Q¢B = ¢g. Thus under Hy we get

m—-n

T, = trace[[(B*QoB) ™ (B*QB) — L][(B*QuB) " (B*QB) — L,]] (5.40)
with
o)
~ n ——

|B*QB — A\i B*QoB| =0, i =1,2,....,p (5.41)

We may write (5.40) also as

m—n
— 5 2

Ty, =— Z;(Ai - 1) (5.42)

Since the difference in the number of parameters between Hy and Hy is r(r+1)/2 —{r(r+1)/2 —
p(p+1)/2}, the form of the teststatistic suggests that Iy, is approximately distributed as

Ho: Tp, ~x*(p(p+1)/2,0) (5.43)

5.4 A Comparison with the Restricted Generalized Likeli-
hood Ratio Test

If we define t = (I, ® B*)y [do not confuse this B, with B of section 3], with B*A = 0, it follows
from (5.4) that

E{t} =0, D{t}= ® B*B 5.44
{t} {t}= @ (5.44)
r(m—n)x1 rXr (m—n)x(m—n)
The following hypotheses will be considered
H): D{t}=Qo®B*B, H): D{t} =Q® B*B (5.45)
The restricted likelihood function reads then
1 1 1
log p¢(t/Q) = ~3 log 27 — B log|Q ® B*B| — 515*@71 ® (B*B)™'t (5.46)
From this follows that
pe(t/Qo) A~ e .
0g ELEL = og|QoQ ! @ | +7((Q5" = Q) @ (B*B))t
pe(t/Q)
= (m—n)log|QQ ' +y"[(Qp" — Q") ® Psly (5.47)
With y =31 e; @y; = > vec(y;e}) this gives
P (t/Q ) N— - % — A— - *
og ET@O) = (m—n)log|QuQ | + (vec Y _wie})*[(Qy" — Q") @ Psl(vec > yie})
t i=1 i=1

= (m—n)log|QoQ |+ trace[(Qy" — Q") _yie}Ps > vie;]
j=1 i

= (m—n)log|QuQ | +tracel(Qy — Q~)Y* P£Y] (5.48)
= (m—n){log|QuQ"| + trace[Qy'Q — I}
= —(m—n){log|Qy ' Q| + trace[l — Qy'Q]}
Hence
- log% - —(m—n){;logii—i—;(l —A)} (5.49)
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Substitution of

. . 1 .
logA;, =logl+ (A, — 1) — i(Al — 1) 4. (5.50)
into (5.49) shows that
pe(t/Qo) . m —n =~ < 9
—2log ———= A\, —1)° = In, (5.51)
pe(t/Q) 2 ;

5.5 The Teststatistic and Restrictions B*QC =0

The following two hypotheses will be considered:
Ho: FEly}=®A)r D{y}=Q®I, B*QC=0
(5.52)
Hy E{g} =, Az D{ﬂ} =Q®I,
The restriction B*QC = 0 can be written as vec(B*QC) = vec(Q) = 0 or as the linear restrictions:

(C* ® B*)vec(Q) =0 or (C*®B*)L,V(Q)=0 (5.53)

The teststatistic [see (5.2)] follows then as:

T = m 2— n[C* ® B*veC(Q)]*[O* ® B*P.QQ @ QP.C ® B]fl[O* ® B*vec(Q)] (5.54>
with
P =5(L21k,,) PQRQP. =Q®QP,
(5.55)
KT"I‘(C ® B) = (B X C)qu

follows from (5.54) that

m—-n

2

T= [C* ® B*vec(Q)]*|C* @ B*Q ® Q{%O ® B+ %B ® CK g} 7HC* @ B*vec(Q)] (5.56)
or
T = (m —n)[C* @ B*vec(Q)]*[C*QC ® B*QB + C*QB ® B*QCK,,| [C* ® B*vec(Q)] (5.57)

Therefore, under Hy:

Ty, = (m-— n)vec(Q)*C @ B(C*QC)™' @ (B*QB)~'C* @ B*vec(Q)
= (m-— n)veC(Q)*C(o*Qc)—lcj ® B(B*QB)_ll?*vec(Q) (5.58)
= (m —n)trace[C(C*QC)"'C*QB(B*QB) ' B*Q)]

or

Ty, = (m — n)trace[(C*QC)~'C*QB (B*QB) ™' B*QC] (5.59)

The form of (5.54) suggests that

Ho: Ty, ~ x*(pg,0) (5.60)
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Chapter 6

A New Method for Estimating and

Testing the Substitute Matrix H

6.1 The Generalized Eigenvalue Problem

Let z be a random n-vector with variance matrix @Q,. Let H, be a substitute (or criterion) matrix.

The precision of z is then said to satisfy the criterion if

a*Qra<a*Hza VaeR"

or if
a*Qa
Qa <1, VaeR"
a*Hya
since
a*Qza
max = Mnaz

acR™ a*H,a
where Apax is the maximum eigenvalue of the generalized eigenvalue problem
|Qz — AHz| =0
it follows that (6.2) is equivalent to

Amam S 1

6.2 Invariance of )\

(6.1)

(6.2)

An advantage of the generalized eigenvalue problem approach is that the eigenvalues of (6.4) are

independent of the chosen S-system. We will prove the following theorem:

Theorem:

The non-zero eigenvalues of [H, A*Q, LA — pI| = 0 are the reciprocals of the non-zero eigenvalues

of |Q% — NHZ| = 0, where

Q7 = S[S*A*Q,'AS]7'S*, R"=R(S)® N(A)
H; = Prs)nayHePhes) na)
Presyneay = S(VGS) 'V =1-W[(SH) W] H(sh)*

and

R(Vi) = N(4), R(Vo) = N(A)*, R(S*)=R(S)"
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Proof:

|[H A QM A = pl| = [HoVo(S™Vo) ST AQ, A — | = 0 (6.6)
Since
(Vgs) Vg ol I Y AU
[(SL)*Vl]fl(SL)* SVI - 0 I (6'7)
we get

(Vo S) ™ Vi Ho Vo (S Vo) T1S* A*Q P AS — ] 0

o
Il

(S VA TH(SH) Ho Vo (S*Vo) TS A QT AS —pul
= |[(VgS) Ve HoVo(S*Vo) 1S A*Q, P AS — p)| |—pd| for p#0 (6.9)
This gives with A = %:

0 = HS*A*QJIAS]71 _ )\(V(J*S)ilvo*HzVo(S*Vo)ill

H Vi S[S*A*Q, L AS] LS V) — AVE H, Vo 0 H
0 Al

= H: gOJ‘* :| [S[S*A*Q;lAS]*ls* _ AS(VO*S)flvo*HIVO(S*Vo)fls*] |:‘/OSL:|

|Q5 — AH|

6.3 The Alberda-Baarda Substitute Martix

For a two dimensional planar geodetic network, the Alberda-Baarda substitute matrix takes the
form

EP+AE P-d3, - -3, ]
d?—d3, d+Ad3 - d®-d3,
. . . 0
0o 2 -d2, P-d, - P+AE
@ P+Ad P -d2, - P -d3,
d?—d3;, d>+Ad3 - d®-d3,
0 . . .
i ?—d2, d*-d>, - d*+Ad2 | |
where

o d? disappears when H, is formulated in an S-system
e Ad? is a parameter per point i

e d7; is a function of the relative positions of points i and j, e.g. df; = co + c1li;
Remark: ¢y, 1, and Ad? can be considered parameters 6 in H,(6).

6.4 A LSQ-Approach for Estimating 0 in H,(0)

Our objective is to estimate # such that the difference Q, — H, () is minimal in a least-squares
sense. We formulate the following linearized model of observation equations:

E{vec|Qr — Hy(00)]} = vec(0aHy (00)AOY) (6.10)
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Note: both Q. and H,(#) should be defined in the same S-system.
We will take the unit matriz as weight matrix. Then, according to Teunissen [1988] the system
of normal equations reads:

1 - 1
5t7(0Ha(00)] A0 = St7(00 Ha (80)95 Ha(00)[ Qe — He(60)] (6.11)
If the model is linear:
H,(0) =)  Hab” (6.12)
We get instead of (6.11):
1 g1

A disadvantages of the above procedure is that 6° is not independent of the chosen S-system.

6.5 Our Proposal

Let & be the least-squares solution to

E{y} = Az D{y} =Q, (6.14)
and define
Ar =i E{#) (6.15)
Then:
E{AzAz"} = Qs (6.16)
Although (6.16) holds we will consider the model
E{AzAz™} = H,.(0) (6.17)

Note: both @z and H,(f) in the same S-system.
This gives after linearization

E{vec[AzAz* — H,(0p)]} = vec(DoHy(00))AOY (6.18)

Taking the inverse of (6.16) as weight matrix, application of our theory gives:
{0 L (00)Q; 0 o (80) Q5 1A = Lir(0 HL(00)Q5 [AzAa® — HL(00))Q5'] (6.19)

Unfortunately this result cannot be used since AzAz* is unknown in general. However, its ex-
pectation E{AzAz*} is known [see (6.16)]. We therefore propose to replace AxzAz* in (6.19) by
its expectation @z [This is not an unusual procedure; think of eccentrincity errors and Kalman
filtering]. We then get instead of (6.19):

S0 (00) Q5 00 (00)Q5 1A8 = Sirl0n HL (00)Q5 Qs — H(00)]Q5") | (620)

If the model is linear:

Ho(0) =Y Hab" (6.21)

we get instead of (6.20):

%tr[Hanngle]éﬁ = %tr[Hanl] (6.22)

Compare this results with (6.13). The above described method has the following advantages:
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e All the least-squares diagnostics can be applied.
e No generalized eigenvalue problem needs to be solved for.

e The estimate 6 is independent of the chosen S-system. This can be seen as follows. Let R
be a square and regular matrix. Then:

tr[RH,R* [RQ; R*] 'RHsR*[RQ:R*| '] = tr[H.Q; HpQ; "]

tr[RHoR* [RQ:R*]™"] = tr[HaQ} "]

The normal matrix %tr[HaNHgN] is singular if and only if there exist %, o =1,2,...,n such
that:

%xo‘tr[HaNHﬁN]xﬁ =0 (6.23)
or

%tr[Ha:v"NngﬁN] =0 (6.24)
If \j, i =1,2,...,n are the eigenvalues of H,x“N then

1 n
Etr[Haxo‘NHﬁxﬁN] => N (6.25)

i=1
Hence, (6.24) can only be true if
N=0VYi=1,2...n (6.26)
or if
o

For instance: 3 x“ such that R(H,z*) C N(N)

Example A closed levelling loop with 3 observations.

2 -1 -1 Ad2 0 0 0 —Clé —016
N=| -1 2 -1 Ad*H, = 0 Ad®> 0 ciHy = | —cil 0 —cif [6.28)
-1 -1 2 0 0 Ad? —cl —crl 0

Remark: This singularity does not occur in the set up of 6.4.

No S-transformation needs to be applied a priori. This can be seen as follows: Substitution of
He = (Vg'S) "Wy Ho Vo (5 Vo) ™! and Q7' = 5"A*Q, ' AS (6.29)
into (15) gives
1 * Q) — * * - * A% )— * Q) — * * — * Ak )— 2
Str(VE )71V HaVo(S7V0) ™87 A7Q, M AS (V)7 Vi HaVi(S7Va) .87 A" Q1 A8 =
1 * — * * — * Ak y—
5tr[(vo S) Wy HaVo(S* Vo)~ 15" A*Q, M AS] (6.30)
or
1 * — * * y— * My — N 1 * — * * y—
5m(vo S) Wy HoA* Q' AHR A* QM AS)3 = 5m(vo S) Wy Ho A Q, 1 AS) (6.31)

or

%tr[HaA*Q;AHBA*Q;lA]éB = %tr[HaA*leA] (6.32)

Note that Q; is not needed explicitly. Only the (reduced) normal matrix A*Q, 14 is needed.

40



Remark: It has been assumed that the normal matrix is invertible.
Remark: In practice one will have H,(0) = Hy + > H,0“ instead of H,(0) = > H,0.

Remark: In the special case that H,(0) = HO we get

6 = % ;2 (6.33)
If = 1 then the precision test is accepted. with:
|[HA*Q, " A= NI| =0 (6.34)
If we write this as [(A*Q,'A)” — u;H| = 0, (6.33) becomes
1
6= g:; (6.35)
From this follows that:
0= “"”}m by Z? ' fimaz (6.36)
Hinas b Zfaz]
since
It Fomaz
[i %b[i " ] (6.37)
Thus:
0 < fimaz (6.38)

Remark: With (6.32) one can still study partial networks instead of the total network. In this
case one needs the reduced normal matrix.

Remark: If one considers instead of Az the (estimable) linear functions B*Ag, then (6.22) should
be replaced by:

%tr[B*HaB[B*QjB]*1B*HﬁB[B*QjB]*1]éﬁ = %tr[B*HaB[B*Q@B]’l] (6.39)

6.6 On the Teststatistics T, , & w

According to previous section, the solution of the minimization problem

min T(9) (6.40)
with
T(0) = [vec(Qz — Hat™)]" Q" ® Q5 Hvec(Qu — Hab®)] (6.41)
is given by
07 = [tr(HaQ; ' HsQ; ) "tr(Ha Q") (6.42)
If we use the notation
H = H,0" (6.43)
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it follows with (6.41) that:
T(0) = [vec(Q. — H)"Q; ' ® Q; ' [vec(Q, — H)] (6.44)
with the property:
tr(ABCD) = vec(D)*(A ® C*)vec(B*) (6.45)

we may write (6.44) as

T(0) = tr(Q " (Qx — H)Q; ' (Qu — H)] (6.46)
T(0) = r{(1 - QDI = @ H)] = (1= X)* (6.47)

where 5\1-, 1=1,2,...,n are the eigenvalues of
Qe — \iH| =0 (6.48)

Although expression (6.47) looks already rather simple, it can be simplified still a bit further. From
(6.47) follows that

T() = tr[l, —2Q;'H + Q; *HQ; ' H] = n — 2tr(Q; ' H) + tr(Q; ' HQ; ' H) (6.49)
Substitution of (6.43) gives
T(0) = n — 2tr(Q; *Ho)0™ + 60°tr(Q; ' HyQ;, ' Hp)0" (6.50)
But according to (6.42):
tr(Q; ' HaQy ' Hp)0° = tr(Ha Q") (6.51)

Substitution of (6.51) into (6.50) gives:

T(0) = n — 2tr(Q; " Ho )0 + tr(H,Q; )6 (6.52)
From this follows that:
TO) = n—tr(Q; H,)0*
n—tr(Q; H) (6.53)
- n— Zn: N\ (6.54)
=1

Remark: For leveling networks one should take n of (6.54) equal to n — 1, and for 2D planer
networks one should take n of (6.54) equal to 2n — 4.

Remark: In the special case that H(f) = Hf, we have § = 3. \i/ 3. A2, with |Q; ' H — M| =0,
and therefore

T@)=n— % (6.55)

Remark: Note that we may write
tr(Q H] = tr[A*Q, 'AH] = tr[AHA*Q, ] (6.56)

If H is close to Q, then AflA*Q;l is close to P4, and we know that tr(Pa) = n.
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Remark: A comparison of (6.47) and (6.54) shows that S0, N, = S0 A2 or tr(Q;'H) =
tr(Q HQ ).

Remark: Expression (6.47) [but not (6.54)] can probably be used for testing the precision. Let
H = H,60% be the criterion matrix with o = 1,2, ..., p. The following criterion may then be useful:

tr((/ — Q' H)(I — Q; ' H)]
nn+1)/2—p

We will now derive the equivalent of the w-teststatistic. We have

C;Q;lQéQf1 v = [vec(eie] + eje eN Q' Q! — (Q @ Q vec(H,,)

=1 (6.57)

(tr[Q; ' HpQy ' Ha) ™ tvec(Hp) " (Q 1 @ Qg M)][vec(eie; + ejef)] (6.58)
or
1 QeQy ey, = tr[Q  (eie + eje))Q,  (eief + ejef)] — tr[Qr  HaQ, ' (eief + eje))]
tr(Qz HoQy " Ha)]Hr[Qg * (eief + ejef)Q; T Hp]  (6.59)
or
5 Qy QeQy ey, = 2(e5Q M ei)” +2¢; QL e QL e
41e;Qy  Ha Qg el tr(Qy  HpQy M Ha )) e QT HpQy el (6.60)
and
Qe = [vec(eie] +e;e])]" Q" ® Q Hvec(Qy — Hob™)]
= [Q*(Qx Ho0)Q,  (eie] + €;¢7)]
= 2¢5(I — Ha0Q; e (6.61)

= 261']' — 26;@;1[’[&9&6]‘
From (6.60) and (6.62) follows that:

w— 5ij - e;‘Q;;lHQGO‘ej (662)
with
s=[(e;Q;"e)* + €] Q teietQr ey — 2[e3Qr  HaQ e
tr(Q, ' HpQy " Ho)| M el Qy " HpQy M es]] /2 (6.63)

Remark: This result can possibly be used for testing whether individual elements of ), are close
enough to the corresponding elements of H,0¢.
Wrong! The correct answer is:

0*[Q;! — Q; ' HQ; Ya
W=+—"-"T 12 -1 -1 —1 1 1 a1 —T \11/2 (6.64)
[(a*Qz"a)? — (a*Qz HaQu a)(tr|Qu HpQu Hal)~'(a*Qu HpQx "a)]
or with a = Q; ta:
a*[Q., — Hla
= 6.65
U @ Q.07 — (a"Haa) (tr[Qz "HsQ: 'Ha)) (@ Hya)] /2 (6:65)
Note that the equation (6.65) can also be written as:
aQ:a
w = — - - a Hal : — 7 (6.66)
(2922 — et (1[5 HpQ: ' Ha) ' St
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If we use the approzimation

*M)—14 *—14
L TR T (6.67)
(CTJQy QeQy ¢y (CT;Qy Cy
Then equation (6.66) reduces to
a*Ha
=1- 6.68
YT Q. (6:68)
Hence:
1
maxi1 - 6.69
v AI'IlEi.X ( )
6.7 On the Choice of a Scaled Unit Weight Matrix
According to previous subsections, the following holds:
1
—tr]
2

HaQ Q8 = StrlH,Q; A Q)

(6.70)
where both H and @, are in the same S-system excluding the S-basis. Thus for an H and a @, in
an arbitrary S-system including the S-basis, equation (6.70) should be read as:

1

—tr[(%*S)*lvo*HaVO(S*VO)*l.S*A*Q;lAS.(%*S)*VO*Hﬁ%(S*VO)*.S*A*Q;lAS]Q"

= Str[(VeS) Vg HoVo (S V) 1.5 A% Q; L AS.AzAz* .S A*Q;  AS] (6.71)

In this equation matrix S*A*Q;lAS plays the role of weight matrix. Thus (S*A*Q;1AS’)_1 plays
the role of variance matrix. We will now investigate the consequences if one replaces or approximates
(S”‘A*Q;lAS)*1 by

(V5 S) " Ve o IVo(S* Vo) ] (6.72)
If we replace S*A*Q,'AS in (6.71) by the inverse of (6.72) we get:

—tr[(VgS) Vg Ho Vo (S*Vo) (™ Vo) (a2 Vg Vo) 1V S)....

B
or

(Ve 8) TV HVo(S*Vo) . (S*Vo) (0 Ve Vo) M (VG 9)IE =
—tr[(VgrS) Vg Ho Vo (S* Vo) H.(S* Vo) (02 Ve Vo) 1 (V5 S). Az Ax* .(S* Vo) (a2 Vi Vo) ~H (Vi S)] (6.73)

— * * — * * — "ﬁ
So [V Ho Vo (Ve Vo) ' Ve HaVo (Vo' Vo) 118 =
—o Mr[VE H Vo (Vg Vo) Vg S.AzAz* S* Vo (Vi Vo) ™1
Note that the projector

(6.74)
Prasyneay = Vo(Vo Vo) ' Vo =T = Vi(W' ) vy

is the S-transformation that corresponds with the minimum-norm solution. With (6.75), equation
(6.74) may be written as

(6.75)

tr[Ho PHP))” = tr[Ho PS.AzAz*S* P (6.76)
If we replace AzAz* by its expectation (S*A*Q, ' AS)™!, we get

tr[Ho PHyP))” = tr[H, PS(S* A*Q; AS) 1S P]

(6.77)
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or with Q, = S(5*A*Q, 1 AS) 5%,

tr[Ha PH3P)8” = tr[H,PQ, P) (6.78)

This shows that:
1. The solution is independent of the chosen S-system, because of the occurrence of P in (6.78),

2. The solution corresponds to the case that H and @, are defined in the minimum-norm S-
system.

Remark: Because of the structure of the normal matrix in (6.78), it will be possible for some
cases to solve (6.78) analytically. For example consider a leveling network of n points with the
simplest substitute matrix H. Then

H = Ad?*I,, and P =1, —e(e*e) te* (6.79)
with
e=(1,1,..,1)" (6.80)

Substitution of (6.79) into (6.78) gives

tr[P|Ad? = tr[PQ, P] (6.81)
or
Adg _ tT[PQzP]
n—1
(6.82)
20
2 —
]

Note 1: Here we have a link with the minimum trace.

Note 2: This Ad? is related to Helmert’s mittler punktfehler.
We will now derive the with (6.78) corresponding teststatistic Ty,—,,. We have

T(0) = [vec((VyS) V5 (Qz — H)Vo(S™ Vo) I*[(Vg'S) ™' Vg o? IVo (5™ Vo) ' ! @
(VST W o IV (S Vo) 7Y uee((VeS) 1V (Qun — H)Vo (S Vo) ™Y (6.83)

T(0) = tr {[(V5 )~ Vi o IVo(S Vo) (Ve ) 7 V5 (Qe — H)Va(S"Vo) ™)
1V S) Vo V(5" Ve) (G ) TV (Qu — IDVR(S™ V) T} (6:84)
T(6) = o~ *tr[P(Qs — H)P(Q. — H)] (6.85)

We may write (6.85) also as
T@) = ot {tr[PQxPQI] — tr[PQ,PH] — tr[PHPQ,] + tr[PﬁPﬁ]}

- ot {tr[PQxPQz] — otr[PQ,PH] + tr[PﬁPﬁ]} (6.86)
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And with (6.78), this simplifies to

T(0) = o~ *tr[PQ.(PQ, — PH)] (6.87)

We will now derive with (6.78) the corresponding teststatistic w: Let us assume that we want to
test how well the variance a*@,a of an estimable function a*z fits the model value a* Ha. Then,
the following two hypotheses should be considered:

Hy: E{vec(AzAz*)} = vec(H,)0¢
(6.88)
Ha: E{vec(AzAz*)} = vec(Hy)0" + vec(aa™)
These hypotheses should actually be read as:
Ho: E{vec[S*A*Q,'AS]} = wec[(V5'S) 'V HaVo(S5* Vo)~ 10
Hy: Efvec[S*A*Q,'AS]} = wec[(Vy'S) 'V HaVo(S* Vo) 10 (6.89)
+  wec[(VyS) Wiaa* Vo(S* Vo)1
As covariance matrix, we take
[(Vo'S) Vo' a®IVo(S*Vo) T @ [(V'S) " Vg o IV (S* Vo) '] (6.90)

with (6.89) and (6.90), it follows that:

ey @y QeQy ey = vec|(Vy'S) V5 aa Vo (™ Vo) T [[(Vy'S) ™ Vo o Vo(S* Vo) 7' @

(V' S) = Ve o Va(S™Vo) T~ = (V5" S) V5 o™ Vo(S™ Vo) '] @ [(V5"S) ™' Vg o Vo (S7 Vo) 7]~
ec((Vy'S) V5 Ho Vo (S™Vo) ™ [tr(Ha PHp P)|~ vec[(Vy'S) V5 HpVo(S*Vo) ']

[Vo'S) V5o Vo(S"Vo) T 71 @ [(Vy'S) 'V o Vo (S™ Vo) ™1~ uecl (V' S) ™! Vg aa™ Vo (S*Vo) ™)

or
tr {(S* Voo 2 (Vg Vo) Vg S) (V' S) ™V aa™* Vo (S*Vo) ™ ...
(S*Vo)o 2 (Ve Vo) = Vg S) (V' S) ™1 Vg aa Vo (S* Vo) ™t }

N =

-1 -1 _
CZQU QéQy Cy—

e (VO V) Ve SV )V H Vo (S7)
(S*Vo)o (Vg Vo) ' Vi S.(VyS) 1V aa* Vo (S*Vo) ™t} 20 [tr(Ho PHP)] ..
%tr{(S*Vo)a—2(VO%)—lvo*S.(%*S)—lvo*aa%(s*%)—l

(S*Vo)o (Vg Vo)~ V5 S.(Vg'S) ™V HaVo(S* Vo) ™' } (6.91)

or

1 1 1
cZQJlQélecy = 5074(a*Pa)2 — 50'74(£L*PHO¢PCL)2O'4(tT[HaPHQP])il50'74(CL*PH[3PCL)

_ %(774 {(a*a)? — (a" Hoa)(tr[Ho PH5P)) " (a" Hpa) ) (6.92)

since a is an estimable function, i.e., Pa = a.
1
6Qy e = Svec(Vy 8) Vi aa Vo(S*Vo) TS Vo)o 2 (Vi Vo) (Vg S)] @
[S5*Vo)o ™2 (Vg Vo)~ (Vg™ 9)][veel (V' S) Vi (Qu — H)Vo(S*Vo) )] (6.93)
or
*y—12 1 * * — * * Q\— * 2 * —
€yQy e = Strl(S™Vo) (Vg Vo) ™ (Vg 9)-(V5"S) ™1V (Qe — H)Vo(S™Vo) ™"
5 Vo) (Vi Vo) ™ (Vi 9). (Vi §) ™ Vi aa* Vo (87 V) o~ (6.94)
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or

1 - 1 N
Qe = 50'74CL*P(Q1 — H)Pa = 5074a*(QI — H)a (6.95)
From (6.92) and (6.95) follows that:
1 a*(Q, — H)a
= ) 6.96
"~ Vo @ a) — @ Haa) ([ Ho PE,P]) (@ Hya) 7 (699
Example: If H = Ad?I, and P = I,, — e(e*e)e*, then
1 a*(Qu—H)a (n—1 1/2
= . . 6.97
v V202 a*a <n - 2> (6.97)

Note that wmax in this case is related to the generalized eigenvalue problem |Q,, — NH | = 0. Hence,
we have established a like with the ordinary procedure of the generalized eigenvalue problem

1 (n—-1\"? -
Wmax = m (m) ()\max — 1)Ad (698)
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Appendix A

Backgrounds

A.1 The Moments of t ~ N(0, Q)
The moment generating function of t is defined as

2(5) = Blewls't)} = [ mo)ewls'dat
with

pu(t) = (2m)21QuI 2 expl - 1@ ]
Substitution of (A.2) into (A.1) gives

B = [(2n) QU2 el 5 {17 Qr t — 2570,
Substitution of
expl-5 {1 Qi Mt~ 25°1)] = exp[~ 3t — Qus) Qi (¢ — Qus)] expl— 557 Qus]

into (A.3) gives

1
B(s) = expl3s" Qus)

From (A.1) follows that:

o5 iaq)(s) :/pé(t)ﬁf; ..... ia[exp(s*t)]dt, Uy enta =1,2,...,0

Substitution of

into (A.6) gives:

o5 i ®(s) = /pi(t)tilth...tia exp(s*t)dt
Evaluation at s = 0, shows that
6?; ..... iaq)(8)|5:0 = E{ﬁilﬁ@---iia}

If we write (A.5) in index notation like

1 ..
(I)(S) = eXp[iquiSj]a Za] = 1725 ab
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it follows that

0i®(s) .y = 0, OZO(s)|_, = ¢”
(A.11)
@] = 0 Fu®s)| = a7d" +ate +ql"
This, together with (A.9) shows that
E{t;} = 0, E{tt;} = ¢¥
(A.12)
E{tit;tyy = 0, E{tttpt;} = ¢9¢" + %" + ¢"¢*

A.2 The Variance Matrix of vec(tt*), with ¢t ~ N(0, Q)

First some standard results on the vec-operator and the Kronecker product. Consider a matrix
A = [ai;] of order m x n and a matrix B = [b;;] of order r x s. The Kronecker product of the two
matrices, denoted by A ® B is defined as the partitioned matrix

a11B CL12B e CLlnB
ang CLQQB e CLQnB

A®B= ) (A.13)
amlB amQB e amnB

A® B is seen to be a matrix of order mr x ns. It has mn blocks, the ij'" block is the matrix a;; B
of the order r x s. The following properties hold for the Kronecker product:

vec(ABC) = (C* @ A)vec(B)
vec(A)*vec(B) = trace(A*B)
trace(ABCD) = wece(D*)*(C* @ A)vec(B)
= wec(D)"(A® C*)vec(B*)
vec(ab*) = b®a
(A B)* = A*"®B"
rank(A® B) = rank(A)rank(B)
(AeB)™ = A'leB™!
trace(A® B) = trace(A)trace(B)
(A1+42)®B = A ®B+A4:®B
AR (B1+B2) = A®B1+A® By
(A142) ® (B1B2) = (A1 ® B1)(A2® Ba)
(A.14)
The variance matrix of vec(tt*) consists of terms like
E{[izﬁj - E{Lﬁj}] [ikil - E{Ekil}]} ivjv kvl =12,.., b (A15)
Since
E{lt;t; — E{t;it;}tet; — E{tt, 3]} = E{t;it;tt ) — BE{tt;  E{tL ) (A.16)
substitution of (A.12) gives
E{lt;t; — E{t;it;}tet, — E{tpi}]} = "¢+ " (A.17)
From (A.17) follows that
| B{lt:t — E{t,t}][tt — B{L1}]'} = €}QuerQ: + QuerelQu (A.18)
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with

From (A.18) follows that

Qvec(ﬁ*) = Z Z eiez ® eereth + Z Z eiez ® Qteke:Qt
ik ik

Since
Z Z ey @ e;QrerQr = Z Z Qrer)eier @ Qy
ik
and

ZZ i Qeer)eiey,

it follows that

%

D e @erQerQi= Qi@ Q,
k
With (A.18), it follows that
DN e @Quere;Qr = D> > el ® Qrere; Q,
ik ik
= Z Z(eiez ®Q)(I ® ere;Qy)
ik
S eie; ® QI @ exeQy)
ik

or

DD ek ©Qene;Qu =@ Q)(Y Y eer ®ere))(I® Q)
k

i k %

Matrix ), >, eiey ® exe; has the following properties:

1.
Z Z e;er, ® epe; = symmetric
ik
2.
(Z Z eier ® ekef)(z Z eje] ®ee;) =1
ik il
3.
(ZZeie,’g ®erel)a®@b)=b®a
ik
4.

(ZZeie,t@ekef)(A@B) (B® A)( ZZelek@)eke
k

i
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Y S U@ Qo) (eie; @ DI @ ere) (I © Q)
i k

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)



Proof of (1): Trivial
Proof of (2):
(sz:eie;; ® eke;)(zzl:ejer ®ee]) = Z;Z;(eie;eﬁ; ® exefere])
J Z > ZJ: > (Okjducie; @ exe])
Y Sedend
- (Zz::ie;*cgzk:eke;;)

%

= Iel=I (A.29)

Proof of (3):
O D e ere)@®b) = Y Y eicia®exelb
o T
= (iie»@(z%ew:b@a (A.30)
i p

Proof of (4): A=3" aae}; B=) ;bgef;

(Z zk: eief ® eke:)(za: Zﬁ: anel, ® baeh)

= (Z ijeiez ® ekef)(za: Xﬁ:(aa ® bg)(en ® €f))
= ;zﬁ:bﬁ ® aalel, ®e})

= za: 25: by ® aa[(z zk: eier © exel)(ep ® ea)]*
- ;zﬁ:(bﬁ ® aq)(ef ®el) sz:eie;; ® ere;

= za: zﬁ:(bﬁeg ®aael)(d zk: eicy ® exey)

i

(D-D eici ®eref)(A® B)
i k

= (B® A)(Z Z eiey, ® ege;) (A.31)
ik
Using (A.28) we may write (A.24) as
DD i ® Quene;Qu= (Y ) eic ® exe])(Qr @ Q) (A.32)
ik ik

Substitution of (A.23) and (A.32) into (A.20) finally gives

Qvec(ﬁ*) = [I + Z Z eielt ® ekeﬂ [Qt Y Qt]
i k
= [Qi® QI+ Z Z eie; ® epe;] (A.33)
3 k

= S+ WL CETIES W ICELLE:
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A.3 The Singularity of Q..

It will be clear that the matrix Que. has to be singular. Since Q; ® Q; is regular, the matrix
T4 eiej @ exe]] (A.34)
ik
has to be singular. Since (see also (A.25, A.26, A.27 and A.28))

T+ D eeioeelI+Y D e @ere]] =2[1+> ) ey ® exe]] (A.35)

it follows that the matrix

1 % x
sz $bh2 = 5[[ + ; % eiek 4 ekei] (A36)

is a projector (idempotent). We will know derive some properties of the projector P. Since the rank
of a projector equals its trace, we have:

1
rank(P) = 5tTCLC€[Iz,2 + Z Z eier, Q exer]
% k
1 1
= §b2 + §trace[z ; eiey Q ege;]

%

1 1
= 5172 + B ; ; tracele;er)tracelere;] (A.37)

1 2 1 *1\2
= §b +§¥¥(trace[eiek])

or

rank(P) = %b(b +1) (A.38)

From this follows that the dimension of the range space and null space of P are

dimR(P) = 1b(b+1)
(A.39)
dmN(P) = b2 —1b(b+1)=1b(b—1)
Since
1
P(a®b):§(a®b+b®a) (A.40)
and
a®b=vec(ba™) (A.41)
it follows that
1
Puec(ba*) = ivec(ba* + ab®) (A.42)
Let X be an arbitrary matrix of order % x b? with column vectors z;, i = 1,2,...,62. Then
X =), zief and thus vec(X) = Y, vec(xie]) = Y, e; @ x;. This shows with (A.42) that
1 * * 1 * *\ %
Pyec(X) = 5 ;vec(mei +eix)) = ivec[; xie; + (; xier)"] (A.43)
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or

Puec(X) = %(X +X7) (A.44)

From this follows that

Pvec(X) =vec(X) if X =X*
(A.45)
Pvec(X) =0 if X=-X*

Thus the range space of P is spanned by vectors vec(X) with X symmetric, and the null space of
P is spanned by vectors vec(X), with X skew-symmetric. It will be clear from the above that the
null spaces of P and Q. are identical. Thus

| N(P) = N(Quec) (A.46)
Proof:
Ifze NP) 2 Px=0 - (Q:®Q:)Pr =0 — Quect =0— 2 € N(Quec)
If x € N(Quee) = (Q: ®Q¢)Pxr =0 — Pr=0 —x € N(P)
A.4 The Solution
Consider the linear model
E{y} = Az, D{y}=Q, (A.47)
Let T = [TyT5]* be a square and full rank matrix. Then with (A.47):
ol gy =2 |- 2 ng P[50 2O (48
Now assume that
N(Qy) = R(Ty), R(T3) C N(A") (A.49)
Then with (A.48)
(B[] m(ED-a ]
or
E{Tyy} = T1Az, D{Tiy}=TQ,T} (A.51)
The solution of this model reads:
Boo= ATHTQT) A AT (TQ,TY) Ty A52)
Qi = [ATF(NQTT) T1A]
If we translate the above model to our situation, then
R(T7) = R(P), R(T3) = N(P) = N(Quec) (A.53)
Since R(T}) = R(P), we have
P =Ty (TWTy) Ty (A.54)
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Hence, with
Quee = PQt ® Q1 = Q1 @ QP
we get
Ti(TT) ' T Quec Ty = Qi @ Q4T
From this follows that
Q' ®Q T (M) ™ = T[T Quec TY] ™
or
Qi ® QT (T ™' Ty = T{ [T1QueT7) ™' T

Hence

Tl*[Tleech]71T1 = PQt_l & Qt_lp
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(A.56)

(A.57)

(A.58)

(A.59)



