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Abstract

GNSS carrier phase ambiguity resolution is the key to fast and high- precision satellite positioning and
navigation. It applies to a great variety of current and future models of GPS, modernized GPS and
Galileo. In (Teunissen, 1998, 1999) we introduced the class of admissible integer (I) estimators and
showed that the integer least-squares estimator is the optimal ambiguity estimator within this class. In
(Teunissen, 2002a, b) we introduced the class of integer equivariant (I E) estimators and determined the
best ambiguity estimator within this class. This best integer equivariant estimator is unbiased and of
minimum variance.

In the present contribution we will introduce a third class of ambiguity estimators. This class of
integer aperture (I A) estimators is larger than the I-class, but smaller than the I E-class, I C IA C IE.
The TA-estimator is of a hybrid nature since its outcome may be integer-valued or real-valued. We
also give a probabilistic description of TA-estimators. This is needed in order to be able to propagate the
inherent uncertainty in the data rigorously and to give a proper probabilistic evaluation of the final result.
The framework of TA-estimation also incorporates the important problem of ambiguity discernibility. By
setting the size and shape of the integer aperture pull-in region of an ITA-estimator, the user has control
over the fail- rate of the estimator and thus also over the amount of discernibility.

1 Introduction
As our point of departure we take the following system of linear observation equations
E{y} =Aa+Bb ,a€ Z",be RP (1)

with E{.} the mathematical expectation operator, y the m-vector of observables, a the n-vector of
unknown integer parameters and b the p-vector of unknown real-valued parameters. The m x (n + p)
design matrix (4, B) is assumed to be of full rank. All the linear(ized) GNSS models can in principle
be cast in the above frame of observation equations. The data vector y will then usually consist of the
’observed minus computed’ single- or dual- frequency double-difference (DD) phase and/or pseudorange
(code) observations accumulated over all observation epochs. The entries of vector a are then the DD
carrier phase ambiguities, expressed in units of cycles rather than range, while the entries of the vector b
will consist of the remaining unknown parameters, such as for instance baseline components (coordinates)
and possibly atmospheric delay parameters (troposphere, ionosphere).



The procedure which is usually followed for solving the GNSS model can be divided into three steps.
In the first step one simply discards the integer constraints a € Z™ and performs a standard least-squares
(LS) adjustment. As a result one obtains the LS-estimators of a and b as
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with @, the ve-matrix of the observables, A = P4 A, B = P31 B, and the two orthogonal projectors
Py = In — B(BTQ,'B)"'BTQ," and Py = I, — A(ATQ;'A)"'ATQ,'. This solution is usually
referred to as the ’float’ solution.
In the second step the ’float’ estimator a is used to compute an improved estimator which in some
pre-defined sense incorporates the integerness of the ambiguities. This estimator is given as

as = S(a) (3)

o

where S : R" — R". This improved ambiguity estimator is then used in the final and third step to adjust
the ’float’ estimator b. As a result one obtains the so-called ’fixed’ estimator of b as

b=b-Q;,Q;"' (a—as) (4)

in which @); denotes the ve-matrix of 4 and ();, denotes the covariance matrix of b and a. This fixed’
estimator can alternatively be expressed as b = (BTQ,'B)"'BTQ, ' (y — Aas).

The above three-step procedure is still ambiguous in the sense that it depends on which mapping S
is chosen. Different choices for S will lead to different ambiguity estimators Gs and thus also to different
baseline estimators b. One can therefore now think of constructing maps which possess certain desirable
properties. In earlier contributions the author introduced the class of admissible integer (I) estimators
and the class of integer equivariant (IE) estimators. In the present contribution the class of integer
aperture (I A) estimators will be introduced. This class is larger than the I-class, but smaller than the
IE-class. It will also be shown how the probabilistic performance of the IA-estimators can be evaluated.

2 Integer estimation and integer equivariant estimation

2.1 The class of integer estimators

If one requires the output of the map S to be integer, S : R"® — Z", then S will not be one-to-one due to
the discrete nature of Z™. Instead it will be a many-to-one map. This implies that different real-valued
vectors will be mapped to one and the same integer vector. One can therefore assign a subset S, C R"
to each integer vector z € Z™:

S,={zxeR"|z2=S8(z)}, z€Z" (5)

The subset S, contains all real-valued vectors that will be mapped by S to the same integer vector z € Z™.
This subset is referred to as the pull-in region of z. It is the region in which all vectors are pulled to the
same integer vector z.

Since the pull-in regions define the integer estimator completely, one can define classes of integer
estimators by imposing various conditions on the pull-in regions. One such class was introduced in
(Teunissen, 1998a) as follows.

Definition 1 (Integer estimators)
The mapping a = S(a), with S : R® — Z", is said to be an integer estimator if its pull-in regions satisfy
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(i5s) S, =2+ S, VzE Z™



This definition is motivated as follows. Each one of the above three conditions describe a property of
which it seems reasonable that it is possessed by an arbitrary integer estimator. The first condition
states that the pull-in regions should not leave any gaps and the second that they should not overlap.
The absence of gaps is needed in order to be able to map any float solution @ € R™ to Z", while the
absence of overlaps is needed to guarantee that the float solution is mapped to just one integer vector.
Note that we allow the pull-in regions to have common boundaries. This is permitted if we assume to
have zero probability that a lies on one of the boundaries. This will be the case when the probability
density function (pdf) of @ is continuous.

The third and last condition of the definition follows from the requirement that S(z + 2) = S(z) +
z,Yx € R™, z € Z™. Also this condition is a reasonable one to ask for. It states that when the float
solution a is perturbed by z € Z", the corresponding integer solution is perturbed by the same amount.
This property allows one to apply the integer remove-restore technique: S(a—z) + z = S(a). It therefore
allows one to work with the fractional parts of the entries of a, instead of with its complete entries.

Using the pull-in regions, one can give an explicit expression for the corresponding integer estimator
a. It reads

a= Z zs,(a) with s,(a) =

{1 if aes,
zZEZ™

0 if ags. (6)

Note that the s.(a) can be interpreted as weights, since ) . . s.(a) = 1. The integer estimator a is
therefore equal to a weighted sum of integer vectors with binary weights.

The three best known integer estimators are integer rounding, integer bootstrapping and integer least-
squares. The simplest way to obtain an integer vector from the real-valued float solution is to round each
of the entries of a to its nearest integer. The corresponding integer estimator reads therefore

ar = ([al]""a[&n])T (7)

where ’[.]’ denotes rounding to the nearest integer. The pull-in region of this integer estimator equals
the multivariate version of the unit- square.

Another relatively simple integer ambiguity estimator is the bootstrapped estimator. The boot-
strapped estimator can be seen as a generalization of the previous estimator. It still makes use of integer
rounding, but it also takes some of the correlation between the ambiguities into account. The boot-
strapped estimator follows from a sequential conditional least- squares adjustment and it is computed
as follows. If n ambiguities are available, one starts with the first ambiguity G;, and rounds its value to
the nearest integer. Having obtained the integer value of this first ambiguity, the real-valued estimates
of all remaining ambiguities are then corrected by virtue of their correlation with the first ambiguity.
Then the second, but now corrected, real-valued ambiguity estimate is rounded to its nearest integer.
Having obtained the integer value of the second ambiguity, the real-valued estimates of all remaining n — 2
ambiguities are then again corrected, but now by virtue of their correlation with the second ambiguity.
This process is continued until all ambiguities are considered. The entries of the bootstrapped estimator
ap = (@Ba,...,aB,n)T € Z™ are thus given as

iy = [a1]
ap2 = lan] = [a2— 0210f2(a1 —ap,)]
: (8)
. R N -1 9. .
aGBn = [an|N] = [an - 2?21 O—n,leUﬂj‘;(ale - G’B,j)]

where 03 j; denotes the covariance between a; and a; 7, and 012- s is the variance of a; ;. The shorthand
notation a; ; stands for the ith least-squares ambiguity obtaine(& through a conditioning on the previous

I={1,...,(i — 1)} sequentially rounded ambiguities. The pull-in region of the bootstrapped estimator



is the multivariate version of a parallellogram. Note that the bootstrapped pull-in regions reduce to
multivariate unit- cubes in case the vc-matrix is a diagonal matrix. Bootstrapping reduces namely to
rounding in the absence of any correlation between the ambiguities.

Also note that the bootstrapped estimator is not unique. The outcome of bootstrapping and its
performance depend on the chosen ambiguity parametrization. Thus although the principle of bootstrap-
ping remains the same, every choice of ambiguity parametrization has its own bootstrapped estimator.
Bootstrapping of DD-ambiguities, for instance, will generally perform poorly due to the high correlation
and poor precision of DD ambiguities when short observation time spans are used. One should therefore
make use of an appropriate parametrization when using bootstrapping. This can be done by applying
the decorrelating Z- transformation of the LAMBDA (Least-squares AMBiguity Decorrelation Adjust-
ment) method. When this transformation is applied, one works with the more precise and decorrelated
ambiguity vector 2 = Za, instead of with the original ambiguity vector a. For more information on the
LAMBDA method, we refer to (Teunissen, 1993) or to the textbooks (Hofmann- Wellenhof et al., 2002),
(Strang and Borre, 1997), (Teunissen and Kleusberg, 1998), (Misra and Enge, 2002) and (Seeber, 2003).

The integer least-squares estimator is defined as

ars = arg min || a—z (3, 9)

In contrast to integer rounding and integer bootstrapping, an integer search is needed to compute drs.
The ILS procedure is mechanized in the LAMBDA method, which is currently one of the most applied
methods for GNSS carrier phase ambiguity resolution. In (Teunissen, 1999) it has been shown that
the integer least-squares estimator is optimal in the sense that it has the highest possible success-rate
of all integer estimators. Its pull-in regions are convex, symmetric sets of volume 1, which satisfy the
conditions of Definition 1. They are hexagons in the two-dimensional case. In higher dimensions they
are constructed from at most 2" — 1 pairs of intersecting half-spaces.

2.2 The class of integer equivariant estimators

One may wonder what happens if the conditions of Definition 1 are relaxed. Would it then still be
possible to find a sensible ambiguity estimator? In order to answer this question the class of integer
equivariant (IE) estimators was introduced in ( Teunissen, 2002a). This class is larger than the class of
integer estimators and it is defined as follows.

Definition 2 (Integer equivariant estimators)
The estimator O = Fy(a), with Fp : R® — R, is said to be an integer equivariant estimator of § = ITa
if

Fy(x +2) = Fp(x)+1T2 , Ve € R",z € Z" (10)

This definition was motivated by the fact that of the conditions of Definition 1 one should at least retain
the property that the integer remove-restore principle applies. It will be clear that integer (I) estimators
are also IE-estimators. Simply check that the above condition is indeed fulfilled by the estimator § = I”a.
The converse, however, is not necessarily true. The class of IE-estimators is therefore indeed a larger
class than the class of I-estimators.

The class of TE-estimators is also a larger class than the class of linear unbiased estimators, assuming
that the float solution is unbiased. Let FoT a, for some Fy € R™, be the linear estimator of § = [Ta. For it
to be unbiased one needs, using E{a} = a, that F] E{a} = [Ta, Ya € R" holds true, or that Fj = [. But
this is equivalent to stating that Ff (a+a) = Fla+1"a, Va € R",a € R". Comparison with (??) shows
that the condition of linear unbiasedness is more restrictive than the condition of integer equivariance.
The class of linear unbiased estimators is therefore a subset of the class of integer equivariant estimators.



This result implies that IE-estimators exist which are unbiased. Thus, if one denotes the class of IE-
estimators as I E, the class of unbiased estimators as U, the class of unbiased IE-estimators as IEU, the
class of unbiased integer estimators as IU, and the class of linear unbiased estimators as LU, one may
summarize their relationships as: IEU = IENU # 0, LU C IEU and IU C IEU
Having defined the class of IE-estimators one may now look for an IE- estimator which is 'best’ in a
certain sense. We use the mean squared error (MSE) as our criterion of 'best’ and denote the best integer
equivariant (BIE) estimator as @p;p. The best integer equivariant estimator of § = [Ta is therefore
defined as . )
Op1p = arg min E{(Fy(a) - 6)"} (11)

in which IFE stands for the class of IE-estimators. The minimization is thus taken over all integer
equivariant functions that satisfy the condition of Definition 2.

The solution to this optimization problem is given in (Teunissen, 2002b). The reason why we choose
the MSE-criterion is twofold. First, it is a well-known probabilistic criterion for measuring the closeness
of an estimator to its target value, in our case 8 = [Ta. Second, the MSE-criterion is also often used as
measure for the quality of the float solution itself. Note that the BIE-estimator is always better than the
float solution. Afterall the float solution is an IE-estimator as well. It should be kept in mind however
that the MSE-criterion is a weaker criterion than the probabilistic criterion of maximizing the success-rate
as used in the previous section.

3 Integer aperture estimation

The two classes of ambiguity estimators discussed in the previous section are related as I C ITE. That is,
integer estimators are integer equivariant, but integer equivariant estimators are not necessarily integer.
We will now introduce a third class of ambiguity estimators. It will be referred to as the class of
integer aperture (IA) estimators. This class will be larger than the I-class, but smaller than the IE-class,
I C TA C IE. Whereas the IE-class was defined by dropping two of the three conditions of Definition 1,
the TA-class will be defined by dropping only one of the three conditions, namely the condition that the
pull-in regions should cover R™ completely. We will therefore allow the pull-in regions of the TA-estimators
to have gaps.

In order to introduce the new class of ambiguity estimators from first principles, let & C R™ be the
region of R™ for which @ is mapped to an integer if a € Q. It seems reasonable to ask of the region 2 that
it has the property that if @ € Q then also a+ 2z € Q, for all z € Z™. If this property would not hold, then
float solutions could be mapped to integers whereas their fractional parts would not. We thus require
) to be translational invariant with respect to an arbitrary integer vector: 2 + z = Q, for all z € Z™.
Knowing Q is however not sufficient for defining our estimator. ) only determines whether or not the
float solution is mapped to an integer, but it does not tell us yet to which integer the float solution is
mapped. We therefore define

Q,=0NnS,,vVzeZ" (12)

where S, is a pull-in region satisfying the conditions of Definition 1. Then

@)  U.=0.0aNn8s)=0nU,Ss:)=2NR" =0
(%) QZI ﬂﬂzz = (90921)0(00922) = Qn(SZ1 nszz) = @7 V21,22 € Z",Zl # 22
(7)) Q+2=0NSo)+2z=Q+2)(So+2)=02NS.=Q,, Vze€Z"

This shows that the subsets Q, C S, satisfy the same conditions as those of Definition 1, be it that
R™ has now been replaced by Q2 C R™. Hence, the mapping of the TA-estimator can now be defined as
follows. The TA-estimator maps the float solution & to the integer vector z when a € 2, and it maps the
float solution to itself when a ¢ 2. The class of TA-estimators can therefore be defined as follows.



Definition 3 (Integer aperture estimators)
Integer aperture estimators are defined as

ara=a+ Y (2 —a)w.(a) (13)

2€EZ™

with w,(z) the indicator function of Q, = Q2N S, and Q C R™ translational invariant.

Note that an TA-estimator is indeed also an IE-estimator, just like an I-estimator is. There is also
resemblence between an IA-estimator and an I-estimator. Since the indicator functions s,(z) of the
pull-in regions S, sum up to unity, ) . s.(z) = 1, the I-estimator (??) may be written as

a=a-+ Z (z —a)s,(z) (14)

z€EZ™

Comparing this expression with that of (??) shows that the difference between the two estimators lies in
their binary weights, s.(z) versus w,(x). Since the s,(z) sum up to unity for all x € R", the outcome
of an I-estimator will always be integer. This is not true for an IA-estimator, since the binary weights
w,(z) do not sum up to unity for all x € R™. The IA-estimator is therefore an hybrid estimator having as
outcome either the real-valued float solution a or an integer solution. The IA-estimator returns the float
solution if a & Q and it will be equal to z when a € 2,. Note, since 2 is the collection of all Q, = Qg + z,
that the TA-estimator is completely determined once Qg is known. Thus Q¢ C Sy plays the same role
for the TA-estimators as Sy does for the I-estimators. By changing the size and shape of Q¢ one changes
the outcome of the TA-estimator. The subset g can therefore be seen as an adjustable pull-in region
with two limiting cases. The limiting case in which Qg is empty and the limiting case when 2y equals
So. In the first case the IA-estimator becomes identical to the float solution a, and in the second case
the TA-estimator becomes identical to an I-estimator. The subset Qg therefore determines the aperture
of the pull-in region.

4 FEvaluation of IA-estimators

In order to be able to evaluate the performance of an TA-estimator, one needs its probability density
function (pdf). It can be obtained from the pdf of the float solution if one discriminates between the
following two disjunct cases: the case that a ¢ Q. and the case that a € 2, for some z € Z™. Since
ara =aif a & Q, the pdf of ara will equal the pdf of @ when the first case applies. For the second case
one has ara = z. The probability that this occurs, P(ara = z), equals the integral of the pdf of @ over
the region €2,. Hence, for the second case the pdf of dra equals a weighted train of impulse functions,
with weights P(dra = z). The complete pdf of dra follows then by combining the two disjunct cases.
The result is given in the following Theorem.

Theorem (The pdf of an IA-estimator)
Let fi(x) be the pdf of the float solution & and let w,(z) be the indicator function which defines the
TA-estimator dya. Then the pdf of aj4 is given as

fara(@) = falz)w(z) + - fe(v)wo(v)dvd(z — z) (15)

where §(z) denotes the impulse function, @(z) = (1=, ;. w:(2)) is the indicator function of R™\
and fe(z) = > cyn fa(x + 2)s0(z) is the pdf of the residual é = a — a.

Note that the pdf of an TA-estimator is discontinuous. This is a consequence of the hybrid nature of the
estimator. Having defined the class of IA-estimators in which each estimator is uniquely defined by its



aperture pull-in region g, one can now design one’s own TA-estimator and evaluate its performance by
using the pdf f;,,(x). As an example one may consider the first moment of an IA-estimator and study
the conditions under which the TA-estimator becomes unbiased. The following corollary gives the result.

Corollary (The mean of an IA-estimator)
Let fa(x) be the pdf of the float solution a and let Qy be the aperture pull-in region which uniquely
defines the TA-estimator. Then

Blara} = i) - [ afi(oyts (16)

with fe(x) =3, czn fa(z + 2)s0(z) the pdf of the ambiguity residual é = @ — a.
Proof: Substitution of (??) into E{ara} = [pa ©fa, . (z)dz gives

E{ara} = /Rn zfa(e)dz + )

zZEZ™

/(z—@hwwx
Q.

from which the result follows when using the Theorem and a change of variables in the second term of
the sum. End of proof.

The above result shows that an IA-estimator is unbiased when Qo and f:(z) are both symmetric with
respect to the origin.

In order to evaluate the performance of an TA-estimator as to whether it produces the correct integer
outcome a € Z™, it is helpful to classify its possible outcomes. An IA-estimator can produce one of the
following three outcomes

a€Zm (correct integer)
dra =< z€ Z™\{a} (incorrect integer) (17
€ R"\Z™ (no integer)

A correct integer outcome may be considered a success, an incorrect integer outcome a failure, and an
outcome where no correction at all is given to the float solution as indeterminate or undecided. The
probability of success, the success-rate, equals the integral of f;,, (z) over Q,, whereas the probability
of failure, the fail-rate, equals the probability of fs,,(x) over \ Q,. The respective probabilities are
therefore given as

Ps = P(ara = a) = Ja, fara(@)da = Jqo, fa(z)dz (success)
Pp = ¥ s, Plaia=2) = ¥ ., Jo. faa@de = 3, [, fa(z)de (failure) (18)
Py = P(ars = a) = 1— [, fasu(@)de = 1—Ps— Pp (undecided)

Note that these three probabilities are completely governed by f;(z), the pdf of the float solution, and by
Qg, the aperture pull-in region which uniquely defines the IA-estimator. Hence, as it was the case with
the mean of a4, one can proceed with the evaluation of IA-estimators once this information is available.

Depending on the type of TA-estimator one is considering, the above integrals for computing the
success-rate and the fail-rate may be difficult to evaluate exactly. Whether or not an exact evaluation is
possible depends to a large extent on the complexity of the geometry of the aperture pull-in region (.
In a forthcoming contribution an IA-estimators will be introduced for which an exact computation of Pg
and Pp is possible ( Teunissen, 2003). For others however such an exact evaluation may not be feasible. In
that case one has to use the method of simulation. If one may assume that the float solution is Gaussian
distributed as @ ~ N(a, Q;), the simulation of the fail-rate and the success-rate goes as follows. Since
the shape of the Gaussian distribution is independent of the mean a, also Ps and Pr are independent of
a. Hence, one may restrict attention to N(0,Q;), draw samples from it and use these samples to obtain
good approximations to both Ps and Pr.



As a first step one generates, using a random generator, n independent samples from the univariate
standard normal distribution N(0,1), say s1,...,8,. These samples are then collected in the vector
s = (s1,...,8,)7 and transformed by means of @ = G's, where matrix G equals the Cholesky factor of
Qa, i.e. Q2 = GGT. Hence, a is now a sample from N(0, Q). This sample is then used as input for the
TA-estimator. The outcome of the [A-estimator is then correct if the output equals the zero vector, it is
incorrect if the output equals a nonzero integer vector and the outcome is undecided if the output equals
the input. The first case corresponds with a € Qq, the second case with a € Q, for some z € Z™ \ {0},
and the third case with a & 2,,Vz € Z™. By repeating this process an N-number of times one can count
how often the zero vector is given as solution, say Ny-times, and how often a particular nonzero integer
vector is given as solution, say N,-times. An approximation to the required success-rate and the required
fail-rate follows then from the relative frequencies as

N 220V
Psm—o , szizjé\? z

N (19)

Note that this procedure requires the evaluation whether or not the generated sample a resides in one
of the aperture pull-in regions. Since 2, = Q2N S, with S, the pull-in region of the chosen integer
estimator, this evaluation is done in two steps. First the integer vector corresponding to a is computed,
say a. Depending on the choice of S, this could be based on integer rounding, integer bootstrapping,
integer least-squares or any other admissible integer estimator. Then in the second step the residual
€ = a — a is used to verify whether or not € € 2. Since this procedure has to be repeated N-times,
it is of importance that the integer solution G can be computed as efficiently as possible. For the case
of GPS this implies that one should not use the original ambiguities, but instead the transformed and
decorrelated ambiguities as obtained with the LAMBDA method. As to the choice of N, we refer to
e.g. (Teunissen, 1998b). For more advanced methods of approximating the integrals of Ps and Pg using
Monte-Carlo or other methods, we refer to e.g. (Evans and Schwartz, 2000).

It can also be shown that some of the popular discernibility procedures currently in place for carrier
phase ambiguity resolution are in fact applications of different TA-estimators. This holds true for e.g.
the ratio-test, the difference-test and the projector-test. In fact by setting the size and shape of the
aperture pull-in region of an TA-estimator one has control over one of the three probabilities, Pg, Ps or
Py, and thereby one can exercise one’s own influence on the amount of discernibilty. By establishing this
fact, one is thus now for the first time able to compare these different procedures using the framework of
TA-estimation and to systematically evaluate their probabilistic properties and performance by using the

pdf f?lIA (.73)
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