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Introduction

Precise ranges for positioning with the Global Positioning System (GPS) are
obtained from carrier phase measurements. These measurements of range in-
herently contain unknown integer ambiguities to account for the mismatch of a
whole number of wavelengths or cycles. This contribution describes the problem
of GPS carrier phase ambiguity resolution, discusses some relevant elements of
integer estimation theory and reviews some of the high precision positioning
applications that come into reach when the integer carrier phase ambiguities
can be resolved quickly and correctly.

Redundant measurements

As in other physical sciences, empirical data are used in geodesy to make in-
ferences so as to describe the physical reality. Many such problems involve the
determination of a number of unknown parameters which bear a linear or lin-
earized relationship to the set of data. In order to be able to check for errors or
to reduce for the effect these errors have on the final result, the collected data
often exceed the minimum necessary for a unique solution (redundant data).
As a consequence of measurement uncertainty, redundant data are usually in-
consistent in the sense that each sufficient subset yields different results from
another subset. Hence, redundancy generally leads to an inconsistent system of
linear(ized) equations, say

(1) y = Az

where vector y contains the m observations, vector x the n unknown parameters.
The m X n matrix A relates the observations to the parameters. Redundancy
of the above system is defined as m —rankA, which in case of a full rank matrix
simplifies to m — n, the difference between the number of observations and the
number of unknown parameters.

The above inconsistent system is without additional criteria not uniquely
solvable. The problem of solving an inconsistent system of equations has at-
tracted the attention of leading scientists in the middle of the 18th century.
Historically, the first methods of combining redundant measurements originate



from studies in geodesy and astronomy, namely from the problem of determin-
ing the size and shape of the Earth, and the problem of finding a mathematical
representation of the motions of the Moon. Since its discovery almost 200 years
ago, the method of least-squares has been and still is too a large extent one
of the most popular methods of solving an inconsistent system of equations.
Although the method of least-squares may seem ’natural’ for a student in mod-
ern times, its discovery evolved only slowly from earlier methods of combining
redundant observations [1]

GPS positioning basically is determining the location of a (user) receiver
with respect to satellites of which the locations (orbits) are known. This de-
termination takes place by measuring distances, and from a geometric point
of view three measurements would suffice to determine the three coordinates
of the user (fortunately we know on which side of the satellite configuration
the Earth is located). The simplest example of (1) in case of GPS is therefore
when distances are measured from an unknown GPS receiver position to more
than three GPS satellites of which the positions are known. Since the distance
from the unknown receiver position r to the known position of satellite s is a
nonlinear function of the unknown position coordinates,

(2) =V =)+ " —ye)? + (2 — 2)?

the common approach is to approximate this relation by a linearized version,
i.e. developing the nonlinear relation in a Taylor series with zeroth and first
order terms only, using good approximate values for the unknown parameters.
As a result the (increments of the) observed distances are collected in vector y,
the (increments of the) three unknown coordinates in vector z and the partial
derivatives in matrix A. In reality the equations are far more complicated than
(2) due to the fact that one also has to account for clock errors, atmospheric
delays and orbital errors.

Least-squares

Around 1800 Legendre and Gauss, see figure 1, at the same time (most likely
independently), invented the method of least-squares for solving an inconsistent
system of equations. The least-squares solution to (1) reads

3) &= (ATQ,'A) T ATQ, Ny

with @ ! being the weight matrix. This solution is obtained by first adding an
unknown error vector e to (1), giving the consistent but undetermined system
y = Az + e, and then minimizing the weighted norm of e, || e ||g, , as function
of . The least-squares estimator has various desirable properties. When the
positive definite matrix (), is chosen as the variance-covariance matrix of the
observations, the least-squares estimator has the smallest variance (best possible
precision) of all linear unbiased estimators.

The geometric interpretation of what least-squares does to the observations
is shown in figure 2. The inconsistency between observations on one hand and
model (with unknown parameters) on the other is removed by orthogonal pro-
jection. Vector § = AZ eventually lies in the plane or linear manifold spanned
by the columns of matrix A (indicated by R(A)). The orthogonal projection



AD0017036D6

DEUTSCHE MARK

Deutsche Bundesbark

Figure 1: Carl Friedrich Gauss (1777-1855) is portrayed on the former 10 Mark
banknote in Germany. The banknote also shows the town of G6ttingen and the
Gaussian or normal probability density function.
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Figure 2: Least-squares estimation implies a (n orthogonal) projection of the ob-
servation vector y onto the plane spanned by the columns of matrix A. Example
with three observations and two unknown parameters.

realizes shortest distance between the original observation values y and the ad-
justed ones ¢; the observation values are modified as little as possible, though
satisfying the assumed model afterwards. This follows from interpreting the
least-squares estimation principle as the principle of least distance

(4) min ly — Aall3,

The (squared and weighted) distance between y and § = AZ is minimized.

In order to evaluate the quality of the least-squares solution in a probabilis-
tic sense, we need the probability density function (pdf) of Z. Since % of (3)
is a linear function of y, the least-squares estimator has a Gaussian distribu-
tion whenever y is Gaussian distributed. The pdf of the unbiased least-squares
estimator £ can therefore be uniquely characterized by means of the variance-
covariance matrix of . With @, being the variance-covariance matrix of the
observations, application of the error propagation law to (3) gives the variance-
covariance matrix of the estimated parameters as

(5) Qs = (ATQ, 1A

This matrix can be used to evaluate the precision of the parameter estimators,
as for instance the position coordinates.
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Figure 3: Measurement of phase on the continuous carrier wave transmitted by
the satellite.

GPS carrier phase observable

GPS observations of distance or range are obtained by measuring signal travel-
times (from satellite to receiver) and multiplying these by the speed of light.
Two types of distance measurements are employed: pseudo range code and
carrier phase. The code observation is based on the (binary) code the satellite
modulates onto the signal carrier; the distance can be measured virtually unam-
biguously. For the carrier phase, the receiver measures the difference in phase
between the carrier wave received from the satellite and the reference carrier
wave it generated itself. The (physical) phase difference reads

(6) Yp=¢r —¢°

With some simplifying assumptions, the phase of a carrier wave at some epoch ¢
equals frequency f multiplied by time t: ¢ = ft. The receiver compares the
reference carrier at time of observation ¢, with the carrier received from the
satellite, which was generated a little earlier in order to be ‘in time’ at the
receiver, namely at ¢, — 77, where 77 is the signal travel time from satellite to
receiver.

The above phase difference becomes

(7) ¥ = fry

and when multiplied by wavelength A = %, A&7 = ¢r7 =[], the distance in
meters is obtained; it equals the travel time pre-multiplied by the speed of
light ¢, exactly as with the code observation.

As a consequence of carrying out measurements on a (monotone) continuous
carrier wave, the receiver can not distinguish one cycle from another. The
satellite keeps on transmitting the carrier wave, in principle cycle after identical
cycle, see figure 3.

At some epoch in time the receiver simply starts outputing the measured
fractional difference in phase: frac(¢?) € [0,1) cycle. The full (physical) phase
difference is then decomposed into

(8) ¢y = int(¢;) + frac(yy)
Ns d)s
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Figure 4: Least-squares with integer parameters: possible solutions for the vec-
tor of observations form a grid in the column-space of matrix A (4; and A, are
two columns of matrix A); the solution is no longer allowed to lie anywhere in
the plane R(A).

The observed (fractional) phase difference ¢? (times the wavelength) does thereby
not equal the distance from satellite to receiver [?, but equals this distance apart
from an integer number of wavelengths

(9) Agp =l — ANy

As a consequence the vector z in (1) will, next to the unknown receiver coordi-
nates, now also contain unknown integer cycle ambiguities V7.

Integer least-squares

The least-squares solution (3) is obtained from solving (4), where z is allowed to
vary over the whole n- dimensional space of real numbers. In case of GPS how-
ever, when use is made of the carrier phase observations, the vector of unknown
parameters x consists of both real-valued and integer valued parameters (real-
valued coordinates and integer-valued carrier phase ambiguities). We therefore
need to modify the solution (3) so as to take the integerness of some of the
parameters into account. To keep the discussion simple, it will be assumed here
that all parameters in vector z are integer-valued. Due to the integerness of
the parameters, orthogonal projection of y will now not do the job properly,
see figure 4. Nevertheless one can start with ‘ordinary’ least-squares as a first
step, see figure 5. The solution so obtained for the unknown parameters will be
real-valued and is usually referred to as the ‘float’ solution.

To apply the least-squares principle (4), but now under the condition that
the parameters in z are all integers, a second step has to be carried out. Since
the first step projects orthogonally to the plane R(A), the second step takes
place in the plane. From the orthogonal decomposition

(10) ly — Azllgy, = lly — 3llg, + 19 — Azl
it follows that the second step amounts to solving the minimization problem

min(j - Az)7Q;"(j — Aw) =

(11) mwin(:i: — ;U)TATQy_lA(:i‘ —x) = mTLin(:i: -2)7Q. ' (¢ — 2)



Figure 5: Least-squares with integer parameters: the first step consists of ‘or-
dinary’ least-squares (orthogonal projection); the solution Z for the parameters
will consist of real-valued numbers.

for z being integer, where in the last equation (5) has been used. This mini-
mization can also be visualized in the parameter space, see figure 6, instead of
in the observation space as in figures 2 and 4.

The integer least-squares principle has been applied very successfully to GPS
ambiguity resolution. By the presence of the variance-covariance matrix Q3
n (11), the precision and correlation of the individual real-valued ambiguity
estimates is properly and fully exploited. In contrast to the ‘ordinary’ least-
squares solution (3), there does not exist an analytical solution to (11). In
practice a search over possible integer solutions has to be carried out. The space
of integer solutions is restricted by limiting the squared and weighted distance
in (11) to a convenient value. As a result, the volume of the corresponding
ellipse (or hyper-ellipsoid in higher dimensions) has to be searched through in
order to find the integer least-squares solution of z.

When the ambiguities of the first step are of poor precision and at the same
time highly correlated, the ellipse or ellipsoid gets very elongated and narrow.
As a consequence the discrete search may get computationally inefficient. For
computational efficiency the quadratic form (11) can be integer transformed,
so that the resulting ellipsoid becomes more sphere-like and the transformed
ambiguities become less correlated [2], [3].

Alternative integer estimators

Instead of the integer least-squares estimator one can also think of alternative
integer estimators. Starting from the ’float’ solution, such an estimator & =
F(z) will consist of a mapping F' : R™ — Z™ from the n-dimensional space of
real numbers to the n-dimensional space of integers. Due to the discrete nature
of Z™, the map F' will not be one-to-one. This implies that different real-valued
ambiguity vectors will be mapped to the same integer vector. One can therefore
assign a subset S, C R™ to each integer vector z € Z":

(12) S.={z€R"|z=F(x)}, z€Z"

The subset S, contains all real-valued ambiguity vectors that will be mapped
by F' to the same integer vector z € Z™. This subset is referred to as the pull-
in-region of z. It is the region in which all ambiguity ’float’ solutions are pulled
to the same ’fixed’ ambiguity vector z.
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Figure 6: Least-squares with integer parameters: in the second step the integer
solution for x is sought that is closest to the real-valued solution Z of the first
step; ‘closest’ is to be measured in the metric of the variance-covariance matrix
Q;; the quadratic form (11), set equal to a constant, is represented by the ellipse
in this example with two ambiguities z; and z,.

Since the pull-in-regions define the integer estimator completely, one can
define classes of integer estimators by imposing various conditions on the pull-
in-regions. One such class is given as follows [4].

An integer estimator is said to be admissible if

(@) U.czn S = R"
(13) (49) Sz 1Sz, = {0}, V1,20 € 27,21 # 22
(¢4¢) S, =2+ So, Yz € Z™

This definition is motivated as follows. Each one of the above three conditions
describe a property of which it seems reasonable that it is possessed by an
arbitrary integer ambiguity estimator. The first condition states that the pull-
in-regions should not leave any gaps and the second that they should not overlap.
The absence of gaps is needed in order to be able to map any ’float’ solution
Z € R™ to Z™, while the absence of overlaps is needed to guarantee that the
float’ solution is mapped to just one integer vector. Note that the pull-in-
regions are allowed to have common boundaries. This is permitted if we assume
to have zero probability that £ lies on one of the boundaries. This will be the
case when the probability density function (pdf) of Z is continuous.

The third and last condition follows from the requirement that F(z + z) =
F(z)+ z,Vz € R™,z € Z™. Also this condition is a reasonable one to ask for. It
states that when the 'float’ solution is perturbed by z € Z™, the corresponding
integer solution is perturbed by the same amount. This property allows one to
apply the integer remove-restore technique: F(Z — z) + 2z = F(&). It therefore
allows one to work with the fractional parts of the entries of Z, instead of with



its complete entries.

There exist various admissible integer estimators. The simplest integer map
is the one that corresponds to integer rounding. In this case the integer vector
is obtained from a rounding of each of the entries of £ to its nearest integer.
Since componentwise rounding implies that each real-valued ambiguity estimate
Zi,t = 1,...,n, is mapped to its nearest integer, the absolute value of the
difference between the two is at most % The subsets Sg,, that belong to this
integer estimator are therefore given as

1
(14) SRJZQ?':l{Ii'ERn'|£','—Zi|§§},VZEZ”

The subset Sg,, is an n-dimensional cube, with sides of length 1 and centred at
the grid point z.

Another relatively simple integer ambiguity estimator is the integer boot-
strapped estimator. This estimator can be seen as a generalization of the pre-
vious one. It still makes use of integer rounding, but it also takes some of the
correlation between the ambiguities into account. The bootstrapped estimator
results from a sequential conditional least- squares adjustment and is computed
as follows. If n ambiguities are available, one starts with the first ambiguity 21,
and rounds its value to the nearest integer. Having obtained the integer value
of this first ambiguity, the real-valued estimates of all remaining ambiguities
are then corrected on the basis of their correlation with the first ambiguity.
Subsequently the second, but now corrected, real-valued ambiguity estimate is
rounded to its nearest integer. Having obtained the integer value of the second
ambiguity, the real-valued estimates of all remaining n —2 ambiguities are again
corrected, but now on the basis of their correlation with the second ambiguity.
This process of rounding and correcting is continued until all ambiguities are
taken care of.

With c; denoting the ith canonical unit vector having a 1 as its ith entry, the
pull-in-regions Sp , that belong to the bootstrapped estimator can be shown to
be given as

1
(15) Sp.=N {2 eR"||cfL7(z—2)|< 3} Vzez”

with matrix L being the unit lower triangular matrix of the triangular decom-
position of Q3. Note that these pull-in-regions reduce to the ones of (14) when
L becomes diagonal. This is the case when the ambiguity variance- variance-
covariance matrix is diagonal. In that case the two integer estimators £z and
& p are identical.

The third admissible estimator of which the pull-in-region will be given is
the integer least-squares estimator. By again using the LDLT-decomposition of
@; the least-squares’ pull-in-region reads

1
(16) SLS,z = ﬂcieL—l(Zn){.f' S Rn | | CZTD_IL_I(.’IAZ — Z) |S §CfD_1Ci}

Note that (16) and (15) become identical when the matrix entries of L™ are
all integer. This is the case when L is an admissible ambiguity transformation.



The ambiguity success rate

The quality of the integer ambiguity estimator is particularly of interest in case
of GPS. One therefore needs the probability mass function (pmf) of &. It can
be obtained as follows. Using the concept of the pull-in-region, the integer
estimator is defined as £ = 2 & & € S,. Hence, for the probability masses
one has P(& = z) = P(& € S;). With the pdf of Z given as p;(z), the pmf of
follows as

(17) Px=z2)= / pi(z)dx , Vz € Z™
S.

The ambiguity success rate is defined as the probability of correct integer es-
timation P(& = ). Note that the pmf (17) as well as the success rate still
depend on the type of pull-in-region and thus on the type of integer estimator
chosen. Changing the geometry of the pull-in-region will change both the pmf
and the ambiguity success rate. It is therefore of interest to know which integer
estimator maximizes the ambiguity success rate. The answer is given by the
following theorem [4]:

Let the pdf of £ be elliptically contoured and the integer least-squares estimator
be given as

ZTrLs = arnggith |2 -2 IIém

Then
(18) P(ZLs =z) > P(% = 1)

for any admissible estimator &.

This theorem gives a probabilistic justification for using the integer least-squares
estimator. It applies to GPS ambiguity resolution for which the pdf p;(z) is
often assumed to be a multivariate normal distribution. For GPS ambiguity
resolution one is thus better off using the integer least-squares estimator than
any other admissible integer estimator, such as integer rounding or integer boot-
strapping.

Applications

Once the integer carrier phase cycle ambiguity has been resolved, the phase ob-
servation turns into a direct measurement of distance. These phase observations
possess millimeter precision and consequently the user receiver position can be
determined with a similar level of precision, see figure 7.

Already early in the history of GPS positioning, the application of surveying
topography emerged. By taking the GPS receiver to sites and features on the
Earth’s surface, their locations can be determined and consequently be mapped.
Today, GPS positioning is an important tool in producing and maintaining road-
maps, town-plans and precise cadastral maps (and databases).

In the early days, precise positions got available only after considerable time
spans (of one or several hours). By including the integer constraints on the
ambiguities and developing efficient ways of solving the integer least-squares
problem, high precision positions become available virtually immediately, see
also figure 7. The ambiguities have been demonstrated to be resolved correctly
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Figure 7: Example of the repeatability of GPS positions after resolving the
ambiguities by means of integer least-squares. The three-dimensional position
is obtained from a single epoch of observations (so-called instantaneous posi-
tioning). The experiment has been carried out 1200 times, and shown are all
1200 ambiguities-fixed position solutions. The measurement noise in the carrier
phase observation is at the few millimeter level and the consequent spread in
position is clearly below 1 centimeter.

using just one epoch (second) of observations, thus greatly improving surveying
productivity. At present the position can be determined directly in the field, by
Real-Time Kinematic (RTK) GPS, see figure 8.

Similar equipment and algorithms can be used for high precision navigation
of moving vehicles on land, vessels at sea and aircraft in the air. Challenging
applications are vessel guidance through narrow straights with critical clearance
and landing aircraft in conditions of poor visibility.

Precise GPS positioning anywhere on Earth is of great benefit also to Earth
sciences. Tectonic plates may move by several centimeters a year with respect
to each other. Such motions of the Earth’s crust can be monitored with GPS
at the required level of precision. This is of particular interest in areas with
considerable seismic activity. For instance in California in the United States,
with emphasis on the greater Los Angeles metropolitan region, an array of
GPS receivers has been installed — under the name of Southern California
Integrated GPS Network (SCIGN) — to study geodynamical phenomena. Over
200 locations are covered and GPS receivers are in operation 24 hours a day, 7
days a week. Figure 9 shows an example of a station of the SCIGN.

Conclusion

In this paper the problem of the integer cycle ambiguity of the GPS carrier
phase observations for ranging has been addressed. The ambiguities are resolved
using the integer least-squares principle thus allowing very precise and fast GPS
positioning. Since various details were skipped in the above presentation, the
interested reader is referred to the many textbooks available on GPS positioning
[5-9)].
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Figure 8: Real-Time Kinematic (RTK) GPS surveying: the surveyor directly
‘digitizes’ the points of interest in the field, by holding the antenna accurately
in place for just a few seconds.

Figure 9: A GPS receiver and antenna permanently installed for precisely mon-
itoring motions of the Earth’s crust. Site Ranchita in California in the US.
Photo taken from album at http://www.scign.org/
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