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ABSTRACT

In Teunissen (1999) we introduced the class of admissible integer estimators. Members
from this class are defined by their so-called pull: in regions. These pull-in regions
satisfy the following three conditions. They are integer translational invariant and
cover the whole ambiguity space without gaps and overlaps. Examples of such integer
estimators are integer rounding, integer bootstrapping and integer least-squares. In
the present contribution we will introduce a new class of GNSS ambiguity estimators.
This class is referred to as the class of integer equivariant (IE) estimators since it
still obeys the important integer remove-restore principle of integer estimation. It is
shown that the IE- class is larger than the class of integer estimators as well as larger
than the class of linear unbiased estimators. We will also give a useful representation
of IE-estimators. This representation reveals the structure of IE-estimators and shows
how they operate on the ambiguity float’ solution.
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1. INTRODUCTION

Ambiguity resolution applies to a great variety of GPS models currently in use. They
range from single-baseline models used for kinematic positioning to multi-baseline
models used as a tool for studying geodynamic phenomena. An overview of these
and other GNSS models, together with their application in surveying, navigation and
geodesy, can be found in textbooks such as (Hofmann- Wellenhof et al., 2001), ( Leick,
1995), (Misra and Enge, 2001), (Parkinson and Spilker, 1996), (Strang and Borre,
1997) and (Teunissen and Kleusberg, 1998). Despite the differences in application
of the various GNSS models, it is important to understand that their ambiguity
resolution problems are intrinsically the same. That is, the GNSS models on which
ambiguity resolution is based, can all be cast in the following conceptual frame of
linear(ized) observation equations

E{y} = Aa + Bb (1)
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where y is the given GNSS data vector of order m, a and b are the unknown parameter
vectors respectively-of order n and p, and wheré E{.} denotes the mathematical
expectation operator. The matrices A and B are the corresponding design matrices.
The data vector y will usually consist of the 'observed minus computed’ single- or
dual- frequency double-difference (DD) phase and/or pseudorange (code) observations
accumulated over all observation epochs. The entries of vector ¢ are then the DD
carrier phase ambiguities, expressed in units of cycles rather than range. They are
known to be integers, a € Z™. The entries of the vector b will consist of the remaining
unknown parameters, such as for instance baseline components (coordinates) and
possibly atmospheric delay parameters (troposphere, ionosphere). They are known
to be real- valued, b € RP.

The procedure which is usually followed for solving the GNSS model (1), can
be divided into three steps [for more details we refer to e.g. (Teunissen, 1993) or
(de Jonge and Tiberius, 1996)]. In the first step one simply disregards the integer
constraints a € Z™ on the ambiguities and performs a standard adjustment. As a
result one obtains the (real-valued) estimates of a and b, together with their variance-

b b

This solution is referred to as the ’'float’ solution. In the second step the 'float’
ambiguity estimate a is used to compute the corresponding integer ambiguity estimate
@. This implies that a mapping S : R* ~ Z", from the n-dimensional space of reals
to the n-dimensional space of integers, is introduced such that

a=5(a) (3)

Once the integer ambiguities are computed, they are used in the third step finally to
correct the 'float’ estimate of b. As a result one obtains the 'fixed’ solution

b=b-Q;Q; (@~a) (4)

The ambiguity residual (@ ~ a) is thus used to ad_)ust. the ’float’ solution so as to
obtain the ’fixed’ solution.

In this contribution alternatives to the choice of the map S will be considered. We
first consider the class of admissible integer estimators in Sect. 2. In constructing this
class, we are led by practical considerations such as: the estimator should map any
float’ solution to a unique integer solution and when the ’float’ solution is perturbed
by an integer amount, the integer solution should be perturbed by the same integer
amount. In Sect. 3 we give three important examples of integer estimators which
belong to this class of admissible estimators. They are the 'rounding' estimator, the
'bootstrapped’ estimator and the integer least-squares estimator.

In Sect. 4 we introduce a new class of ambiguity estimators, which will be called
integer equivariant (IE) estimators. The motivation for introducing the class of TE-
estimators lies in the possible restrictive nature of the class of integer estimators.
Hence, the IE-class is introduced by removing two of the three conditions of the class
of integer estimators. The condition that remains is the one related to the integer
remove-restore principle. And in order to be general enough the IE-class is introduced
for estimating an arbitrary linear function of the two type of unknown parameters in
the GNSS model, namely the integer parameters and the real-valued parameters.
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We also give a useful representation of IE-estimators in Sect. 5. This represen-
tation reveals the structure of the estimators and allows one to devise one's own

[E-estimator.

2. THE CLASS OF INTEGER ESTIMATIORS

There are many ways of computing an integer ambiguity vector a from its real-valued
counterpart @. To each such method belongs a mapping S : R" —~ Z" from the
n-dimensional space of real numbers to the n-dimensional space of integers. Once
this map has been defined, the integer ambiguity vector follows from its real-valued
counterpart as @ = S(a). Due to the discrete nature of Z”, the map S will not be
one-to-one, but instead a many-to-one map. This implies that different real-valued
ambiguity vectors may be mapped to the same integer vector. One can therefore
assign a subset S. C R" to each integer vector z € Z™:

S:={z€eR"|z=5(z)}, z€Z" (5)

The subset S. contains all real-valued ambiguity vectors that will be mapped by S to
the same integer vector z € Z”. This subset is referred to as the pull-in region of z.
It is the region in which all ambiguity 'float’ solutions are pulled to the same 'fixed’
ambiguity vector z.

Having defined the pull-in regions, we are now in a position to give an explicit
expression for the corresponding integer ambiguity estimator. It reads

- R 1 if aes.
a= ) zs.(a) with s.(a) = { 0 ;th‘;rim; (6)
A

Since the pull-in regions define the integer estimator completely, one can define a class
of integer vstimators by listing properties of these pull-in regions. In this section we
introduce three properties of which it seems reasonable that they are possessed by
the pull-in regions.

[t seems reasonable to ask of the pull-in regions that their union covers the n-
dimensional space completely,

U s.=r" (7)
2"

Otherwise one would have gaps, in which case not every @ € " can be assigned to a
corresponding integer ambiguity vector.

Another property that we require of the pull-in-regions is that any two distinct
regions should not have an overlap. Otherwise one could end up in a situation where
a 'float’ solution @ € R™ can not be assigned uniquely to a single integer vector. For
the interior points of two distinct pull-in-regions we therefore require

Se[ )8 =0. V2,20 € Z" 21 # 22 (8)

We allow the pull-in regions to have common boundaries however. This is permitted
if we assume to have zero probability that @ lies on one of the boundaries. This will
be the case when the probability density function (pdf) of a is continuous.

The third and last property asked for is that the integer map S to possess the
property that S(z+z) = S(x)+2,Yz € R®. 2z € Z". Also this property is a reasonable
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one to request. It states that when the 'float’ solution is moved by an integer amount
z. the corresponding:integer solution is moved by the same integer amount. This
property allows one to use the 'integer remove-restore’ technique: S(a—z)+z = S(a).
It therefore allows one to work with the fractional parts of the entries of a, instead of
with its complete entries, which may sometimes be large numbers.

The integer remove-restore property implies that S;,4., = {z € R" | z; + 22
Sz))={r€R" |21 =8(z)~22=S2~m)}={s€eR" |z =5F).c=y+xn}=
S., + 22.¥z;, 25 € Z". Hence, it means that the pull-in regions are translated copies
of one another. This third property may therefore also be stated as

il

S;=Z+S(), Yze Z" (g)

with Sp being the pull-in region of the origin of Z".

Integer ambiguity estimators that possess all three of the above stated properties
formn a class. This class will be referred to as the class of admissible integer ambiguity
estimators. It is defined as follows:

Definition 1 (admissible integer estimators)
The integer estimator @ = }_. . 25:(d) is said to be admussible if

@) Usezn S = R®
(M) S_-,,n.S' —ﬂ VZI\ZQGZ 21 -;éz:g
(i) S.=z+8,, Vz€2Z"

There exist various integer estimators that belong to this class. As the definition
shows, one way of constructing admissible estimators is to choose a subset Sy such
that its translated copies cover R™ without gaps and overlaps. In two dimensions
this can be achieved, for instance, by choosing Sp as the unit square centred at the
origin.

3. EXAMPLES OF INTEGER ESTIMATORS

In this section three different admissible integer estimators are considered. All three
of them have been in use, in one way or another, for GNSS ambiguity resolution.
They are the 'rounding’ estimator, the ’bootstrapped’ estimator and the least-squares
estimnator.
Integer rounding
The simplest way to obtain an integer vector from the real-valued 'float’ solution is
to round each of the entries of & to its nearest integer. The corresponding integer
estimator reads therefore

ag = ([, .. [@a])" (10)

where ’[.]" denotes rounding to the nearest integer. This estimator is clearly admis-
sible. The first two conditions of the definition are satisfied, since - apart from ties
in rounding - any ’float’ solution @ € R” gets mapped to a unique integer vector.
The third condition is also satisfied since rounding admits t.he integer remove- restore
technique, that is, [z — z] + 2z = [z],YT € R,z € Z.

Since componentwise rounding implies that each real-valued ambiguity estimate
o e R n. is mapped to its nearest integer, the absolute value of the difference



115

between the two is at most -2‘- The pull-in regions Sg,. that belong to this integer
estimator are therefore given as

1
Sk =Ni{z€R" ||z~ ulg 3}, Vze 2 (11)

They are n-dimensional cubes, centred at the z € Z”, all having sides of length one.

Integer bootstrapping
Another relatively simple integer ambiguity estimator is the bootstrapped estimator.

The bootstrapped estimator can be seen as a generalization of the previous estimator.
It still makes use of integer rounding, but it also takes some of the correlation between
the ambiguities into account. The bootstrapped estimator follows from a sequential
conditional least- squares adjustment and it is computed as follows. If n ambiguities
. are available, one starts with the first ambiguity a,, and rounds its value to the
nearest integer. Having obtained the integer value of this first ambiguity, the real-
valued estimates of all remaining ambiguities are then corrected by virtue of their
correlation with the first ambiguity. Then the second, but now corrected, real-valued
ambiguity estimate is rounded to its nearest integer. Having obtained the integer value
of the second ambiguity, the real-valued estimates of all remaining n—2 ambiguities are
then again corrected, but now by virtue of their correlation with the second ambiguity.
This process is continued until all ambiguities are considered. The components of the

bootstrapped estimator ap are given as

apy = [&1] -
dépa = [dan] = [82 — 048,05, (@1 —@g,))

. (12)
ign = [Gan] = [@n = T} Ctnays o, (@iyr = @p.i))

where the shorthand notation & ; stands for the ith least-squares ambiguity obtained
through a conditioning on the previous I = {1,...,(i — 1)} sequentially rounded
ambiguities.

~ Also the bootstrapped estimator is admissible. The first two conditions of the
definition are satisfied, since - apart from ties in rounding - any 'float’ solution gets
mapped to a unique integer ambiguity vector. Also the integer remove-restore tech-
nique applies. To see this, let a3 be the bootstrapped estimator which corresponds
with @ = @ — z. It follows then from (12) that ap = az + 2.

The real-valued sequential conditional least-squares solution can be obtained by
means of the triangular decomposition of the ambiguity variance-covariance ma-
trix. Let the LDU-decomposition of the variance-covariance matrix be given as
Qa = LDLT, with L a unit lower triangular matrix and D a diagonal matrix. Then
(a—2z) = L{a“ — z), where a° denotes the conditional least-squares solution obtained
from a sequential conditioning on the entries of z. The variance-covariance matrix of
a“ is given by the diagonal matrix D. This shows, when a componentwise rounding
is applied to a, that z is the integer solution of the bootstrapped method. Thus ag
satisfies [L~'(a—ap)] = 0. Hence, if ¢; denotes the ith canonical unit vector having a
1 as its ith entry, the pull-in regions Sp,. that belong to the bootstrapped estimator
follow as
Spe =N {z € B | Lz - 2)|< 5}, V2 € 2 (13)
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Note that these su'bs;ets reduce to the ones of (11) when L becomes diagonal. This is
the case when the ambiguity variance-covariance matrix is diagonal. In that case the
two integer estimators @ and ap are identical.

Integer least-squares
The integer least-squares estimator is defined as

G5 = arg min |a-zllg, (14)
where || . [[5,= ()7Q;'(.). This ambiguity estimator was introduced for the first
time in ( Teunissen, 1993). Also this estimator is admissible. Apart from boundary
ties, it produces a unique integer vector for any ’float’ solution @ € R". And since
&rps = argmingezn || @ —u ~ z ||, +u holds true for any integer u, also the integer
remove-restore technique applies.

It follows from (14) that the 'float’ solutions @ € R™ which are mapped to the same
integer vector dyps are those that lie closer to this integer vector than to any other
integer vector = € Z™. This shows that the least-squares pull-in regions Syp s . consist
of intersecting half-spaces, each one of which is bounded by the plane orthogonal to
(¢ — z),c € Z" and passing through the mid-point 3(z + c). Here, orthogonality
is taken with respect to the metric as defined by the ambiguity variance-covariance
matrix. Since @ lies in one of these half-spaces when the length of the orthogonal
projection of (@ — z) onto (¢ — z) is less than or equal to half the distance between ¢
and z, it follows that

1 "
SILS,: - ncEZ" {J: € R" l l wc(:c) }S 5 H c ”Qa} r VzEZ (15)

with )
7Q; (z ~ 2)

e(z) = —_——
we(z o

Note that (c—z) has been replaced by ¢ in (15). This is permitted since the intersection
is taken with respect to all c € Z”.

. In our comparison of g and dpg, we noted that the two estimators became identical
in case the unit triangular matrix L reduced to the identity matrix. The same holds
true in case of @y s. Hence, all three estimators become identical in case the ambiguity
variance-covariance matrix is diagonal. This condition can be relaxed however, when
comparing ap with dyrs. These two estimators will already become identical when
all matrix entries of L are integer.

4. THE CLASS OF INTEGER EQUIVARIANT ESTIMATORS

We will now introduce a new class of estimators which is larger than the previous
defined class of integer estimators. And in order to be general enough, we consider
estimating an arbitrary linear function of the two type of unknown parameters of the
GNSS model (1), '

#=1Ta+ITb,l,eR", I €RP (16)
Thus if I, = 0, then linear functions of the ambiguities are estimated, while if |, = 0,
then linear functions of the baseline components are estimated. Linear functions of
both the ambiguities and baseline components, e.g. the carrier phases, are estimated
when [, # 0 and [, # 0.
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It seems reasonable that the estimator should at least obey the integer remove-
restore principle. When estimating ambiguities in case of GNSS for instance, one
would like, when adding an arbitrary number of cycles to the carrier phase data, that
the solution of the integer ambiguities gets shifted by the same integer amount. For
the estimator of # this would mean that adding Az to y, with arbitrary z € Z", must
result in a shift of {7z, Likewise it seems reasonable to require of the estimator that
adding BC to y, with arbitrary ¢ € R?, results in a shift IJ (. Afterall we would not
like the integer part of the estimator to become contaminated by such an addition to
y. Estimators of # that fulfil these two conditions will be called integer equivariant
(IE). Hence, they are defined as follows.

Definition 2 (integer equivariant estimators)
The estimator ém = fg(y), with fy : R™ — R, is said to be an integer equivariant
~ estimator of 8 = [Ta + ] b if

{ foly + Az2)

foly) +1Tz, Yye R™,2€ Z" (17)
foly + BC)

foy) +1{¢,Yye R™ (e R?

Ihn

It is not difficult to verify that the integer estimators of the previous section are
integer equivariant. Simply check that the above two conditions are indeed fulfilled
by the estimator # = ITa + [T b. The converse, however, is not necessarily true. The
class of IE-estimators is therefore indeed a larger class.

We will now show that the class of [E-estimators is also larger than the class
of linear unbiased estimators. Let f, y, for some fp € R™, be the linear estimator
of § = lla+ {Tb. For it to be unbiased we need, using E{y} = Aa + Bb, that
Il da + f,?" Bb=iTa+1Tb, Ya € R",b € R’ holds true, or that both l, = AT fp and
l, = BY fp hold true. But. this equwa.!em to stating that

" i T m n
{ grgi;g; fTy+1Ta,¥y€ R™,ac R (18)

fiy+1ljb, Yye R™ be R
Comparing this result with (17) shows that the condition of linear unbiasedness is
more restrictive than the condition of integer equivariance. Hence, the class of linear
unbiased estimators is a subset of the class of integer equivariant estimators. This
resnlt also automatically implies that IE-estimators exist which are unbiased. Thus,
il we denote the class of IE-estimators as IE, the class of unbiased estimators as U,
the class of unbiased [E-estimators as JEU, the class of unbiased integer estimators
as U, and the class of linear unbiased estimators as LU, we may summarize their
relationships as: /EU = IENU #0, LU ¢ IEU and IU C IEU.

5. REPRESENTATION OF IE-ESTIMATORS

In order to get a better understanding of how IE-estimators operate, it would be
useful to have a representation that reveals their structure. One such representation
is given in the following lemma.

Lemma (/E-representation)
Let 8:r = fs(y) be the IE-estimator of # = ITa + Ib, let y = Aa + BB + C~,
with the m x (m —n — p) matrix C chosen such that (A, B,C) is invertible, and let
gola. 3.v) = fo(Aa + BB + Cv). Then functions hy : R™ x R™~"~7 — R exist such
tha :

gs(a,B,7) = iTa+ 178 + hy(a,7) (19)
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with hyp(a + 2,%) =,~__ha(c'x,'y) for all z € Z™.

Proof: We will start with the 'if part’: If go(e, 8,7) = ITa + ITB + hgla,v) with hy
periodic in its first siot, then clearly go(a+z,8+(,v) = gg(a,ﬁ.’y)+£3“z+lg'( , Vz €
Z™ . ( € R*. Therefore, since fy(Ada+ BB+ Cy) = go(a,8,7) and y = Aa+ BB +Cy

with (4, B, C) invertible,
foly+ Az + B = foy) + T2 +1]¢ ,YyeR™ ,z€ 2" ,(ERP  (20)

which is equivalent to the properties of Definition 2.

For the ’only if part’ we have: If (20) holds true, the hy function defined as
ho(a,y) = fo(Aa+ BB+ Cy) —ITa-1] 3 with (4, B, C) invertible, will be periodic in
its first slot and hence gg(a, 8,7) = fo(Aa+ BB+ Cv) can be written as gg(a, 8,7) =
Ta+ 175 + hyla,v). End of proof
Note that the lemma now easily allows one to design one’s own IE-estimator. Also note
that when devising one’s own IE-estimator, there are essentially two types of degrees
of freedom involved. The choice of the matrix C and the choice of the function hy.

Here are some examples of IE-estimators obtained for specific choices of €' and
he:

Ezample I: For arbitrary C and hy = 0 we get
é;g = IIG - IE B

Note that this is a linear unbiased estimator of @ for any choice of C. Hence, matrix
C' governs the choice of these linear unbiased estimators.

Ezample 2: For hy = 0 and C chosen such that CTQ;'(A, B) = 0 we get the least-
squares estimator ' R -

b1 = f?:ﬁ + fg‘ b

in which we recognize the 'float’ solution of the ambiguities and the baseline.
Ezample & For ho(a,v) = —(IT + IEQ;EQEI}(a — S(e)) and C chosen such that
CTQ; (A, B) = 0 we get the estimator

é;s - IZ‘E:+ IEZJ

in which we recognize the integer solution of the ambiguities and the corresponding
‘fixed” solution for the baseline.

Ezample §: For hg(a,y) = —(IF +17Q;,Q7 ") a ~ S(a)), S(a) = argmin,cz- (a -
2)7Q; " (a = z) and C chosen such that CTQ;?(4,B) = 0 we get the integer least-

squares estimator
b =1Tar0s + 1 brs

Ezample 5: For ho(a,v) = =(If HT Q3,Q5 ' V(=X ¢ z» zw(a—2)), with 3" _¢ 5. w(a~
z) =1,Va € R", and C chosen such that CTQ;‘(A,B) = 0 we get the estimator
é_:g = IE&IE + 53-5”;

with

Il

{ arg = Yoegnzwl@—z)
bie b-Q;5Qz ' (&~ érr)
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The above are just a few examples of IE-estimators. Note that the ambiguity estimator
of the last example resembles the integer ambiguity estimator (6). The important
difference between these two estimators is however the range of values taken by the
weights. In case of the integer estimator (6) the weights s.(a) are binary, whereas in
case of ayp the weights w(a ~ z) may vary between zero and one.

Since the class of IE-estimators includes all integer estimators as well as all linear
unbiased estimators, estimators which are optimal in the IE-class will automatically
outperform their integer counterparts as well as their linear unbiased counterparts.
The search for such an optimal IE-estimator will therefore be taken up in a future
study.

6. REFERENCES

de Jonge, P.J. and C.C.J.M. Tiberius (1996): The LAMBDA method for integer
ambiguity estimation: implementation aspects. LGR Series, No. 12, Delft.

Hofmann-Wellenhof, B., H. Lichtenegger, J. Collins (2001): Global Positioning Sys-
tem: Theory and Practice. 5th edition. Springer Verlag.

Leick, A. (1995): GPS Satellite Surveying. 2nd edition, John Wiley, New York.

Misra, P., P. Enge (2001): Global Positioning System: Signals, Measurements, and
Performance. Ganga-Jamuna Press, 2001.

Parkinson. B., J.J. Spilker (eds) (1996): GPS: Theory and Applications, Vols 1 and
2, ATAA, Washington DC,

Swang, G., K. Borre (1997): Linear Algebra, Geodesy, and GPS, Wellesley-Cambridge
Press.

Teunissen, P.J.G., A. Kleusberg (eds) (1998): GPS for Geodesy, 2nd enlarged edi-
tion, Springer Verlag.

Teunissen, P.J.G. (1993): Least-squares estimation of the integer GPS ambiguities.

Invited Lecture, Section IV Theory and Methodology, IAG General Meeting,
Beijing, China, August 1993. Also in: LGR Series, No. 6, Delft Geodetic

Computing Centre.

Teunissen, P.J.G. (1995): The least-squares ambiguity decorrelation adjustment:
a method for fast GPS integer ambiguity estimation. Journal of Geodesy, 70:
65-82.

Teunissen, P.J.G. (1999): The probability distribution of the GPS baseline for a
class of integer ambiguity estimators. Journal of Geodesy, 73: 275-284.

Teunissen, P.J.G. (2001): Statistical GNSS carrier phase ambiguity resolution: a
review. Invited paper in Proc. of IEEE Symposium Statistical Signal Processing,
Singapore, pp. 4-12.

Received: November 14, 2002,
Reviewed: December 8, 2002, by W. Pachelski,
Accepted: January 8, 2003.



