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ABSTRACT

Carrier phase integer ambiguity resolution is the key to high precision Global Naviga-
tion Satellite System (GNSS) positioning and navigation. It applies to a great variety
of current and future models of GPS, modernized GPS and Galileo. In Teunissen
(1999a. b) we introduced the class of admissible integer estimators and showed that
the integer least-squares estimator is the optimal estimator within this class. In Teu-
nissen (2002) we introduced an alternative class of ambiguity estimators. This class
of integer equivariant (IE) estimators still obeys the integer remove-restore principle.
In the present contribution we will determine the 'best’ estimator within the IE-class.
The minimum mean squared error is taken as the criterion for 'best’. As our main
result we have a Gauss-Markov-like theorem which introduces a new minimum vari-
ance unbiased ambiguity estimator which is always superior to the well-known best
linear unbiased ambiguity estimator (BLU) of the Gauss-Markov theorem.

Keywords: GNSS ambiguity resolution, best integer equivariant estimation, mini-
mum variance unbiased estimation

1. INTRODUCTION

Global Navigation Satellite System (GNSS) ambiguity resolution is the process of re-
solving the unknown cycle ambiguities of double difference (DD) carrier phase data.
Its practical importance becomes clear when one realizes the great variety of cur-
rent and future GNSS models to which it applies. These models may differ greatly
in complexity and diversity. They range from single-baseline models used for kine-
matic positioning to multi-baseline models used as a tool for studying geodynamic
phenomena. The models may or may not have the relative receiver-satellite geometry
included. They may also be discriminated as to whether the slave receiver(s) are sta-
tionary or in motion.. When in motion, one solves for one or more trajectories, since
with the receiver-satellite geometry included, one will have new coordinate unknowns
for each epoch. One may also discriminate between the models as to whether or not
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the differential étmosp‘heric delays (ionosphere and troposhere) are included as un-
knowns. In the caSe-of sufficiently short baselines they are usually excluded. Apart
from the current Global Positioning System (GPS) models, carrier phase ambiguity
resolution also applies to the future modernized GPS and the future European Galileo
GNSS. An overview of GNSS models, together with their applications in surveying,
navigation, geodesy and geophysics, can be found in textbooks such as [Hofmann-
Wellenhof et al., 2001], [Leick, 1995], [Misra and Enge, 2001), [Parkinson and Spilker,
1996], [Strang and Borre, 1997) and [Teunissen and Kleusberg, 1998].

In Teunissen (1999a, b) we introduced the class of admissible integer estimators
and showed that the integer least-squares estimator is the optimal estimator within
this class. In Teunissen (2002) we introduced an alternative class of ambiguity es-
timators, This class of integer equivariant (IE) estimators still obeys the integer
remove-restore principle. In the present contribution we will determine the 'best’ es-
timator within the IE-class. This new ambiguity estimator will be referred to as the
best integer equivariant (BIE) estimator. The minimum mean squared error is taken
as the criterion for 'best’.

It will be shown that the class of linear unbiased estimators, LU, is a subset of the
class of IE-estimators, LU C IE. This automatically implies that, in the MSE-sense,
the BIE-estimator always outperforms its BLU-counterpart. In addition it can be
shown that the BIE-estimator is unbiased. Hence, similar to the well-known Gauss-
Markov theorem, which states that the minimum variance unbiased estimator within
the class of linear estimators is given by the least-squares estimator BLU, we obtain
a Gauss-Markov-like theorem stating that the minimum variance unbiased estimator
within the IE-class is given by the least mean-squared error estimator BIE. Both
theorems hold true for any pdf the data might have. For the BLU-solution one needs
to know the vc-matrix of the data up to a proportionality constant, whereas for the
BIE-solution one needs to know the pdf up to a proportionality factor.

2. OPTIMAL INTEGER ESTIMATION

Let a € R™ denote the 'float’ solution of the GPS carrier phase ambiguities, with
E{d} = a € Z” and E{.} the mathematical expectation operator. The aim of GPS
carrier phase ambiguity resolution is now to find ways of incorporating the integerness
of the ambiguities so as to obtain a solution @ which outperforms a. Since the am-
biguities are known to be integer, it is reasonable to require & to be integer as well
There are however many ways of computing an integer ambiguity vector & from its
real-valued counterpart é@. To each such method belongs a mapping S : R* — Z7
from the n-dimensional space of real numbers to the n-dimensional space of integers
Due to the discrete nature of Z", the map S will not be one-to-one, but instead ¢
many-to-one map. This implies that different real-valued ambiguity vectors will be
mapped to the same integer vector. One can thercfore assign a subset S. C R"

each integer vector z € Z™:
S,={ze R |z=85(z)}), 2€ 2" : 1

The subset S. contains all real-valued ambiguity vectors that will be mapped by S t
the same integer vector z € Z”. This subset is referred to as the pull-in region of 2
It is the region in which all ambiguity 'float’ solutions are pulled to the same intege
TeLOr 2.
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Since the pull-in regions define the integer estimator completely, one can define
classes of integer estimators by imposing various conditions on the pull-in regions.
One such class is referred to as the class of admissible integer estimators.

Definition 1 (admissible integer estimnators)
The integer estimator a = S(a) is said to be admissible if its pull-in regions satisfy

{3) UzGZ" S-= = R"
(#1) Intiszl)nlnt('szz} =0, Vi, 2€Z2"n #xn
(itd) S.=z+ 8o, Yz€ Z"

This class was introduced by Teunissen (1999a). Using the pull-in regions, one can
give an explicit expression for the corresponding integer ambiguity estimator. It reads

g = Z zs;(a) (2)

z€Z"

with the indicator function s.(@) = 1if a € S, and s;(a@) = 0 otherwise. Note that the
s-(@) can be interpreted as weights, since ) _. ;. 5.(a@) = 1. The integer estimator a
is therefore equal to a weighted sum of integer vectors with binary weights.

With the division of R™ into mutually exclusive pull-in regions, we are now in the
position to consider the distribution of @ This distribution is of the discrete type and
it will be denoted as P(a = z). It is a probability mass function, having zero masses
at nongrid points and nonzero masses at some or all grid points. If we denote the
continuous probability density function of @ as ps(z | a), the distribution of @ follows

as

P(&=z)=/ pa(z | a)dz , 3 € Z" 3)
This distribution is of course dependent on the pull-in regions S, and thus on the
chosen integer estimator. Since various integer estimators exist which are admissible,
some may be better than others. Having the problem of GNSS ambiguity resolution in
mind, one is particularly interested in the estimator which maximizes the probability
of correct integer estimation. This probability equals P(a = a), but it will differ for
different ambiguity estimators. The answer to the question which estimator maximizes
the probability of correct integer estimation is given by the following theorem, due to
Teunissen (1999b):

Theorem 1 (optimal integer estimation)
Let
dprg, = arg max pa(a | a) (4)
agzn

be admissible. Then
Playr =a) > P(d=a) (5)

for any admissible estimator a.

This result holds for an arbitrary pdf of the ’float’ ambiguities @ In most GNSS
applications however, one assumes the data to be normally distributed. The estimator
@ will then be normally distributed too, with mean @ € Z™ and ve-matrix Q. Its pdf
reads then

nilz | a) pl-zllz=all,) ©)

1
- JeQaeni
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with the squared weighted norm || . ”??a: ()7Q7'(.). With this pdf, the optima
estimator becomes-identical to the integer least squares (ILS) estimator

Girs = arg min Iz -all3, (7

The above theorem therefore gives a probabilistic justification for using the ILS esti
mator when the pdf is Gaussian. For GNSS ambiguity resolution it shows, that one
is better off using the ILS estimator than any other admissible integer estimator.

3. BEST INTEGER EQUIVARIANT ESTIMATION

The result of the above theorem holds true for the defined class of integer estimators.
One may now wonder what happens if the conditions of Definition 1 are relaxed.
Would it then still be possible to find an ambiguity estimator which in some sense
outperforms the 'float’ solution? In order to answer this question we first start by
defining a class of estimators which is larger than the class of integer estimarors. It
seems reasonable that the estimator should at least obey the integer remove-restore
principle. Estimators that fulfil this condition will be called integer equivariant (IE),
see [Teuntssen, 2002].

Definition 2 (integer equivariant estimators)
The estimator @;g = f(a). with f: R® = R", is said to be integer equivariant if

flz+2)=f(z)+2,Yz€ R",z€ 2" (8)

It will be clear that admissibe integer estimators are also IE-estimators, but that the
converse is not necessarily true.

We will now look for an IE-estimator which is 'best’ in a certain sense. We
will denote our best integer equivariant (BIE) estimator as agjg and use the mean
squared error (MSE) as our criterion of 'best’. The best integer equivariant estimator
will therefore be defined as

dpyg = arg min E{|| f(3) ~a lig} (9

in which 'IE’ stands for the class of IE-estimators, || . [[*= (.)T M(.) and matrix M i
positive semi-definite (M > 0). Note that the minimization is taken over all intege
equivariant functions.

The reason for choosing the MSE-criterion is twofold. First, it is a well-know:
probabilistic criterion for measuring the closeness of an estimator to its target value
in our case a € Z”. Second, the MSE-criterion is also often used as measure for the
quality of the 'float’ solution itself. The following theorem gives the solution to the
above minimization problem (9).

Theorem 2 (best integer equivariant estitnation)
Let @ be the 'float’ solution having pa(z | @) as its pdf. The best integer equivarian

estimator is then given as
apre = Z 2w, (@) (10
3EZ™

with the weights
pa(t+a—z|a)

ugzn palz +a—ula)

w;(z) = 5
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Based on this result we are now in a position to make a number of observations.
First note that the least mean squared error property of the BIE-estimator holds true
for any pdf the 'float’ solution might have. Secondly note that the BIE-estimator is
not dependent on the choice made for matrix M. Also observe that the structure
of the BIE-estimator resembles that of an admissible integer estimator, see (2). The
BIE-estimator is also a weighted sum of all integer vectors in Z". In the present
case. however, the weights are not binary. They vary between zero and one, and
their values are determined by the 'float’ solution and its pdf. As a consequence the
BIE-estimator will be real-valued in general, instead of integer-valued. But one can
also show that for the Gaussian case the BIE-solution converges to the ILS- solution
when the precision of the *float’ solution improves. The two solutions will therefore
- not differ by much in case the probability of correct integer estimation - the ambiguity
success rate - is sufficiently large.

As a final observation regarding the above theorem we claim that the following

inequality must hold true:
E{ll e -al’} < E{lla~a|?} (11)
The MSE of the BIE-estimator is thus always smaller than or at the most equal
to the MSE of the 'float’ solution. This result may come as a surprise. Afterall the
'float’ solution is usually derived as the best linear unbiased (BLU) estimator, which
therefore also has its MSE minimized. This apparant paradox will be explained in
the next section.

4. THE BIE- AND BLU-ESTIMATORS COMPARED

4.1 Least mean squares

The 'float’ solution é is usually derived from the linear model of observation equations
by means of the least-squares principle with the weight matrix chosen equal to the
inverse of the observational ve-matrix. The 'float’ solution will then be identical to
the BLU-estimator of a. In order to make this clear in our notation, we will denote
the 'float’ solution from now on as agry.

In order to understand why the MSE of dp;g is smaller than or at the most equal
to the MSE of dpzu, we have to consider the sets over which the minimization of the
MSE takes place. In case of apg it is the set of all integer equivariant functions,
whereas in case of agry it is the set of all linear unbiased functions. The first set will
he denoted as IE and the second set as LU.

We will now show that the set of linear unbiased functions is a subset of the set
of integer equivariant functions: LU C IE. Let the system of observation equations
be given as E{y} = Aa, with matrix A of dimension m x n, and let F(y) be an
[E-estimator of @ € Z”. In this case integer equivariance implies

F(y+ da)=F(y) +a, Ya€ Z"y € R™ (12)

An estimator has the LU-property if it is linear and unbiased. Let Ly, with
matrix L of dimension n x m, be a linear estimator of a. Unbiasedness implies that
E{Ly} = a should hold for all « € R". Hence, LAa = a should hold for all a € R,
We therefore have the following characterization of an LU-estimator: L4 = I,. But
this is equivalent to stating that

L(y+ Aa) = Ly +a, Ya€ R",y € R™ (13)
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Upon comparing (12) with (13) it immediately follows that indeed LU C IE. Re-
quiring.integer equivariance of an estimator is therefore less restrictive than requiring
the estimator to be linearly unbiased. This explains why

MSE(agig) < MSE(apLy) (14)

4.2 Minimum variance

So far we did not consider the property of unbiasedness for an [E-estimator. Let us
denote the set of unbiased IE-estimators as I EU and the set of unbiased estimators
as U. We already determined that LU C IE. We also have LU C U. Hence LU is
a subset of the intersection of {E and U, and thus a subset of JEU: LU C IEU.
From this result, combined with the fact that JEU C IE, follows that imposing the
conditions of integer equivariance and unbiasedness is less restrictive than imposing
the LU-conditions, but more restrictive than the IE-condition. Hence, for the MSE
of a best integer equivariant unbiased estimator, denoted as ap;py, we immediately
have
MSE(ap1g) < MSE(dprpv) < MSE(apLu) (15)
Since IEU-estimators and LU-estimators are unbiased by definition, minimizing their
MSE is equivalent to minimizing their variance. Hence, the two estimators dpry and
aprev, besides being unbiased, are also both of minimum variance within their class
It would seem, if one cherishes the properties of unbiasedness and minimum variance
that then ag; gy is the proper contender of agrir, whereas if one goes for the least
mean squared error property, the proper contender of épry would be apyr. For
[E-estimation, however, this difference turns out be absent, since the two estimators
agrp and ap;py can shown to be identical. This is a direct consequence of the fac
that ég;g is already unbiased. This can be shown by taking the expectation of (10)
We therefore also have the following theorem.

Theorem 3 (minimum variance unbiased estirnation)

The BIE-estimator is unbiased and has a better precision than the BLU-estimator:

(1) E{apie} = E{apiv}
(16

(i) D{apre) € D{apru}

where D{.} denotes the dispersion operator.

As the theorem shows the BIE-estimator is already unbiased by itself. Imposing th
condition of unbiasedness onto the minimization problem (9) would therefore not alte
the solution. Hence dgjg = agrey.

5. SUMMARY
In this contribution we worked with a new class of estimators for the GNSS carrie
phase ambiguities. This class of integer equivariant (IE) estimators is larger tha
the class of admissible integer estimators, but their members still obey the intege
remove-restore principle. Using the mean squares error as our criterion for estimatc
performance. we obtained an explicit expression for the best IE-estimator by min
mizing the mean squared error over the set of all integer equivariant functions.

The BIE-estimator was shown to have a similar structure as the admissible intege
estimators,

apre= Y  zw.(a)

zeZn
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the important difference being that the weights, as determined by a and its pdf, now
vary between zero and one, instead of being zero or one. The expression given for the
BIE-estimator holds true for any pdf the 'float’ solution might have. In case the pdf
is Gaussian, the BIE-estimator converges to the integer least-squares solution when
the precision of the 'float’ ambiguities is continuously improved.

Since the BIE-estimator has the smallest possible mean squared error within the
class of IE-estimators and since the 'float’ solution is an IE-estimator as well, the
BIE-estimator outperforms the 'float’ solution in terms of its mean squared error. At
first instance, this result seems to be in contradiction with the fact that the 'float’
solution, if derived as the best linear unbiased estimator, also has its mean squared
error minimized. That this paradox is apparant but not real is due to the fact that
the class of linear unbiased estimators is a subset of the class of integer equivariant

_estimators.

Finally it was shown that the BIE-estimator is identical to the minimum variance
unbiased estimator of the IE-class. The BIE-estimator is therefore, just like the BLU-
estimator, unbiased, but it outperforms the BLU-estimator in terms of precision.
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