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MICAL OBSERVATIONS
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Samenvatting

Als onderdeel van de mathematische geodesie. houdt de vereffeningstheorie zich
bezig met het optimaal combineren van overtallige waarnemingen ter bepaling van
onbekende parameters. Het is een fundamenteel vak, de betekenis ervan vergelijk-
baar met die van de mechanica voor een civielingenieur of werkluigbouwkundigc-.
De twee hoofdredenen voor het verrichien van overtallige waarnemingen zijn verho-
ging van de nauwkeurlgheld en het mogeh]k maken van controles. Door de onver-
mijdelijke onzekerheid in de waarnemingen, leidt overtalligheid in de regel tot een
inconsistent stelsel van vergelijkingen. Zonder additionele (‘rltu‘m is een der"eh]l\
stelsel niet eenduidig oplosbaar.

De zoektocht naar het vinden van methoden waarmee inconsistente stelsels vergelijkingen
kunnen worden opgelost. had halverwege de 18e eeuw de aandacht van verschillende weten-
schappers van naam. De cerste methoden voor het vereffenen van overtallige waarnemingen
vinden hun oorsprong in geodetische en astronomische studies, namelijk bij studies ter
bepaling van de vorm en grootte van de aarde en bij studies ter bepaling van het bewegings-
gedrag van de maan. \’ﬂ[mi de ontdekking van de kleinste-kwadraten methode, nu hlJIld
)U() jaar geleden. is deze methode de meest populaire vereffe ningsmethode gebleken. Hoewel
het M(‘mst(a kwadraten principe voor een moderne student van (1(‘ verelfe Illll“ﬂht‘utl(* voor
de hand zal liggen. volgt de ontdekking ervan cen recks van daar aan voor: llfrfl‘lmlv
methoden. In dwe bl](lrd(“t’ wordr de hhtmlst‘he ontwikkelingslijn van deze \t*[(‘[teuuwamv
thoden in het kort beschreven.

I Introduction

Adjustiment theory can be regarded as the part ol mathematical nt‘(}(lt’a\' that deals with the
optimal combination of redumhm observations for the purpose ()i determining values for
parameters of interest. [t is essential for a geodesisi. its meaning comparable (o what mecha-
nies means to a civil engineer or a mechanical engineer. The two main reasons for perfor-
ming redundant measurements are the wish to increase the accuracy of the results computed
and the requirement to be able to check for errors. Due to the intrinsic uncertainty in ohser-
vations. redundancy generally leads to an inconsistent system of equations. Without
additional criteria, such a system is not uniguely solvable.

The problem of %()]vmg an inconsistent system of equations has attracted the attention of
leading scientists in the middle of the 18th century., Historically. the {irst methods of combi-
ning n*dunddnt observations originate from studies in geodesy and astronomy. namely from
the pmblem of determining the size and shape of the Ldrth and 1he problem of [m([m(y a
mathematical representation of the motions of the moon. Since its discovery alinost 2(]()
vears ago. least-squares has been the most popular method of adjustment. \lthmmh the
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method of least-squares may scem natural” for a modern student of adjustment theory. its
discovery evolved only slowly from earlier methods of combining redundant observations®.
In this contribution we sketeh the historical line of development of these adjustment
methods in the second half of the 18th century.

1. The method of selected points

It is convenient to cast the problem of combining redundant observations in terms of vectors
and matrices. Suppose we are given a set ol linear equations of the form

y=4 x

mx1  mxnnxl

where 11is a veetor of observations. A is a given matrix of full rank and . is the vector of
unknown parameters. This set of linear equations is said to be overdetermined when there
are more observations than unknowns. m>n. The problem is to combine the m observations
so that one can solve {or the n unknown parameters. If we restriet ourselves 1o linear combi-
nations of the observations. we can write the general solution in the following form

x=B y with B=(LA" L

axl axm g R¥Xm nxn nxm

and where martrix L is a suitably chosen matrix defining the linear combinations, Dilferent
choices of 1. give different linear combinations and therefore different solutions. In modern
terminology. matrix £ is called a left-inverse of A. since 8 times 4 equals the identity matrix.
Before 1750 a popular. albeit subjective. method of solving an overdetermined set of lincar
equations was the method of selected points. It consists of choosing 1 out of the m observa-
tions (referred to as the selected points) and using their equations to solve for a. If the choice
lalls on the first n observations. the corresponding £ matrix takes the form

L =[ I 0 }
nxn  nx(m-n)

where 7is the identity matrix. For the method of selected points, 7 residuals (the difference
between the observed and adjusted observations) are by definition equal to zero, Many scien-
tists using this method caleulated the remaining m-n residuals and studied their sign and size
to get an impression of the goodness of [it between observations and the proposed law.

The method is subjective beeanse no clear rule is given which observations to select and
which to throw out. Selecting another set of 1 ohservations leads to a different soludon for 2.
Although the disadvantage of not using all observations was recognized. no simple method
existed to tackle this shortcoming. Sometimes all possible combinations of # ohservations
were considered and then averaged to obtain the [inal result. But sinee this approach requires
handling m over n combinations. it was only practical for problems of low dimensions.

111 The method of averages

Tobias Maver (1723-1762). professor ol mathematics and head of the Gottingen observa-
torv. made numerous observations of the moon with the purpose of determining the charac-
teristics of the moon’s orbit. In 1750* Mayer proposed a new method for adjusting his moon
data. a method which solved the above mentioned pitfall of the method of selected points.
Apart from his adjustment method. Maver is also known for his other contributions to surve-
ving and navigation. In 1752 he invented the Repeating or Reflecting Cirele, an instrument
for observing the angle between two celestial bodies. The aceu racy of Maver's instrument
was comparable to John Hadley's reflecting octant (1731). hut had the advantage that it
could be used to measure angles of over 90 degrees”. Mayer also contributed to solving the
mariner’s ‘longitude problem’. Tt was the British Parliament. which in 1714, offered the



‘Longitude Prize” to those who could find a “useful and practicable” method for determining
longitude at sea. To determine longitude of a ship at sea. the mariner needs to know both his
local time and the time at some ﬁtd]lddl(] location. Local time was readily determined. but
the determination of standard time at sea was more complicated. Mayer's detailed lunar
tables (1755) made it possible to translate the instrument readings into longicude positions,
The use of Maver’s lunar tables was later superseded hy John Flavzisuilly mutuedhrenomelon
H-1 (1759). In recognition of their contributions. hoth ]I]l‘ll were awarded part of the
‘Longitude Prize. with the | arger sum going to | larrison".

Maver studied the libration of the moon by observing the changing position of the crater
Manilius as seen from the Farth, U sing spllf‘l ical geometry. he found a linearized re lationship
between his observables and some location parameters of Manilius and the moon’s pole. This
gave him an inconsistent svstem ol 27 linear equations in 3 unknown parameters
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Maver proposed to divide the 27 equations into 3 groups of @ cach. to sum the equations
within each group. and to solve I]H‘ resulting 3 equations in the 3 unknowns. [For a general
set of m equations in # unknowns. this approach amounts to a separation of the m equations
into n# groups, followed by a groupwise summation. For example in case n=2. (he correspon-
ding L matrix takes the form

where the e and ey are row veetors having only 1's as their entries. Since one may use
averages instead of sums. the method became later known as the method of arerages.
N[d_\u'.‘ method of averages soon became popular. It used all observations and it was very
sin]])](‘ to uppl}‘. However. due to the lack of an t)l)j(‘('li\'{‘ eriterion of how to group the obser-
vations. the method was still a subjective one.

I¥ The method of least absolute deviations

To determine the Earth’s flattening as predicted by Newton's theory ol gravitation
(Principia“, 1687). the French Academy of Sciences organized are-measurement expeditions
to Peru. Lapland and the Cape of Good Hope in the permd 1735-1754. These expeditions
(l](]llht‘(l the interest in other countries and in 1750 Pope
Benediet XIV commissioned. the Jesuit and professor of
mathematics. Roger Joseph Boscovieh (1711-1787) to perform
a similar geodetic survey near Rome. the results of which were
publishe din 1755. In a summary of this report, published in
1757%, Boscovich formulated his new method. now known as
the method of least absolute deviations. and applied it to the
data of the French and Italian arc measurements.

In order to understand the equations used by Boscovich. we
first need 1o introduce some elements from vlllpsmdai geodesy,
Figure I: Latitude are measure- I'or short meridian ares. the are length s (see figure 1) can be
merits along a meridian. written as s=H{@lA@. with M{¢) the meridian radius of curva-
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ture, @ the geodetic latitude of the midpoint of the are. and A@ the latitude difference of the
two are endpoints. The meridian curvature and its expansion are given as
2
a(l-e
M——(-ﬁ—a(l e ){I+ e” sin? @+--}
(1-e” sin” @)

with (’—:((J-—b—j/a the eccentricity. « and 6 the hall lengths of the major and minor axis.
and r:.(] =) the length of a degree ar the equator. Using 1)111) the [irst two terms in the
expansion, the length of a one- (h‘gmv arc can be written as

s=x1+sin2(ox2 with x1=a(1—ez) and xzx%aez(]—ez)

This is one equation in two unknowns, vy and 2o, The are length s and geodedie latitude @
are determined from astronomical and geodetic measurements. while vy an(l o contain the
unknown dimensions of the ellipsoid of revolution. Although a minimum of two ares is
needed 1o solve for the two unknowns. it is preferable 10 use more than two ares. As a result
one obtains the following system of linear equations

-2
S.l 1 sm- o %
1 .2 X3

LSn | sin® @, [~

¥y A
This is the system of equations which formed the start of Boscovieh” analysis. Note that the
A-matrix becomes near rank defeet. when all ares are close 1o the same latitude. For an
aceurate determination of the two unknowns. it is therelore pre {erable 1o choose ares at
widely differing latitudes. From the data available. Boscovieh choose five such ares (m=53}.
In his first armh sis, Boscovieh used the mechod of seleeted points. He choose the two ares with
the largest difference in latitude, Not satisfied with the result obtained (the 3 residuals were
considered too |'dr'g(’). he considers all [){)hhil)l(‘ prirs ol measured ares. This gaye Lty 10 selected
points to solve. but again he is not satisfied witl the results obtained. After having struggled for
some time on how to proceed. Boscovich finally formulates his new method of solution in 1757,
He states that the parameters v 1 and .o should be ¢hosen in such a w ay that the residuals sum

up to zero and have minimum absolute sum. In formuola form these 1wo conditions read
m "

Z(sf —x; —x;sin® ,)=0 and Z }s,- —-X| =X, sin? @,| = min
i=1 i=1

The first condition (although not essential) was motivated by the assumed symmetry in the
error distribution. while the second was chosen to get the adjusted values “as close as
possible” to the observed ones. Boscovieh gave a graphical algorithm for solving his problem.
but no analytical one. The analytical pmn! of the solution was first given by Laplace in
1793, Using his principle. Boscovich lirst determined the two parameters &/ and 12, and
from them the flattening as /':.z'-)/-'iz']. Here he only used the first term of the expansion

4

f=(a-b)la=1e +ée +—e I

The value obtained by Boseovich equals /=1/240. which was smaller than the (latening
predicted by Newton. Based on a rotational ellipsoid as an equilibrium figure for a homoge-
neous. uid. rotating Larth. Newton obtained the value /217230, Boscoviel” value is however
larger than the value known today (International Association of Geodesy (1980): /=1/298.257).
Boscovieh” method was the first dd]llhlllll‘[ll method that started [rom the principle of minimi-
zing a function of the residuals. However. although the method is objective and uses all the
()l)‘at‘l vations, it did not reach the same level of popuolarity as Maver's method. The method.
heing nonlinear. was difficult to apply. while the at that time available algorithm could only
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handle a system of equations with a maximum of two unknowns. In the second hall of the
20th century the method gained in popularity due to its property ol being resistent (robust)
against outliers, Nowadays Boscovich adjustinent method is usually referred to as an Lq-

adjustment, since the Ly-norm of a4 vector is the sum of absolute values of its entries.
K The method of least-squares

Adrien-Marie Legendre (1752-1833). a professor of mathematics ar the Feole Militaire in
Paris. was appointed by the [rench Academy of Seiences as member of various committees
on astronomical and geodetic projects. among them the committee on the standardization of
weights and measures. The committee proposed to define the meter as 107 times the length
of the terrestrial meridian quadrant through Paris at mean sealevel. The arc-measurements
took place in the period 1792-1795 and were analyzed. among others”’. by both Laplace and
Legendre. Legendre's 18051 publication on the determination of the orbits of comets,
contains a nine-page appendix in which for the first time the neethod Qf[(’(IS/-.S‘(]H(H‘(’SI1 is
described. together with an application of the method to the are measurements.

Legendre used a different equation then Boscoviel. Boscovich used the equation
s=[a(1-e*)+2ae? (1-e*)sin’® plAg

with Ag@=1. The arcs used by Legendre were not of one degree. Moreover, Legendre used a
parametrization which differed from the one used by Boscovich. Since Legendre had the
determination of the meter in mind, he parum(‘trizm'l his equation in the length of a one
degree are at 45 degree latitude. To obtain his equation. substitute

p= %(q’l +@,)= latitude of midpoint are

d=a(l-e*)+ %%aez (1—e?) = length of one degree are at 45 degree latitude

i | 1 — -
sin® (5 (@ +@2)) = 7(1 —cos(@) +¢,)), Ap=@p, §=S5;
and use the approximations Ag = sin(Ag), f = %ez ,fd = %a(l—e2 )e? . As a result. we obtain

— ~1,3 s

@1y =spd +5 fsingy cos(@; +¢;)
This is one equation in two unknowns. d and £ Legendre understood that the observed
laticude differences would correlate in case the ares were commected. He therefore trans-
formed the above equation of differences into an equivalent undilferenced form, This can be
achieved by introducing an appropriate additional equation with an additional unknown. As
a result, we obtain Legendre’s linear system ol equations as

(o] |1 sy Fsingy cos(p +¢)

@ |=11 0 0 *

: Do : | f
&; _1 Sim %Sin ‘pim COS((Dm + @ )_‘_}‘_J

y A

Since Legendre had four connected ares (m=5) at his disposal. he had to solve 5 equations in 3
unknowns. In order to solve his overdetermined linear system of equations. Legendre proposed to
determine @ such that the sum of the squares of the residuals is minimized. In vector-matrix form
(v-Ax)" (y-Ax) = min «

By setting the derivatives of this quadratic form cqual to zero. he shows that the solution satis-
fies the consistent svstem of linear equations (nowadays referred 10 as “the normal equations’)
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Aly = ATAx

Note that this result corresponds to the following choice of the L matrix

[4 = AT

After solving his set of equations for the three unknowns @3. d and /2 Legendre obrained for
the flattening the value f=1/148. which he recognizes as being too large. He thevefore recom-
puted his least-squares adjustment. but now with f constrained to the at that time adopted
value for the Eartly’s flattening. As a result he obtained a value for o, which was now close to
the value obtained earlier by Laplace and on which the actual definition of the meter was
based. The reason for Legendre having to constrain flies in the poor resolution of his data.
The total arc length of his data covered only about 10 degrees.

Although Legendre did not give a clear motivation for his “least-squares” eriterion. he did
realize its potential. His method used all the observations. had an objective criterion and
most importantly, resulted - as opposed to Boscovich” method - in a solvable linear system of
equations. The method met with almost immediate success. Within ten vear after Legendre’s
publication. the method of least-squares became a standard tool in astronomy and geodesy
in various European countries, and within twenty years, also the probabilistic foundations of
the method were largely completed. the main contributors being Laplace and Gauss.
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