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Probabilistic properties of GNSSinteger ambiguity estimation
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Successful integer estimation of carrier phase ambiguities of Global Navigation Satellite Systems (GNSS) isthe
key to many high precision positioning applications. In order to describe the quality of the positioning results
rigorously, one needs to know the probabilistic properties of both the integer and noninteger parameters in the
GNSSmodel. In this contribution these probability distributions are presented and discussed. The probability mass
function of theinteger ambiguitiesis needed to evaluate the ambiguity success rate and the distribution of the GNSS
baseline is needed to evaluate the relevant confidence regions for positioning.

1. Introduction
Globa Navigation Satellite System (GNSS) ambiguity
resolution isthe process of resolving the unknown cycle am-
biguities of double difference (DD) carrier phase dataasin-
tegers. Ambiguity resolution appliesto agreat variety of cur-
rent and future GNSS models. Apart from the current Global
Positioning System (GPS) models, it al so appliesto thefuture
modernized GPSand thefuture European Galileo GNSS. An
overview of GNSSmodel s, together withtheir applicationsin
surveying, navigation, geodesy and geophysics, can befound
in textbooks such as Leick (1995), Parkinson and Spilker
(1996), Strang and Borre (1997), Hofmann-Wellenhof et al.
(1997), and Teunissen and Kleusberg (1998).
Despitethedifferencesin application of the various GNSS
models, it isimportant to recognize that their ambiguity res-
olution problemsareintrinsically the same. Thisimpliesthat
it is possible to develop a single theoretical framework that
appliesto every GNSSmodel for which ambiguity resolution
would make sense. Such aframework isavailable for thein-
teger estimation part of ambiguity resolution. Rigorous and
efficient methods of estimation exist for the determination
of the integer carrier phase ambiguities. Thisis not yet true
however when one considersthe probabilistic aspects of am-
biguity resolution. Tofill in this gap, one should first realize
that ambiguity resolution is not an end in itself. After all,
the sole purpose of ambiguity resolution isto use the integer
ambiguity constraints as a means of improving significantly
on the precision of the remaining model parameters, such as
baseline coordinates and/or atmospheric (tropopshere, iono-
sphere) delays. Hence, the qualitative aspects of ambiguity
resolution should be seen in the context of how well these
parameters can be determined. It istherefore the purpose of
this contribution to show how well these model parameters
can be determined by means of ambiguity resolution. Such
a qualitative description then also enables one to formulate
and test the regquirements which ambiguity resolution has to
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fulfil in order to be successful.

Asour point of departurewewill takethefollowing system

of linear(ized) observation equations

y=Aa+Bb+e Q
wherey isthegiven GNSS datavector of order m, aandb are
the unknown parameter vectors respectively of order n and
0, and where e isthe noise vector. In principle al the GNSS
models can be cast in this frame of observation equations.
Thedatavector y will usually consist of the ‘ observed minus
computed’ single- or dual-frequency double-difference (DD)
phase and/or pseudorange (code) observations accumulated
over all observation epochs. The entries of vector a are
then the DD carrier phase ambiguities, expressed in units
of cycles rather than range. They are known to be integers,
a € Z". The entries of the vector b will consist of the
remaining unknown parameters, such asfor instance baseline
components (coordinates) and possibly atmospheric delay
parameters (troposphere, ionosphere). They are knownto be
real-valued, b € R°.

The procedure which is usualy followed for solving the
GNSS model (1), can be divided into three steps. In the first
step one simply disregards the integer constraintsa € Z" on
the ambiguitiesand performsastandard | east-squares adj ust-
ment. As aresult one obtains the (real-valued) estimates of
a and b, together with their variance-covariance (vc-) matrix

Qa Qg

HEERdf

Thissolution isreferred to asthe *float’ solution. In the sec-
ond step the ‘float’” ambiguity estimate & is used to compute
the corresponding integer ambiguity estimated. Thisimplies
that amapping S: R" — Z", from the n-dimensional space
of realsto the n-dimensional space of integers, isintroduced
such that

A

a

; @)

&= 5. ©)

Once the integer ambiguities are computed, they are used in
thethird step to finally correct the ‘float’ estimate of b. Asa
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result one obtains the ‘fixed’ solution
b=b-QpQ;'@-4a. (4

In this contribution we will discuss the probabilistic conse-
guences of relation (3). We will refrain however, from dis-
cussing the computational intricacies of integer estimation.
For adiscussion of these aspects, we refer to e.g. Teunissen,
(1993), de Jonge and Tiberius (1996a), Hassibi and Boyd
(1998) or to the textbooks (Hof mann-Wellenhof et al., 1997;
Strang and Borre, 1997; Teunissen and Kleusberg, 1998).
Practical results can aso be found in e.g. Tiberius and de
Jonge (1995), Han (1995), de Jonge et al. (1996), de Jonge
and Tiberius (1996b), Boon and Ambrosius (1997), Boon et
al. (1997), Tiberius et al. (1997) and Jonkman (1998).

2. The Probability Distribution of Ambiguities
and Baseline

There are many ways of computing an integer ambigu-
ity vector a from its real-valued counterpart &. To each
such method belongs a mapping S : R" — Z" from the
n-dimensional space of real numbers to the n-dimensional
space of integers. Dueto thediscrete natureof Z", themap S
will not be one-to-one, but instead a many-to-one map. This
implies that different real-valued ambiguity vectors will be
mapped to the sameinteger vector. One can therefore assign
asubset S, ¢ R" to each integer vector z € Z™;

S ={xeR"|z= S}

Thesubset S, containsall real-valued ambiguity vectorsthat
will be mapped by S to the same integer vector z € Z".
Thissubset isreferred to asthe pull-in region of z (Jonkman,
1998; Teunissen, 1998b). It is the region in which al am-
biguity ‘float’ solutions are pulled to the same ‘fixed’ am-
biguity vector z. Using the pull-in regions, one can give an
explicit expression for the corresponding integer ambiguity
estimator. It reads

ze Z". (5)

a=) 75 6)
zeZ"
with the indicator function
A JlifaeS
(@) = {O otherwise - )

Since the pull-in regions define the integer estimator com-
pletely, one can define classes of integer estimatorsby impos-
ing various conditions on the pull-in regions. In Teunissen
(1999) we defined one such class, which we called the class
of admissible integer estimators. These integer estimators
are defined as follows.

Definition The integer estimator & = ), _,n z5,(8) is said
to be admissible if

() Upezr & =R
(i) SSNS, =9, V21,2, € 2", 21 # 2,
(i) S =z+S, Vze Z"

Thisdefinitionismotivated asfollows. Each oneof theabove
three conditions describe a property of which it seems rea-
sonablethat it is possessed by an arbitrary integer ambiguity

estimator. The first condition states that the pull-in regions
should not leave any gaps and the second that they should not
overlap. The absence of gaps is needed in order to be able
to map any ‘float’ solution & € R" to Z", while the absence
of overlapsis needed to guarantee that the ‘float’ solutionis
mapped to just one integer vector. Note that we alow the
pull-in regions to have common boundaries. Thisis permit-
ted if we assume to have zero probability that & lies on one
of the boundaries. Thiswill be the case when the probability
density function (pdf) of & is continuous.

The third and last condition follows from the requirement
that S(X +2) = S(X) + 2z, Vx € R",z € Z". Also this
condition is a reasonable one to ask for. It states that when
the ‘float’ solution is perturbed by z € Z", the correspond-
ing integer solution is perturbed by the same amount. This
property alowsoneto apply theinteger remove-restoretech-
nigue: S(& — z) +z = S(a). It therefore allows one to work
with the fractional parts of the entries of &, instead of with
its complete entries.

With thedivision of R" into mutually exclusive pull-inre-
gions, wearenow inthe position to present the di stribution of
both the integer ambiguity estimator and the ‘fixed’ baseline
estimator. These distributions follow onesthe pull-in region
of the chosen integer estimator has been defined. Three such
examplesof integer estimatorsare‘ rounding’,* bootstrapping’
and ‘integer least-squares’ . Since their pull-in regions dif-
fer, see Teunissen (1998a), aso their probabilistic proper-
tieswill differ. The probability of correct integer estimation
of the bootstrapped estimator is given in Teunissen (1997)
and that of the integer least-squares estimator in Hassibi and
Boyd (1998) and Teunissen (1998b). In the following we
will consider the probabilistic properties of the whole class
of admissibleinteger estimators, of which ‘rounding’, ‘ boot-
strapping’ and ‘integer least-squares’ are special cases. We
first consider the distribution of a. This distribution is of
the discrete type and it will be denoted as P(a = 2). Itis
a probability mass function, having zero masses at nongrid
points and nonzero masses at some or al grid points. If we
denote the continuous probability density function of & as
pa(X), the distribution of a follows as

P@=2 :/ pa(x)dx , ze Z". (8)
S

This expression holds for any distribution the ‘float’ ambi-
guities & might have. In most GNSS applications however,
one assumes the vector of observables y to be normally dis-
tributed. The estimator & is therefore normally distributed
too, with mean a and vc-matrix Q. Its probability density
function reads

1
Pa(x) = pi—3 I x—alg) ()

1
p—C
V/det(Qa) (2m) 2"

with the squared weighted norm || . |4, = ()T Q;*()). Note
that P(a = a) equals the probability of correct integer am-
biguity estimation. It describes the expected success rate of
GNSS ambiguity resolution.

We are now in the position to determine the distribution
of the ‘fixed’ baseline b. It will be denoted as p;(x). Once
it has been determined, its peakedness can be studied and
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probabilistic statements such as

PbeT) :/ py(¥dx , T CR° (10)
T

can be made. The determination of p;(x) would be straight-
forward in case a is deterministic. In that case normality
would be preserved when propagating the normal distribu-
tion of & and b through (4). In our case however, & is not
deterministic but stochastic. We therefore also need to take
the distribution of these integer ambiguitiesinto account. As
aresult one obtains the probability density function of b as

P00 = Y Phac, OP@=2).

zeZn

11)

This distribution describes the probabilistic properties of the
GNSS baseline in case the integerness of the carrier phase
ambiguities is included in the model. The distribution is
clearly not normal. Itisaweighted and infinite sum of condi-
tional distributions. Theweightsare given by the probability
masses of the distribution of &. The conditional distributions
Ppaz(X), Z € Z" are translated copies of one another and
are given as

Ppja=z(X) !
o det Qg5 (2) (12)

1
op(—3 | X = bas G, )

with the conditional mean bja—, = b — Q;,Q;*(a — 2) and
the conditional ve-matrix Qg, = Q5 — Qg Q5" Qap.

In most practical applications of GNSS, the distribution
Ppja—a(X) is used instead of the theoretically correct distri-
bution (11). This approximation is only permitted however,
when the estimated integer ambiguities can be considered
sufficiently nonrandom. This follows from the limit

lim  py(x). (13)

n X) =
Péjaa(X) P(a=a)—>1

For this conditional distribution to be agood approximation,
one thus has to make sure that the probability of correct
integer estimation is sufficiently close to one.

3. An Optimal Integer Ambiguity Estimator

Thedistributional results presented so far hold for any ad-
missible ambiguity estimator. Two examples of admissible
ambiguity estimators are the ‘rounding’ estimator and the
‘bootstrapped’ estimator. The simplest way to obtain an in-
teger vector from the real-valued ‘float’ solution isto round
each of theentriesof 4 toitsnearest integer. The correspond-
ing integer estimator reads therefore

é-R = ([é-l]v ce [én])T (14)

where ‘[.]’ denotes rounding to the nearest integer. The
pull-inregion of thisinteger estimator equalsthe multivariate
version of asquare.

Another relatively smple integer ambiguity estimator is
the bootstrapped estimator. The bootstrapped estimator can
be seen as a generalization of the previous estimator. It still
makes use of integer rounding, but it also takes some of

the correlation between the ambiguities into account. The
bootstrapped estimator followsfrom asequential conditional
least-squares adjustment and it is computed as follows. If n
ambiguities are available, one starts with the first ambiguity
4;, and rounds its value to the nearest integer. Having ob-
tained theinteger value of thisfirst ambiguity, thereal-valued
estimates of all remaining ambiguities are then corrected by
virtue of their correlation with the first ambiguity. Then the
second, but now corrected, real-valued ambiguity estimateis
rounded to its nearest integer. Having obtained the integer
value of the second ambiguity, the real-valued estimates of
all remaining n — 2 ambiguities are then again corrected, but
now by virtue of their correlation with the second ambiguity.
This process is continued until all ambiguities are consid-
ered. The components of the bootstrapped estimator ag are
given as

ag = ([&l. [&n], - ., [aanDT (15)

where the shorthand notation &, stands for the ith least-
squares ambiguity obtained through a conditioning on the
previous| = {1, ..., (i — 1)} sequentially rounded ambigu-
ities. The pull-in region of the bootstrapped estimator equals
the multivariate version of a parallelogram.

Although variousinteger estimatorsexist whichareadmis-
sible, some may be better than others. Having the problem of
GNSS ambiguity resolution in mind, one is particularly in-
terested in the estimator which maximizes the probability of
correctinteger estimation. Thisprobability equalsP(a = a),
but it will differ for different ambiguity estimators. In order
to find the estimator which hasthe largest probability of cor-
rect integer estimation, we need to know which estimator
maximizes P(a = a). The answer to this question is given
by the following theorem.

Theorem Let the integer least-squares estimator be defined
as

X _ . A 2
dis=agminfla-zlyg, (16)

and the pdf of & be given as
Pa(x) = /det(Q;HG(l x —a 3, (17)

where G : R — [0, 00) is decreasing and Qj is positive-
definite. Then

P@s=a = P@=a (18)

for any admissible estimator a.

This theorem gives a probabilistic justification for using the
integer least-squares estimator. For GNSS ambiguity reso-
[ution it shows, that one is better off using the integer least-
squaresestimator than any other admissibleinteger estimator.
The theorem was introduced and proved in [ibid]. The fam-
ily of distributions defined in (17), is known as the family
of dliptically contoured distributions (Chmielewsky, 1981).
Several important distributions belong to this family. The
multivariate distribution can be shown to be a member of
this family by choosing G(x) = (27) 2 exp—3ix,x € R.
Another member is the multivariate t-distribution.

Asadirect consequence of the above theorem we havethe
following corollary.
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Corollary Let ¥ be any positive-definite matrix of order n
and define

s =agmin|a—z|%. (19)
zeZ"
Then asx, is admissible and
P@s=a) > P@s =a). (20)

In order to prove the corollary, we only need to show that
dy isadmissible. Once this has been established, the stated
result (20) follows from the theorem. The admissibility can
be shown as follows. The first two conditions of the defini-
tion are satisfied, since (19) produces—apart from boundary
ties—aunique integer vector for any ‘float’ solutiona € R".
And since 8 = argmingz | & —u —z |3 +u holds
true for any integer u € Z", aso the integer remove-restore
technique applies.

Asthe corollary shows, aproper choice of the dataweight
matrix is also of importance for ambiguity resolution. The
choice of weights is optimal when the weight matrix equals
theinverse of the ambiguity vc-matrix. A too optimistic pre-
cision description or atoo pessimistic precision description,
will both result in alessthan optimal ambiguity successrate.

Another aspect made clear by the corollary, istherelation
between ‘integer rounding’ and ‘integer least-squares’. One
of the simplest choices for ¥ would be a diagonal matrix.
Inthat case || & — z ||2E reduces to a sum of squares and ax
becomestheinteger estimator that followsfromarounding to
the nearest integer of the entries of &. Thusas = [4], where
‘[.]' denotes the operation of componentwise rounding, and

P@as=a) > P(a = a). (21)
We can generalize this result to awhole class of integer esti-
mators based on rounding, whenthechoice ™ = (Z"DZ)*
is made, where D is a diagona matrix with positive en-
triesand Z is an admissible ambiguity transformation. Am-
biguity transformations are said to be admissible when all
the entries of both Z and its inverse are integer (Teunissen,
1995). For thisparticular choiceof X, wehave || 4—z ||2.=
(Z& —u)"D(Za — u), withu = Zz € Z". Hence, when
parametrized inu, | & —z ||2: again reduces to a sum of
squares. Thus Ui = [Z4&] and &y, = Z~Y[Z4]. In this case
the integer estimator is computed by first transforming the
‘float’ solution, then applying the componentwise rounding
scheme, followed by the back-transformation. For the prob-
ability of correct integer estimation, we thus have
Pas=a)> P(Z'[z4] = a) (22)

for any admissible ambiguity transformation Z.

Notethat (21) isaspecial caseof (22). ThechoiceZ = I,
however, is usualy not the best one. That is, if one insists
on using the integer estimator based on rounding, one can
often improve upon the ambiguity success rate by choosing
an appropriate transformation matrix Z. Thisis particularly
true in case of GNSS, when the DD ambiguities are used.
Sincethe equality in (22) will hold truein case the ve-matrix
of Z& is diagonal, an ambiguity transformation should be
used that results in a close to diagonal form as possible.
Thisis achieved when using the decorrel ation process of the

LAMBDA method (Teunissen, 1993). Hence, when one de-
cides to use the integer estimator based on rounding, one
should at least decorrelate the ambiguities first, before ap-
plying the integer rounding scheme. In this way one will
obtain a success rate which is higher than the one obtained
without using the decorrelation process.

Summary

When evaluating the quality of the estimated real-valued
GNSS parameters, such as the ‘fixed” GNSS baselines or
atmospheric delays, it is not enough to simply assume that
the estimated integer ambiguities are deterministic variates.
Not only are the estimated integer ambiguities random by
definition, their probabilistic properties also depend on the
chosen method of integer estimation as governed by their
respective pull-in regions. In this contribution, these proba-
bilistic properties were given for the whole class of admissi-
ble integer estimators, of which ‘rounding’, ‘ bootstrapping’
and ‘integer least-squares’ are specia cases. Within this
class, assuming that the distribution of the ‘float’ solution
belongs to the family of elliptically contoured distributions,
the largest ambiguity success rate is obtained by the integer
least-squares estimator. Thistherefore also holdstruefor the
special case of a normally distributed ‘float’ solution, pro-
vided the ambiguity variance-covariance matrix is taken as
the corresponding weight matrix.
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