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ABSTRACT: The success or failure of carrier phase ambiguity resolution can be
predicted by means of the probability of correct integer estimation, also referred to as
the ambiguity success-rate. In this contribution two easy-to-compute upperbounds of
the ambiguity success-rate are described, one for the integer bootstrapped success-rate
and one for the integer least-squares success-rate. The relationship between the two
upperbounds is also shown.
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1. INTRODUCTION

Carrier phase ambiguity resolution is the key to fast and high precision GPS position-
ing. Critical in the application of ambiguity resolution is the quality of the computed
integer ambiguities. Unsuccessful ambiguity resolution, when passed unnoticed, will
too often lead to unacceptable errors in the positioning results. The success or failure
of carrier phase ambiguity resolution can be predicted by means of the probability of
correct integer estimation, also referred to as the ambiguity success-rate. Upperbounds
of the success-rate can be used to decide that ambiguity resolution has become unreli-
able. In this contribution we describe and discuss two easy-to-compute upperbounds,
one for the bootstrapped success-rate and one for the integer least-squares success-rate.
Both are driven by the easy-to-compute Ambiguity Dilution of Precision (ADOP).

This contribution is organized as follows. In section 2 we start with the class of
admissible integer cstimators and show that the integer bootstrapped estimator, dp,
and the integer least-squares estimator, apg, are both members of this class. Since
the integer least-squares estimator is shown to have the highest success- rate of all
admissible integer estimators, we have

P(as = a) < Pléss = a)
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In section 3 we define the ADOP and describe some of its properties. The ADOP is then
used to determine two different upperbounds of respectively P(ay = a) and Pla,y =
a). The relation between the two upperbounds is also given. The upperbounds are
attractive since they are so easy Lo compute and since they arednvariant for the class
ol admissible ambiguity transformations.

2. INTEGER BOOTSTRAPPING AND INTEGER LEAST-SQUARES
2.1 Admissible integer estimators

There are many ways of computing an integer ambiguity vector @ from its real-valued
counterpart a@. To cach such method belongs a mapping S : R" — Z" from the n-
dimensional space of real numbers to the n-dimensional space of integers. Due to the
discrete nature of Z", the map S will not be one-to-one, but instead a many-to-one
map. This implies that different real-valued ambiguity vectors will be mapped to the
same integer vector. One can therefore assign a subset S; C R" to each integer Yector
z€E ™
S:={zeR"|z=8(z)}, ze2Z" (1)
The subset S, contains all real-valued ambiguity vectors that will be mapped by S to
the same integer vector z € Z™. This subset is referred to as the pull-in region of z.
It is the region in which all ambiguity 'float’ solutions are pulled to the same 'fixed’
ambiguity vector z. Using the pull-in regions, one can give an explicit expression for
the corresponding integer ambiguity estimator. It reads
d= ) zs,(a) with the indicator function s,(a) = (2)
z€Z"

1 if ae s,
0 otherwise

Since the pull-in regions define the integer estimator completely, one can define classes
of integer estimators by imposing various conditions on the pull-in regions. In (1] we
definéd one such class, which we called the class of admissible integer estimators. These
integer estimators are defined as follows.

Definition
The integer estimator @ = ¥, ¢z 25.(a) is said to be admissible if

(i) U:EZ" Sg = Rﬂ
(1) intS, NintS,, =0, Vz,2, € 2%, 21 # =
(i) S, =z+S, Vze€ 2"

The first two conditions of the definition state that the pull-in regions of admissible
integer estimators need to cover the whole space R™ without gaps and overlaps. The
last condition states that the pull-in regions need to be translated copies of one another.
In the following we will single out two particular integer estimators, namely the integer

‘bootstrapped estimator and the integer least-squares estimator.

2.2 The bootstrapped pull-in region

The bootstrapped estimator follows from a sequential conditional least- squares ad-
justment and it is computed as follows. If n ambiguities are available, one starts with
the first ambiguity @, and rounds its value to the nearest integer. Having obtained the
integer value of this first ambiguity, the real-valued estimates of all remaining ambi-
guities are then corrected by virtue of their correlation with the first ambiguity. Then



the second, but now corrected, real-valued ambiguity estimate is rounded (o its nearcst
integer. Having obtamed the integer value of the second ambiguity, the real-valued
estimates of all remaining n — 2 ambiguities are then again corrected, but now by
virtne of their correlation with the second ammbiguity. This process is continued until
all ambiguities are considered. The components of the bootstrapped estimator ay are
given as

gy = |4 ,
apz = lwp) = [a2 = 04,4,05 (@) — dpy))

. B (3)
Gy = [‘1rf|N] = [‘:"n - ::1] Uﬁné.”U;'.ﬁ. (&ill - ﬁB.iJ]

where the shorthand notation a,; stands for the ith least-squares ambiguity obtained
through a conditioning on the previous / = {1,..., (i — 1)} sequentially rounded am-
biguities, '[.]' denotes the operation of integer rounding, and 0aa; and o}, denote re-
spectively the ambiguity covariance and ambiguity variance.

The bootstrapped estimator is admissible. The first two conditions of the definition
. are satisfied, since - apart from ties in rounding - any 'float’ solution gets mapped to a
unique integer ambiguity vector, Also the third condition of the definition applies. To
see this, let @)z be the bootstrapped estimator which corresponds with &' = @ — z. It
follows then from (3) that dép = aj + z.

The real-valued sequential conditional least-squares solution can be obtained by
means of the triangular decomposition of the ambiguity variance-covariance matrix.
Let the triangular decomposition of the variance-covariance matrix be given as Q; =
LDLT, with L a unit lower triangular matrix and D a diagonal matrix. Then (@ —z) =
L(a® — z), where @° denotes the conditional least-squares solution obtained from a
sequential conditioning on the entries of z. The variance-covariance matrix of a¢ is
given by the diagonal matrix D. This shows, when a componentwise rounding is
applied to @°, that z is the integer solution of the bootstrapped method. Thus dp
satisfies [L™'(& — @p)] = 0. Hence, if ¢; denotes the ith canonical unit vector having a
1 as its ith entry, the bootstrapped pull-in regions Sg . follow as

Spe=nifz € R || IL @ 2)|< 3}, V2 € 2" )

2.3 The least-squares pull-in region

The integer least-squares estimator is defined as

aps = argmin || @ - 2 12 (5)
where || . |I3,= ()7Qz'(.) and Qa is the ambiguity variance-covariance matrix of the

"float’ solution. This ambiguity estimator was first introduced [2]. Also this estimator
is admissible. Apart from boundary ties, it produces a unique integer vector for any
float’ solution & € R". And since drs = argmin,ez» || & —u — z |3, +u holds true for
any integer vector u, also the third condition of the definition applies.

It follows from (5) that the 'float’ solutions & € R™ which are mapped to the same
integer vector @rs are those that lie closer to this integer vector than to any other
integer vector z € Z". Hence, the integer least-squares pull-in regions are given as

Siss = {:::GR"H|$-Z||2Q‘5 [|..T.—u||z-“,a , Yue Z"} ,Vz € Z" (6)
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These pull-in regions can also be represented in a way that looks more like the rep-
resentation of the bootstrapped pull-in regions (4). The integer least-squares pull-in
regions Sy 5. consist of intersecting hall-spaces, cach one of which is bounded by the
plane orthogonal to (¢ — 2),¢ € Z" and passing through the mid-point %(z + ¢). Here,
orthogonality is taken with respect to the metric as defined by the ambiguity variance-
covariance matrix. Since a lies in one'of these half-spaces when the length of the
orthogonal projection of (@ — z) onto (¢ — z) is less than or equal to half the distance
between ¢ and z, it follows that

Sise = Neern{z € B*| | TQ (2 2) 1< 5 | cll},}, V2 € 2" (7)

Upon comparing (4) and (7), we note that the two pull-in regions become identical
when the ambiguity variance-covariance matrix is diagonal. Hence, the two integer
estimators @z and @, are the same when no correlation exists between the ambiguities
of the 'float’ solution. The two estimators are also indentical when all matrix entries of
the triangular factor L are integer. This is the case when L is an admissible ambiguity
transformation [3]. In that case we have d,5 = a5 = L{L~'a).

2.4 Integer least-squares is optimal

So far, we introduced a class of admissible integer estimators and discussed two of
its members. We thus now have a variety of reasonable integer estimators available.
The question which comes up next is which of these estimators to choose? Does there
exist an estimator which one can single out as being the 'best’'? And how do we
want to define the qualification "best’? The approach that will be followed here is
a probabilistic one. That is, we will use the probability distribution of the integer
estimator for determining which estimator is optimal. Since the integer estimator a is

- by definition of the discrete type, its distribution will be a probability mass function
(pmf). It will be denoted as P(d@ = z), with z € Z". In order to determine this
distribution, one first needs the probability density function (pdf) of @ The pdf of @
will be denoted as py(z), with z € R™. The subscript is used to show that the pdf still
depends on the unknown ambiguity vector a € Z".

The pmf of @ can now be obtained as follows. Since the integer estimator is defined
asd =2 <& ac€S,itfollowsthat P(a = z) = P(a € S,;). The pmf of a follows
therefore as

Pla=2z)= fs pe(z)dz , Y2z € 2" (8)

The probability that @ coincides with z is therefore given by the integral of the pdf
Pa(z) over the pull-in region S; C R". The pmf of @ can be used to study various
properties of the integer estimator. Of the pmf (8), the probability of correct integer
estimation, P(a@ = a), is particularly of interest for GPS. It describes the frequency
with which one can expect to have a successful ambiguity resolution. This probability
is also referred to as the ambiguity success- rate. In the case of GPS one usually requires
a very high success-rate, the rationale being that if P(a = a) is sufficiently close to 1,
then @ may be treated as being deterministic and consequently all carrier phase data
will start to act as if they were very precise pseudo range data. The following theorem
states that the integer least-squares estimator obtains the largest success-rate of all
admissible integer estimators. This theorem is due to the author and was proven in

(1).
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Theorem (Optimnality of imteger least-squares)
Let the integer least-squares estimator be givenr as

oy = arg min || a - 2 |3,

and let the pdf of @ belong to the family of elliptically contoured distributions,

ma(z) = Vdet(Qz)G(ll = — @ II3,)

where G : R [0, cc) is nonincreasing and Q; is positive-definite. Then
Plavs = a) > P(a =a) (9)

for any admissible estimator a.

From this theorem it follows that d.s is better than the bootstrapped estimator
ag. Thus
P(ap = a) < P(aLs = a) (10)

A very useful application of this result is that it shows how one can lower bound the
probability of correct integer least-squares cstimation. This is particularly useful since
the probability P(ap = a) can be computed exactly and rather easily in case the pdf
Pa(z) is normal. As shown in [4], it can be computed as

p 1 = 1 1,
Plip =a) = 2¢(——) -1 ith ®(z) = " ——v?}d 11
s =a) =11 (28055 -1) with 0@) = [ Zemp(-g2dan (1)
Note that this probability is driven by the ambiguity conditional variances 03‘“. In the

next section we will consider upperbounds of respectively P(ép = @) and P(a.s = a),
both of which are also driven by these conditional variances.

3. THE ADOP BASED UPPERBOUNDS

Various ways of evaluating or approximating the ambiguity success-rate are given in
[5]. In this section we will give two upperbounds of the succes-rate, both based on the
ADOP (Ambiguity Dilution of Precision). The bootstrapped upperbound has been
used in [4] and [6], and the least-squares upperbound in [7] and [8]. We also give a
proof of the ADOP-based integer least-squares upperbound, since no such proof has
vet been given. ' '

3.1 The ADOP
The ADOP is defined as

ADOP = \/det.Q&{'L (cg,f-cle_) (12)

The ADOP was introduced in [9] and it has the following properties [10]. It is invariant
for the class of admissible ambiguity transformations. Thus the same ADOP-value is
obtained, irrespective of which satellite is chosen as reference in the DD definition of the
ambiguities. Similarly, the same ADOP-value is also obtained when one uses, instead
of the original variance matrix, the variance matrix of the transformed ambiguities, as
produced by the LAMBDA method. For more information on the LAMBDA method
and its applications, we refer to e.g. [11-18]. ;
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~ When the ambiguities are completely decorrelated, the ADOP equals the geometric
mean of the standard deviations of the ambiguities. This follows from det(Qz) =

Tl J%iil('i“t,{,), where Ry is the ambiguity correlation matrix. Since the LAMBDA
method produces ambiguities that are largely decorrelated, the ADOP approximates
the average precision of the transformed ambiguities.

Different approaches can be used for computing the ADOP. First, one ay use the
variance matrix of the original DD ambiguities or the variance matrix of the LAMBDA-
transformed ambiguities. Second, for computing the determinant, one may use eigen-
values, conditional variances or, if applicable, the analytical closed forin expressions as
given in [19]. :

When the cigenvalues \;, of the ambiguity variance matrix are used, we have

ADOP =[] A (13)
i=1

Instead of working with eigenvalues, a cheaper way would be to make use of the con-
ditional variances. This approach is based on using a triangular decomposition or a
Cholesky decomposition of the ambiguity variance matrix or its inverse. The entries of
the diagonal matrix D in the LDLT decomposition of the variance matrix are the se-
quential conditional variances of the ambiguities. Since the determinant of the diagonal
matrix D equals the determinant of the variance matrix, the ADOP becomes

T ik
ADOP = H LA (14)
The conditional variances agl,“ are usually already available or otherwise very cheap to
come by. They are available when the search for the integer least-squares ambiguities
is based on a sequential conditional least-squares adjustment, as it is the case with the
LAMBDA method. Alternatively, they can be obtained from the Cholesky decompo-
sition (note: when solving least-squares problems, the Cholesky decomposition of the
inverse of the variance matrix is usually already available).

3.2 The ADOP-based integer least-squares upperbound

The following result shows how the ADOP can be used to upper bound the success-rate
of the integer least-squares estimator.

Corollary 1
The integer least-squares ambiguity success-rate is bounded from above as

Plars=a)< P (Xf; < 'AD_CE)F‘-) (15)

in which x2 has a central Chi-square distribution with n degrees of freedom, ¢, =
(3T'(%))*™ /7 and T' denotes the gamma-function.

Proof
In order to prove (15) we will make use of the following result [20, p. 265]. The region

Q={z€eR"|F(z)>2 A} CR" with F: R" = R (16)

where X is chosen to satisfy the constraint J, dz = 1, maximizes o F'(z)dz. In order to
apply this result, recall that the integer least-squares success-rate is given as P(ars =



a) = [q,., f(x)dz, with f(z) the pdf of N(e,Q;) and Sps, the integer least-squares
pull-in region, which has volume f_‘,-m. dz = 1. Since a larger valuc of the integral
Js,s., J(x)dz can be obtained when we allow regions of integration of volume 1 other
than Sy sa, we have

Plars =a) < m{z}x/ﬂ f(z)dz such that fndz =] (17)

In order to solve the right-hand side of the inequality, we now apply (16) for F(z) =
J(z). As a result we obtain the ellipsoidal region

Qu) = {z € R" ||| = - a ||, < u=—2In (A(V27ADOP)")} (18)

Since the volume of this region cquals (;“:)?ADOP", it follows that p needs to be
chosen as &
"= ADOP? (19)
in order to have a volume equal to 1. Combining (18) and (19) with (17), and recog-
nizing that the quadratic form || z —a ||3, is distributed as x2, since z ~ N(a, Q;), the
result (15) follows.

End of proof

Note that the inequality of (15) becomes an equality when only a single ambigu-
ity is considered, n = 1. The above upperbound is attractive since it is so easy to
compute and since it is invariant for the admissible ambiguity transformations that
might have been applied to the variance-covariance matrix of the ambiguities. Being
an upperbound however, it can not be used to infer whether ambiguity resolution will
be successful. For this one wou)d need the success-rate itself or a sharp lowerbound of
it, like the one given in (10). The upperbound, when small enough, can only be used
to decide upon the unreliability of ambiguity resolution.

3.3 The ADOP-based integer bootstrapped upperbound
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-Another ADOP-based upperbound is the one which holds true for the bootstrapped

success-rate. [t was introduced in [4] and reads

. 1 P

Plas =) < (22 (33p0p) ~ 1) (20)
The validity of this upperbound can be understood as follows. Note that the success-
rate P(ap = a) equals the integral of a normal distribution over an n-dimensional
box. When the side lengths of the box are taken equal to the reciprocal values of the
sequential conditional standard deviations, the normal distribution takes its standard
form of having zero mean and a unit variance-covariance matrix. This implies, if we
vary the side lengths but constrain the volume of the box to be constant, that this
probability reaches its maximum for a box having all side lengths equal. Since this
box must have the same volume as the original box, its side lengths are all equal to
the geometric average of the reciprocal sequential conditional standard deviations and
thus equal to the reciprocal value of the ADOP.

Note that a distinct difference between the upperbound (20) and the previous one
is that the bootstrapped upperbound becomes identical to the success-rate itself when
all ambiguities are completely decorrelated. This suggests that the bootstrapped up-
perbound will be smaller than or at the most equal to the least-squares upperbound.
That this is indeed true is shown in the following corollary.
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Corollary 2
The bootstrapped upperbound is smaller than or at the most l.:qlld.l to the least-squares

upperbound,
(21» (—1—-—) - [) <P (\ £ ) (21)
2ADOP - "= ADOP

Proof

The proof of (21) parallels the one of the previous corollary. Let the random n-vector
v he distributed as » ~ N(0, ADOP?1,) and let By C R* denote the unit-box By =
{zeR"||xi|< §.i=1,...,n}..Then

P(v e By) = /B g(z)dz = (2¢ (ﬁ-—é—fﬁ;) - 1) and fu dr =1

in which g(x) denotes the pdf of v. Since a larger value of the integral [, g¢(z)dz can
be obtained when By is replaced by a suitable chosen region 2 of volume 1, we have

P < B , s 2 =
(v € By) < ng;/ﬂg(r)d:r such that fﬂd:r 1

In order to solve the right-hand side of the inequality, we now apply (16) for F(z) =
g(z). Once this has been worked out, analogous to the proof of r.he previous corollary,

the result (21) follows.

End of proof
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