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ABSTRACT
In developing new (Galileo) or modernized (GPS)
Global Navigation Satellite Systems (GNSS), several
design parameters are distinguished that contribute to
fast carrier phase ambiguity resolution, and thus also to
precise positioning in (near) real-time. Ambiguity
resolution can amongst others be influenced by varying
the precision of the observables and the number and
spacing of the navigation frequencies.
In this study, the ambiguity resolution success rate,
being the probability of estimating ambiguities at their
correct integer values, will be defined and discussed.
As will be demonstrated, the success-rate can serve as a
design tool to infer the value of the system design
parameters for ambiguity resolution.

1. INTRODUCTION

In the daily practice of GNSS ambiguity resolution, the
resolved integer ambiguities are usually treated as
deterministic variates. Strictly speaking this is
incorrect, since the resolved ambiguities are functions
of the stochastic data and therefore stochastic variates
as well. Hence, a prerequisite for treating the resolved
ambiguities deterministically, is that one verifies
whether or not the probability mass function of the
estimated integer ambiguities is sufficiently peaked. In
particular one should verify explicitly whether the
probability of correct integer estimation, the success
rate, is sufficiently close to one. One can not expect to

have a reliable ambiguity resolution when this
probability differs too much from one.
In this contribution, the expected performance of long
range ambiguity resolution based on the geometry-free
GNSS model is analyzed. The ambiguity success rate
of the LAMBDA method is used to measure this
performance. The dependence of the success rate on the
number and spacing of the navigation frequencies is
particularly emphasized.

2. THE LAMBDA METHOD

2.1 The observation equations
The GNSS models on which ambiguity resolution is
based, can all be cast in the following conceptual frame
of linear(ized) observation equations

y Aa Bb e= + + (2.1)

where y is the given GNSS data vector, a and b are the
unknown parameter vectors of order n and o
respectively, and where e is the noise vector of order m.
The matrices A and B are the corresponding design
matrices of order m×n and m×o respectively. The data
vector y will usually consist of the ‘observed minus
computed’ single- or dual-frequency double-
differenced (DD) phase and/or pseudo range (code)
observations, accumulated over all observation epochs.
The entries of vector a are then the DD carrier phase
ambiguities, expressed in units of cycles rather than
range. They are known to be integers. The entries of
vector b will consist of the remaining unknown
parameters, such as for instance baseline components
(coordinates) and possibly atmospheric delay
parameters (troposphere, ionosphere).
The procedure which is usually followed for solving
the above model can be divided into three steps [for
more details we refer to e.g. Teunissen (1993), de
Jonge and Tiberius (1996), or to the textbooks
Hofmann-Wellenhof et al. (1997), Strang and Borre
(1997) and Teunissen and Kleusberg (1998)]:



• In the first step one simply disregards the integer
constraints on the ambiguities and performs a
standard adjustment. As a result one obtains the
(real-valued) least-squares estimates of a and b,
together with their variance-covariance (vc-) matrix
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     This solution is often referred to as the ‘float’
solution.

• In the second step the ‘float’ ambiguity estimate â is
used to compute the corresponding integer
ambiguity estimate 

(
a . This implies that a mapping

F: Rn→Zn, from the n-dimensional space of reals to
the n-dimensionsal space of integers, is introduced
such that

     
(
a F a= ( $) (2.3)

• Once the integer ambiguities are computed, they are
used in the third step to finally correct the ‘float’
estimate of b. As a result one obtains the ‘fixed’
solution
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     This expression shows how the residual ( $ )a a− (  is
used to adjust the ‘float’ solution so as to obtain the
final ‘fixed’ solution.

2.2 The precision of the solution
It is the purpose of ambiguity resolution to improve
significantly upon the precision of the estimated
parameters by means of the integer ambiguity
constraints. This is the essence of ambiguity resolution.
That is, ambiguity resolution only makes sense when

the precision of the ‘fixed’ solution 
(
b is significantly

better than that of the corresponding ‘float’ solution $b .
In order to obtain the vc-matrix of the ‘fixed’ solution
(
b , one needs to apply the error propagation law to Eq.
(2.4). While doing so, one needs to recognize that not

only the real-valued vectors â and $b  are random, but
the integer vector 

(
a  as well. Hence, all three vectors

will contribute to the vc-matrix of the ‘fixed’ solution.
As shown in Teunissen (1998a) the resulting vc-matrix
of Eq. (2.4) reads
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in which Qa
(  denotes the vc-matrix of the integer

ambiguity estimator. The first term on the right hand

side captures the contribution of â and $b , while the
second term captures the contribution of 

(
a . In

practice, this second term is usually neglected. As a
result the vc-matrix of the ‘fixed’ solution is

approximated by the first term, which indeed is smaller
than the vc-matrix of the original ‘float’ solution.

2.3 The ambiguity success rate
It will be clear that the first term of Eq. (2.5) only
provides a good approximation to the vc-matrix of the
‘fixed’ solution, when Qa

(  is sufficiently small. For this

to be the case the probability distribution of the integer
ambiguity estimator needs to be sufficiently peaked.
This distribution, which is a probability mass function,
will be sufficiently peaked when the probability of
correct integer estimation, the success rate, is
sufficiently close to one. That is, when

P a a( )
( = = −1 ε εwith small (2.6)

It is thus of importance that one is able to check
whether Eq. (2.6) is valid or not. Only then will one be
allowed to assume safely that the integer ambiguity
estimator is sufficiently nonrandom. And only then can
one expect the first term of Eq. (2.5) to give an
adequate description of the precision characteristics of
the ‘fixed’ solution.
The probability of correct integer ambiguity estimation
depends on the probability distribution of â and on the
chosen integer map F: Rn→Zn. We will assume that the
‘float’ solution is unbiased and normally (Gaussian)
distributed. Thus

$ ~ ( , )$a N a Qa (2.7)

This will be the case when the zero mean noise vector e
is normally distributed and the ‘float’ solution is
obtained by means of a least-squares adjustment.
For the integer map F: Rn→Zn of Eq. (2.3) one has a
variety of options available. Every map which turns a
real vector into an integer vector could be chosen in
principle. In Teunissen (1998b) a whole class of
unbiased integer ambiguity estimators is introduced.
Members from this class are the ambiguity estimators
that follow from ‘integer rounding’, ‘integer
bootstrapping’ or ‘integer least-squares’. From a
computational point of view, ‘integer rounding’
provides the simplest estimator, while ‘integer least-
squares’ is more complex.

2.4 Integer least-squares
Ambiguity resolution based on integer least-squares
was first introduced in (Teunissen, 1993), and is made
operational in the Least-squares AMBiguity
Decorrelation Adjustment or LAMBDA-method.
Although more complex than the simple integer
rounding principle, integer least-squares has a superior
performance in the sense that it maximizes the
probability of estimating ambiguities at their correct
integer values, (Teunissen, 1999). In other words, of all
possible integer estimation techniques, integer least-
squares will yield the highest possible ambiguity
success rates. The probability mass function of the
integer least-squares ambiguity estimator, and ways of



computing the corresponding ambiguity success rates,
are given in Teunissen (1998c,d) and the references
cited therein.
Starting point for the integer least-squares ambiguity
estimation with the LAMBDA-method is an ordinary
least-squares adjustment of the GNSS observations.
The constraining of the resulting real-valued ambiguity
estimates to integers can then be phrased in terms of the
following minimization problem

min ( $ ) ( $ ),$

a

T
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na a Q a a  a Z− − ∈−1 with  (2.8)

This minimization problem defines the integer map F:
Rn→Zn of Eq. (2.3) implicitly. The integer least-squares
solution 

(
a is the integer vector nearest to the float

solution, where nearness is measured in the metric of
the vc-matrix of the float solution. If this matrix were to
be a diagonal matrix and the least-squares ambiguity
estimates thus uncorrelated, the integer solution could
be determined by a simple rounding of the entries of â.
For GNSS observations however, the estimates are
usually highly correlated, and the integer solution has
to be identified by a discrete search in a subspace of

Z n , the integer ambiguity search space.
The search for the solution of the integer least-squares
minimization problem is hampered by the strong
correlation and poor precision of the (real-valued)
least-squares ambiguity estimates. To improve the
computational efficiency of the discrete search, the
LAMBDA method therefore employs a decorrelating
Z-transformation. This Z-transformation manages to
retain the integer character of the minimization problem
whilst at the same time lowers the correlation and
improves the precision of the transformed ambiguity
estimates. The transformed search space allows a
relatively easy identification of the integer least-squares
solution, as it has a more sphere-like shape. For a
detailed description of both the search and the
construction of the Z-transformation, the reader is
referred to (de Jonge and Tiberius, 1996).
Summarizing, the LAMBDA-method is applicable to
any model in which integer parameters appear. The
method produces an optimal integer ambiguity solution
by means of efficiently solving the integer least-squares
problem through the use of a decorrelation process. At
present the method is already widely used for various
single- and dual-frequency GPS processing
applications. The method is however also applicable
and suitable for a three (or more) carrier system. It is
therefore applicable to the modernized GPS and to the
Galileo system, without any modifications to the
method at all, see (Joosten et al.,1999). In the
remaining part of this contribution the method will be
used to study the frequency dependence of the
geometry-free ambiguity success rates. Previous studies
on this subject can be found in amongst others (Hatch,
1996), (Forsell et al.,1997), (Vollath et al., 1998),
(Ericson, 1999) and (Han and Rizos, 1999).

3. THE GEOMETRY-FREE GNSS MODEL

The geometry-free model is the simplest possible
mathematical model for the adjustment of GNSS
observations that still allows the estimation of integer
carrier phase ambiguities, see e.g. (Hatch, 1982),
(Euler and Goad, 1990), (Teunissen, 1996). In its most
basic form, the model consists of the DD pseudo range
(code) and carrier phase observations of two receivers
to two satellites, parametrized in terms of an unknown
DD satellite-receiver range, unknown integer
ambiguities and an unknown ionospheric delay
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where φ and p indicate the carrier phase and pseudo
range observations in units of range rather than cycles,
ρ, a and I denote the unknown range, the integer phase
ambiguity and the ionospheric delay, λ denotes the
known wavelength of the carrier, i refers to the time
epoch and α ranges from one to two, or from one to
three, depending on whether a dual-frequency or triple-
frequency system is used.
Note, due to the parametrization in terms of the DD
ranges, that no linearization is required for the above
observation equations. The absence of the receiver-
satellite geometry also implies that the model permits
both receivers to be either stationary or moving.
Furthermore, the parametrization in terms of the DD
ranges implies that the tropospheric delays need not be
modelled explicitly. When present, these delays will get
lumped with the DD ranges. Hence the estimated
ambiguities will always be free from tropospheric
biases.
In the following it will be assumed that the ‘float’
solution of the above model is obtained in a standard
least-squares sense. The ambiguities are considered to
be time-invariant for the duration of the observation
period. We also assume that time correlation and cross
correlation are absent. Unless otherwise stated, the
undifferenced variances of the carrier phase and pseudo
range (code) observations are chosen as σφ

2=(3mm)2

and σp
2=(30cm)2.

3.1 Dual-frequency analysis

As a preparation for our analysis of the triple-frequency
GNSS geometry-free model, we will first study the
dual-frequency ambiguity success rate and its
dependence on a varying second frequency f2=c/λ2,
whilst the first frequency is kept fixed to the GPS L1
frequency. This is shown in figure 3-1. A number of
remarks are in order. First note that the success rate
fails to exceed the very small value of 0.025 within the
frequency range of [1000(Mhz), 2000(Mhz)]. This
stipulates the poor performance of instantaneous dual-
frequency ambiguity resolution for long distances,
distances for which the ionospheric delays are unknown



(ionosphere-float). In these cases one can not expect
dual-frequency ambiguity resolution to be successful.
The figure also shows that the success rate reaches its
minimum when f2=f1 and that the success rate gets
larger when the frequency separation gets larger. This
contradicts the popular belief that ambiguity resolution
would benefit from choosing frequencies close
together. It is of course still true that frequencies with
little separation would allow one to construct a wide-
lane with a corresponding very large wavelength.
However, as the figure shows this turns out to be
counterproductive as far as the overall success rate is
concerned. In fact, as the figure shows, the success rate
will be identical to zero when the two frequencies
coincide. This is understandable when one recognizes
that a nonzero frequency separation is needed per se in
order to be able to estimate the ionospheric delays.
When the two frequencies coincide, the ionospheric
delays become non-estimable and the vc-matrix of the
ambiguities becomes singular. As a consequence, the
success rate reduces to zero.
Finally note that the success rates are somewhat larger
at the lower end of the spectrum than at the higher end
of the spectrum. This effect is due to the assumed
frequency independence of the measurement precision.
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Figure 3-1: The single epoch, ionosphere-float, dual-
frequency ambiguity success rate as function of the
second frequency in MHz.

In the actual practice of GNSS there are still many who,
for inferring the quality of ambiguity resolution, base
their judgement on the precision of the ambiguities.
That this approach should be avoided and that the
success rate itself should be used as the quality
indicator for ambiguity resolution, is made clear by
figure 3-2. This figure shows the precision of the
ambiguities. The top graph shows the standard
deviations of the two DD ambiguities, while the lower
graph shows the standard deviations of the two
LAMBDA transformed ambiguities. The two graphs
clearly differ. In the DD case the two curves (almost)
coincide, while in the transformed case the two curves
show a distinct difference. This emphasizes the fact that
these standard deviations are dependent on the chosen
ambiguity parametrization. Hence, they should not be
used to judge the quality of ambiguity resolution. Only
the least-squares success rate provides an objective
measure, as it is independent of the chosen ambiguity
parametrization.

In case the ambiguities would be uncorrelated, the
signature of their precision curves can be used to
explain the shape of the success rate curve. To a good
approximation this also applies to the LAMBDA
transformed ambiguities. Of the two transformed
ambiguities, one is of excellent precision while the
other is of poor precision. Since these two ambiguities
are (almost) decorrelated, the signature of the precision
curve of the poorly determined ambiguity will
dominate the shape of the success rate curve. Compare
figure 3-2 with figure 3-1.
Finally note from a comparison of the two graphs of
figure 3-2 that although the ambiguity vc-matrix is
singular in case the two frequencies coincide, there still
exists an estimable integer ambiguity. Although the
standard deviations of the two DD ambiguities are both
infinite in this case, the standard deviation of one of the
two transformed ambiguities is still very small. This is
due to the fact that the difference of the two DD
ambiguities can still be estimated very precisely from
the phase data, in case the two frequencies coincide.
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Figure 3-2: The single epoch, ionosphere float, dual-
frequency, ambiguity standard deviations (cycles) as
function of the second frequency (MHz). The top graph
shows the precision of the two DD ambiguities, while
the lower graph shows the precision of the two
LAMBDA transformed ambiguities.

3.2 Triple-frequency analysis

We will now continue with the triple-frequency
analysis. Figure 3-3 shows the single epoch, ionosphere
float, triple frequency, ambiguity success rate as
function of a varying third frequency. The first two
frequencies were fixed at the GPS L1 and L2 values.
When compared to figure 3-1, the figure shows that the
addition of a third frequency indeed improves the
success rate. The maximum value is a factor of about
10 larger. The success rates however, are still too small
for single epoch ambiguity resolution to be successful.



This shows that instantaneous ambiguity resolution,
when based on the geometry-free model, will remain
impossible for long ranges, even when a third
frequency is included.
Note that the success rate obtains its smallest values
when the third frequency is identical to either the L1 or
the L2 frequency. These two minima are however not
equal to zero as is the case when only two frequencies
are used. Since not all three frequencies are identical at
these two minima, the ionospheric delays can still be
estimated. As a result, the success rate does not drop to
zero. Also note that the two minima are of the same
order as the dual-frequency success rates. Finally note,
as was the case with two frequencies, that improved
ambiguity resolution performance is achieved if the
third frequency is located as far away as possible from
the two other frequencies.
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Figure 3-3: The single epoch, ionosphere-float, triple-
frequency ambiguity success rate as function of the
third frequency. The first two frequencies are fixed at
the GPS L1 and L2 values. The dashed vertical lines
indicate the current L1- and L2-frequency, as well as
the chosen third GPS frequency.

In order to explain the signature of the success rate
curve of figure 3-3, we will now consider the precision
with which the ambiguities can be estimated. As was
explained in the previous section, information on the
standard deviations of the DD ambiguities is generally
not sufficient to diagnose whether or not ambiguity
resolution will be successful. Due to the decorrelation
process applied, the precision curves of the
transformed ambiguities however do give an
explanation for the typical shape of the success rate
curve. These precision curves are shown in figure 3-4.
The lower graph of figure 3-4 shows the precision
curves of the three transformed ambiguities. Two of
these ambiguities are shown to have a (relatively) high
precision, while the third ambiguity has a very poor
precision. It is therefore the signature of this third
precision curve which dominates the shape of the
triple-frequency ambiguity success rate. Compare
figure 3-4 with 3-3.
The minima and maxima of the three precision curves
in the lower graph can be explained as follows. When
f3=f1, the difference between the third and first DD
ambiguity can be determined very precisely from the
carrier phase data as a31=φ31/λ1. Similarly, when f3=f2

and a31 is known, the difference between the second

and first DD ambiguity can be determined very
precisely from the carrier phase data as a21=φ32/λ2. This
explains the two minima in the two lower precision
curves of figure 3-4. However, in either case f3=f1 or
f3=f2, no phase-only solution exists for the first DD
ambiguity when both a31 and a21 are known. This
explains the two maxima of the third precision curve.
In this case it is the poor precision of the code data that
dominates the standard deviation.
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Figure 3-4: The single epoch, ionosphere float, triple-
frequency, ambiguity standard deviations (cycles) as
function of the third frequency (MHz). The top graph
shows the (almost coinciding) precision of the three
DD ambiguities, while the lower graph shows the
precision of the three LAMBDA transformed
ambiguities.

4. MORE EPOCHS AND BETTER PRECISION

So far the triple-frequency results were presented for a
single epoch and for a fixed set of measurement
precision values. In this final section we will show how
the triple-frequency success rates change when some of
these assumptions are changed.
Figure 4-1 shows the triple-frequency success rate
curves for three different values of the undifferenced
pseudo range standard deviations. As the figure shows,
the success rates get larger when the pseudo range
precision improves. These improvements however, are
still far away from what is needed for instantaneous
ambiguity resolution to be successful.
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Figure 4-1: Single epoch, ionosphere-float, triple-
frequency success rates for undifferenced pseudo range
(code) standard deviations of 10, 15 and 30 cm and a
fixed undifferenced carrier phase standard deviation of
3 mm.

Figure 4-2 again shows three triple-frequency success
rate curves for the same pseudo range standard
deviations as above, but now for an undifferenced
carrier phase standard deviation fixed in cycles, namely
0.014 cycles. This implies, when expressed in range
rather than cycles, that the carrier phase standard
deviations will become dependent on the frequencies.
Although this difference can be seen when comparing
figures 4-1 and 4-2, it does not affect the conclusion
that successful instantaneous long range ambiguity
resolution is problematic.
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Figure 4-2: Single epoch, ionosphere-float, triple-
frequency success rates for undifferenced pseudo range
(code) standard deviations of 10, 15 and 30 cm and
undifferenced carrier phase standard deviations of
0.014 cycles.

Knowing that geometry-free, instantaneous long range
ambiguity resolution remains problematic, even when
using three frequencies, it is of interest to know how
many epochs are required to push the success rate
sufficiently close to the ideal value of one. This is
shown in figure 4-3. This result shows that quite some
epochs are needed in order to get sufficiently high
success rates. For the chosen three frequencies of
modernized GPS this boils down to respectively 310,
440 or 760 epochs needed to obtain success rates of
90%, 95% or 99%.
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Figure 4-3: Ionosphere-float, triple-frequency success
rates for some different number of epochs. The
undifferenced pseudo range (code) and carrier phase
standard deviations were set at 30 cm and 3 mm.

Although all our triple-frequency results were
presented with two of the frequencies fixed at the
current GPS L1- and L2-frequencies, the results also
shed light on the expected performance of the proposed
Galileo system. In the Galileo (GNSS-2) frequency
scheme, one of the frequencies is located near the GPS
L2 frequency, while the two other frequencies are both
located very close to the GPS L1 frequency. This fact
combined with the observation that frequency
separation plays such a dominant role in ambiguity
resolution, leads to the conclusion that the geometry-
free, ambiguity success rates of Galileo will be smaller
than those of the modernized GPS. This conclusion
only holds true of course under the assumption that all
design parameters, other than the three frequencies, are
set at the same values for both Galileo and the
modernized GPS.
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