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Abstract

The dilution of precision terms for relative positioning as de�ned in [1], are bounded from

above by the corresponding dilution of precision terms for point positioning. In [1], this result

is proven for the case of four satellites and conjectured to be valid for the case of more than

four satellites. A proof of this conjecture is given. We also extend the result by giving two
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di�erent lower bounds for the dilution of precision terms. The �rst lower bound depends on the

receiver-satellite geometry, whereas the second does not. The proof of the bounds is based on

the solution of a generalized eigenvalue problem.

1 Introduction

Double-di�erence processing of the NAVSTAR/Global Positioning System (GPS) satellite sig-

nals has been employed by the surveying and geodetic community for some time [2]. In analogy

with HDOP and VDOP, the horizontal and vertical dilution of precision terms of point posi-

tioning, Nielsen [1] introduces corresponding DOP-terms for relative positioning using double

di�erences and demonstrates for the four-satellite case that his DOP-values for relative posi-

tioning are bounded from above by the corresponding DOP-values of point positioning. In this

contribution we extend Nielsen's result to an arbitrary number of satellites. We also show how

the relevant DOP-values are bounded from below. This enables us to identify the condition for

which the two types of DOP-values coincide. Section 2 summarizes Nielsen's result and conjec-

ture, while Section 3 gives the solution of a generalized eigenvalue problem. It forms the basis

of our main result, which is stated and proven in Section 4.



2 Nielsen's Conjecture

Let (xi; yi; zi)
T be the unit direction vector between the ith satellite and the approximate receiver

location, and de�ne the two matrices

Am =

2
6666666666664

x1 y1 z1

x2 y2 z2

...
...

...

xm ym zm

3
7777777777775

; Dm =

2
6664
�Im�1

eTm�1

3
7775 (1)

where Im�1 denotes the unit matrix of order m�1 and em�1 denotes the vector which has all its

m�1 entries equal to one. Them�3 matrix Am captures the receiver-satellite geometry of them

satellites and the (m�1)�m matrix DT
m equals the di�erencing operator that transforms single-

di�erence measurements to double-di�erence measurements having satellitem as reference. Note

that the double-di�erence measurements are referenced to a common satellite. For Nielsen's

result to be valid, the need for such a common reference was already shown in [1].

The design matrix for point positioning is denoted as Hm and its counterpart for relative

positioning based on double-di�erence measurements is denoted as Gm. These two matrices are

given as

Hm = [Am; em] ; Gm = DT
mAm (2)

Since both matrices are assumed to be of full rank, we must have m � 4. For m = 4, Hm

corresponds with [1, eq.(4)] and Gm with [1, eq.(10)].

The dilution of precision terms for point positioning are de�ned as

HDOPm =
q
[HT

mHm]
�1
1;1 + [HT

mHm]
�1
2;2

VDOPm =
q
[HT

mHm]
�1
3;3

(3)



where [HT
mHm]

�1
i;i is the ith element on the main diagonal of [HT

mHm]
�1. The corresponding

dilution of precision terms for relative positioning are de�ned in [1] as

HDOPm;DD =
q
[GT

mGm]
�1
1;1 + [GT

mGm]
�1
2;2

VDOPm;DD =
q
[GT

mGm]
�1
3;3

(4)

where [GT
mGm]

�1
i;i is the ith element on the main diagonal of [GT

mGm]
�1.

The main result of [1] is the proof of the two inequalities

HDOPm;DD � HDOPm for m = 4

VDOPm;DD � VDOPm for m = 4

(5)

For m > 4 however, the two inequalities are conjectured to be true. In order to proof this

conjecture, we need to compare the two matrices [HT
mHm]

�1 and [GT
mGm]

�1. This will be done

in the next section by means of a generalized eigenvalue problem.

3 A Generalized Eigenvalue Problem

Since the two matrices [HT
mHm]

�1 and [GT
mGm]

�1 are of a di�erent order, respectively 4 and 3,

we �rst need to �nd an expression for the �rst three rows and columns of matrix [HT
mHm]

�1. It

is easily veri�ed that the inverse of

[HT
mHm] =

2
6664
AT
mAm AT

mem

eTmAm m

3
7775 (6)

is given as

[HT
mHm]

�1 =

2
6664

[F T
mFm]

�1 � 1

m
[F T
mFm]

�1AT
mem

� 1

m
eTmAm[F

T
mFm]

�1 1

m
+ 1

m2 e
T
mAm[F

T
mFm]

�1AT
mem

3
7775 (7)



where Fm = PmAm, with the orthogonal projector Pm = Im�
1

m
eme

T
m. Since the �rst three rows

and columns of [HT
mHm]

�1 are captured by the matrix [F T
mFm]

�1, the two dilution of precision

terms of (3) can be expressed in matrix Fm as

HDOPm =
q
[F T
mFm]

�1
1;1 + [F T

mFm]
�1
2;2

VDOPm =
q
[F T
mFm]

�1
3;3

(8)

Thus in order to compare the dilution of precision terms, we need to compare the two matrices

[F T
mFm]

�1 and [GT
mGm]

�1. This comparison can be based on the following generalized eigenvalue

problem.

Theorem

Let �i and fi, i = 1; 2; 3, be the eigenvalues resp. eigenvectors of the generalized eigenvalue

problem

[GT
mGm]

�1f = �[F T
mFm]

�1f (9)

Then 8>>>>>>><
>>>>>>>:

�1 = 1� 1

m
eTm�1PGmem�1 with f1 = GT

mem�1

�2 = �3 = 1 with f2; f3 ? [GT
mGm]

�1GT
mem�1

(10)

where PGm = Gm[G
T
mGm]

�1GT
m is the orthogonal projector that projects onto the range space

of Gm and along the null space of GT
m.

Proof

Since Pm projects along em and onto the orthogonal complement of em, which is the range space



of Dm, the projector can be represented in the following two ways

Pm = Im �
1

m
eme

T
m = Dm[D

T
mDm]

�1DT
m (11)

This shows, since Fm = PmAm and Gm = DT
mAm, that

F T
mFm = GT

m[D
T
mDm]

�1Gm (12)

From (1) it follows that DT
mDm = Im�1 + em�1e

T
m�1 and thus

[DT
mDm]

�1 = Im�1 �
1

m
em�1e

T
m�1 (13)

Substitution of (13) into (12) gives F T
mFm = GT

mGm �
1

m
GT
mem�1e

T
m�1Gm and after inversion

[F T
mFm]

�1 = [GT
mGm]

�1 +
[GT

mGm]
�1GT

mem�1e
T
m�1Gm[G

T
mGm]

�1

m� eTm�1PGmem�1
(14)

From substituting (14) into (9), the result (10) is now easily veri�ed.

4 The Main Result

We are now in a position to proof the conjecture of Nielsen and to give an extention by including

lower bounds on the dilution of precision terms as well. As a direct consequence of the above

theorem we have the following bounds for the Raleigh quotient

(1�
1

m
eTm�1PGmem�1) �

fT [GT
mGm]

�1f

fT [F T
mFm]

�1f
� 1 (15)

for all non-null f and m � 4. By choosing f respectively as f = (1; 0; 0)T , f = (0; 1; 0)T and

f = (0; 0; 1)T , it follows that

(1� 1

m
eTm�1PGmem�1)

P
2

i=1[F
T
mFm]

�1
i;i �

P
2

i=1[G
T
mGm]

�1
i;i �

P
2

i=1[F
T
mFm]

�1
i;i

(1� 1

m
eTm�1PGmem�1)[F

T
mFm]

�1
3;3 � [GT

mGm]
�1
3;3 � [F T

mFm]
�1
3;3

(16)



By taking the square-roots, the corresponding bounds for the horizontal and vertical dilution of

precision terms follow as

q
1� 1

m
eTm�1PGmem�1 HDOPm � HDOPm;DD � HDOPm

q
1� 1

m
eTm�1PGmem�1 VDOPm � VDOPm;DD � VDOPm

(17)

This result extends (5) in two ways. Apart from the upper bounds, lower bounds are now

included as well. Moreover, these bounds are not only valid for m = 4, but also for m > 4.

Note that HDOPm;DD = HDOPm and VDOPm;DD = VDOPm, when GT
mem�1 = 0. From

(1) and (2) it follows that this happens when

xm =
1

m� 1

m�1X
i=1

xi ; ym =
1

m� 1

m�1X
i=1

yi ; zm =
1

m� 1

m�1X
i=1

zi (18)

That is, when one of the m satellites is located at the 'center of gravity' of the receiver-satellite

con�guration.

The two lower bounds of (17) depend on the receiver-satellite geometry through the matrix

Gm. Lower bounds that are independent of this geometry can be given as well. Since the

eigenvalues of a projector are either 0 or 1, it follows that

0 �
eTm�1PGmem�1

eTm�1em�1
� 1 (19)

With eTm�1PGmem�1 � m� 1, the geometry independent bounds follow from (17) as

1p
m
HDOPm � HDOPm;DD � HDOPm

1p
m
VDOPm � VDOPm;DD � VDOPm

(20)

5 Conclusion

We have proven Nielsen's conjecture by showing that his dilution of precision terms for relative

positioning are also bounded from above by the corresponding dilution of precision terms for



point positioning when more than four satellites are tracked. This result was extended by giving

lower bounds as well. It was also shown that the two types of dilution of precision coincide when

one of the satellites is located at the 'center of gravity' of the receiver-satellite con�guration.
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