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ABSTRACT: This contribution introduces a class of integer ambiguity estimators which
are unbiased. The condition for unbiasedness is formulated and it is shown that this
condition is satisfied for three ambiguity estimators which are often used in GPS ambigu-
ity resolution. They are the ’rounding’ estimator, the ’bootstrapped’ estimator and the
least-squares estimator. The geometry underlying these three integer estimators is also
discussed and compared. .

1. INTRODUCTION

GPS ambiguity resolution is the process of resolving the unknown cycle ambiguities of
the double-difference (DD) carrier phase data as integers. Although the GPS research in
the last two decades or so resulted in a variety of different methods and proposals for am-
biguity resolution, the development of a rigorous theory for integer ambiguity estimation
and validation stayed somewhat behind. This can be seen when considering the pitfalls
that are present in some of the proposed procedures. For a discussion see [Teunissen,
1997).

Fortunately in the last five years or so, good progress has been made in developing
rigorous and efficient procedures for ambiguity estimation. There is however still some
work to do in the area of qualifying the stochastic properties of the integer ambiguities.
The purpose of this contribution is to focuss on one of these properties, namely the
expectation of the integer estimator. For that purpose we first introduce the many-to-
one map that defines an integer estimator. We then formulate conditions which lead
to unbiased integer estimators. This shows that there exists a whole class of integer
ambiguity estimators which are unbiased. Each member of this class will thus also produce
'fixed’ baselines which are unbiased.

Using the conditions for unbiasedness we also show that three of the more frequently
used ambiguity estimators are unbiased. They are the 'rounding’ estimator, the 'boot-



strapped’ estimator and the least-squares estimator. The geometry of these estimators is
also identified and compared.

2. GPS AMBIGUITY RESOLUTION
Let the GPS model of linear(ized) observation equations be given as
E{y} = Aa+ Bb, D{y} =Q, (1)

with E{.} the expectation operator and D{.} the dispersion operator. The m-vector y is
the given data vector, while a and b are the unknown parameter vectors. Matrices A and
B are the corresponding design matrices. The data vector will usually consist of the "ob-
served minus computed’ single- or dual frequency double-differenced (DD) phase and/or
pseudo range (code) observations, accumulated over all observation epochs. The entries of
the n-vector a are the unknown DD carrier phase ambiguities, expressed in units of cycles
rather than range. They are known to be integer valued. The entries of the p-vector b
consists of the remaining unknown parameters, such as for instance baseline components
(coordinates) and possibly atmospheric delay parameters (troposphere, ionosphere).
Within the context of GPS ambiguity resolution, the usual steps in solving (1) are as
follows. First the model is solved without taking the integer ambiguity constraints into
account. As a result one obtains the so called "float’ solution and corresponding variance-

covariance matrix X
1).(2 %
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The real-valued ambiguities of this solution are then used in the second step to come
up with their corresponding 'most likely’ integer values. It is thus in this step that the
integer constraints on the ambiguities are taken into account. The solution vector of
integer ambiguities will be denoted as @. The idea of the final and third step is to use
these mteger ambiguities to adjust the 'float’ solution b. That is, the solution of the
first step is corrected by means of the residual vector G — & The final ’fixed’ solution so
obtained reads then

b=b-Qp;Q:'(a—a) (3)
The goal of the present contribution is not to discuss the intricacies of the above com-
putational steps, but to concentrate instead on the mapping from @ to &. Since a is a
random vector, the integer vector @ is random too. The probabilistic properties of this
integer vector will depend on how the mapping from a to a is defined. This therefore also
holds true for its first moment, the expectation. Once we know the expectation of &, we
also know the expectation of B The *float’ estimators, & and b, are namely known to be

unbiased. Hence, )
E{b} = b— Q;Qz ' (a — E{a}) (4)

The ’fixed’ solution b is thus unbiased once the integer estimator & is unbiased. In this
contribution we will therefore concentrate on the first moment of @ and show how unbiased
estimators of the integer ambiguities can be constructed.



3. CONSTRUCTING UNBIASED INTEGER ESTIMATORS
3.1 The integer distribution

The problem of integer ambiguity estimation is to formulate a mapping from the real-
valued ambiguities to their integer-valued counterparts

GER=ae " (5)

Mapping the continuous space of reals to the discrete space of integers will require a
many-to-one map and not a one-to-one map. Thus we could think of partitioning R"
such that each of its subsets is assigned to a grid point of Z". The estimation rule would
then boil down to choosing that particular grid point for which the float solution lies in
its subset. Thus to each grid point of Z", say 2, we assign a nonempty subset S, C R"
and when a lies in this subset then z is chosen as the integer solution. Hence

d€ES, &= a=z (6)

With this formulation, the choice of integer estimator becomes equivalent to the choice
of which subsets S, to take for the partitioning of R". It seems reasonable to choose the
subsets such that their overlap is empty. Otherwise one can not assign & to a single grid
point. Thus

S: N Sy; = {0} for z # z; (7)

Note that technically speaking the subsets are allowed to have common borders as long as
the probability that a lies on the border is zero. Since @ € R™, a second requirement of the
subsets is that they should cover R® completely. The union of subsets should therefore
cover the n-dimensional space completely,

B = UzEZ"Sz (8)

We are now in the position to formulate, at least in a conceptual way, the distribution of
the integer estimator & This distribution is of the discrete type and it will be denoted
as P(& = z). It is a probability mass function, having zero masses at nongrid points and
nonzero masses at some or all grid points. If we denote the continuous probability density
function of & as ps(z), the distribution of & follows as

Pa=2)= [ p(e)dz, z€ 2" (9)

This expression holds for an arbitrary distribution of the 'floated’ ambiguities a. In the
application of GPS ambiguity resolution however, the vector of observables y is usually
assumed to be normally (Gaussian) distributed with the mean and dispersion given in
(1). As a result the ambiguities of the ’float’ solution are normally distributed too, with
mean a and variance-covariance matrix Q;. The probability density function of a reads
therefore

1 1 ,
pa(z) = mex}){“§ | z—allg,} (10)

with the squared weighted norm || . [|3,= (.)7Q3"(.). In the following we will make use
of some of the properties of this distribution.



3.2 The expectation of the integer estimator

We will now try to formulate a set of conditions, which, when fulfilled by the subsets
S., will result in an unbiased estimator a. The approach taken is as follows. First we
will verify that the symmetry of the probability mass function about the mean of a is
sufficient for the integer estimator to be unbiased. Then we will show that the probability
mass function becomes symmetric about the mean a, when all subsets S, are reflection-
symmetric about this mean.

Let us start with the expectation of a. By definition it is given as

E{a}= ) zP(a=2z) (11)

z€Z"

A sufficient condition for the estimator a to be unbiased, is the symmetry of its distribution
about a. Thus

Pla=a+z2)=Pla=a—-2z2),Vz€Z" = E{a} =a (12)

This can be shown as follows. The expectation may also be written as E{a} = Y (a +
z)P(@ = a+ z) and as E{a} = Y (a — z)P(@ = a — z). Taking the sum of the last
two expressions and using the symmetry of the distribution gives 2E{a} = ¥ 2aP(a =
a + z) = 2a, from which the unbiasedness follows.

We will now show that the probability mass function is indeed symmetric about a,
when all subsets S, are reflection-symmetric about this same mean. Thus

Let R be a reflection about a and R(S,4:) = Sa-:, Yz € 27 (13
then P{i=a+ z) = Pld=8—3) , ¥z € 2* )

In order to prove (13), .we will make use of the transformation formula for integrals
[Fleming, 1997). When applying transformation R : y = 2a — z, we get

1
/.;M' c. exp{—-2- |z—al3, dz = /j;

where c is the proportionality constant of the multivariate normal distribution. The left-
hand side equals P(@ = a + z), while the right-hand side equals P(&@ = a — z) because
of the reflection-symmetric property of both the subsets and the multivariate normal
distribution. This proves (13).

As an example of an unbiased estimator, consider the one- dimensional, zero-mean
case, n = 1,a = 0. If we define the subsets as

[z—z,z41-2) 2>0
S, =

1 2
.exp{—= || a — d
5.y {5 12—y I3, dy

(z—-1,1-12) z=0 (14)
(z—14z,z+2] 2<0

for any z between zero and one, the corresponding integer estimator is unbiased due to
the reflection-symmetric property about the origin.

Although the condition of (13) is sufficient to guarantee unbiasedness, it is not yet a
practical condition since the mean a is generally unknown. Hence, in order to make the
condition practical we need to strengthen it and require that (13) holds Ya € Z™. Thus



we require the subsets to be uniformly reflection-symmetric. Note that with this extra
constraint on the subsets, the subsets automatically become reflection-symmetric about
their own grid point. To see this, take z = 0 in (13) and observe that the condition is
assumed to hold for all a € Z". Thus R(S,) = S, for all grid points a. Note that the
subsets of (14) do not satisfy this strengthened condition of reflection-symmetry, unless
&= % An example of subsets that do, is
_J(z==z,z4+12) z odd
S‘_{(z—1+x,z+l—x) z even (15)

for any z between zero and one.

4. THREE UNBIASED ABIBUITY ESTIMATORS

In this section we will consider three different estimators of the integer ambiguities.
They are the 'rounding’ estimator, the 'bootstrapped’ estimator and the least-squares
estimator. We will show that all three estimators are unbiased.

4.1 Integer rounding

The simplest way to obtain an integer vector from the real-valued 'float’ solution is to
round each of the entries of @ to its nearest integer. This solution follows from minimizing
the unweighted norm of @ — a. The solution to

n

min Eg(ﬁu —a) ..t (& — @) (16)
reads therefore ag = ([@1],-..,[@x])7, where ’[.] denotes rounding to the nearest integer.
Note that the same solution is obtained when the 2-norm in (16) is replaced by the 1-norm.

- Since componentwise rounding implies that each real-valued ambiguity estimate d;,1 =
1,...,n, is mapped to its nearest integer, the absolute value of the difference between the
two is at most % The subsets Sg. that belong to this integer estimator are therefore
given as

Spa=Ne {a€ R ||a—z|< %} VzeZ (17)

The subset Sg, is an n-dimensional cube, centred at the grid point z and which has all
sides of length 1. The subsets are clearly reflection-symmetric. We therefore have

E{ar} = E{a} = a and E{br} = E{b} = b o (18)

The integer estimator g is thus indeed an unbiased estimator.
4.2 Integer bootstrapping

The bootstrapped estimator can be seen as a generalization of the previous estimator.
It still makes use of integer rounding, but it also takes some of the correlation between
the ambiguities into account. The bootstrapped estimator follows from a sequential con-
ditional least- squares adjustment and it is computed as follows. If n ambiguities are



available, one starts with the first ambiguity a,, and rounds its value to the nearest inte-
ger. Having obtained the integer value of this first ambiguity, the real-valued estimates
of all remaining ambiguities are then corrected by virtue of their correlation with the
first ambiguity. Then the second, but now corrected, real-valued ambiguity estimate is
rounded to its nearest integer. Having obtained the integer value of the second ambigu-
ity, the real-valued estimates of all remaining n — 2 ambiguities are then again corrected,
but now by virtue of their correlation with the second ambiguity. This process is then
continued until all ambiguities are taken care of. The components of the bootstrapped
estimator ap are given as

dp, = [&1] )
gy = [Gp] = (G2 — 048,05, (&1 — dp,))

. 2| 2 (19)
8pn = lanv] = [8n — T Oanays 0, (@1 — 5,0)]

where the shorthand notation &;; stands for the ith least-squares ambiguity obtained
through a conditioning on the previous I = {1,...,(: — 1)} sequentially rounded ambigu-
ities.

As it was shown in [ Teunissen, 1996], the sequential conditional least-squares solution
is closely related to the triangular decomposition of the ambiguity variance-covariance
matrix. Let the LDU- decomposition of the variance-covariance matrix be given as Q; =
LDLT, with L a unit lower triangular matrix and D a diagonal matrix. Then (& — z) =
L(a'-z), where @’ denotes the conditional least-squares solution obtained from a sequential
conditioning on the entries of z. The variance-covariance matrix of &’ is given by the
diagonal matrix D. This shows, when a componentwise rounding is applied to &', that =
is the integer solution of the bootstrapped method. Hence, if ¢; denotes the ith canonical
unit vector having a 1 as its :th entry, the subsets Sp_ that belong to the bootstrapped
estimator follow as

1
Sp.=N,{ae R ||l (a-2)|< 5} , V2 € 2" (20)

Note that these subsets reduce to the ones of (17) when L becomes diagonal. This is the
case when the ambiguity variance- covariance matrix is diagonal. In that case the two
integer estimators @r and @p are identical.

It follows from (20) that the subsets Sp, are reflection-symmetric. Thus also the
bootstrapped estimator is an unbiased estimator and we have

E{ap} = E{a¢} =aand E{bg} = E{}} =b (21)

4.3 Integer least-squares

Least-squares problems in which some of the parameters are integer-valued are non-
standard. This type of least-squares problem was first introduced in [Teunissen, 1993] and
has been coined with the term ’integer least-squares’. In the context of GPS ambiguity
resolution, the integer least-squares ambiguities follow from solving

- ~ 2
min || & -z I, (22)



Thus azsq is the integer least-squares solution when || @ — azsq |[3,<|| @ — z ||3,, for all
z € Z™. This inequality can also be written as an inequality which is linear in @, namely
as (z—arsq)TQz' (@ —aLsq) < 3 || z — @sq ||5,. Hence, the subsets Spsg,. that belong
to the least-squares estimator follow as

% “ 1 »
Sts@:=Neezn{@ € R™ | |wi|< - |l cillgs}, V2€ 2 (23)

with

¢l Qz'(a—2)

w; =

V(e)7Qs' ()
Note that the w; are the well-known w-test statistics for testing one- dimensional alterna-
tive hypotheses [Baarda, 1968], [ Teunissen, 1985]. The absolute values of the w; are thus
required to be not larger than the ’critical values’ § || ¢i |lg,- They equal half the distance
of a pair of grid points. Geometrically, the w; can be interpreted as orthogonal projectors
which project (@ — z) onto the direction vectors ¢; € Z". As with the distance, orthogo-
nality is hereby measured in the metric of Q3. One can however also describe the subsets
of (23) in the ordinary canonical metric. For that purpose we write | w; [< 3 || ¢i [|q, as
| (3¢)7Q7'z |< (3¢:)7Q7"(3¢i) with z = & — z. Since the direction of the normal vector
of the ellipsoid z7Q 'z = xg is given by Q3 'z at z, it follows, when x? = (3¢:)7Q7"(5¢),
that the pair of hyperplanes (3¢;)TQ;'z = +(3e:)TQ;"(3¢:) are tangent planes of this el-
lipsoid at the point z = }c;. Hence, the single subsets that contribute to the intersection
in (23) each cover a region between two such parallel tangent planes. ;From this it follows
that the subsets Spsq . are also reflection-symmetric. Therefore,

E{arsq} = E{a} = a and E{brso} = E{b} = b (24)

which shows that the integer least-squares estimator is also unbiased. It is interesting to
observe that apart from their reflection-symmetry, all three subsets Sg ., Sp.. and Srsg,.
are also translation-similar. The condition for being translation-similar, S, = So+2,Vz €
Z", is however not implied by (13) and therefore not required for unbiasedness. Still it
makes sense to ask the subsets to be translation-similar, because it means that the shape
of the probability mass function P(@ = z) is independent of the location of its point of
symmetry. In particular it implies [g, c.exp{—3 || z — a ||}, }dz = constant,Ya € Z".
This makes sense, because it implies that the integer estimator has a probability of correct
estimation, P(& = a), which is independent of the unknown mean a.

To conclude, we compare (23) with (20). First observe that (20) can also be written
as

S8a=Nuezn{a € B* | | FD'L7(a—2) |< 2T D'ei} (25)
By also using the LDU-decomposition of @; in (23), we may write

SLsgs = Nacr-1(zmy{a € B* | | FD L7 (a— 2) |< % Tp-1¢) (26)

This shows that the two subsets only differ in their choice of the c¢;-vectors. In the
bootstrapped case the intersection N.ez» is taken, while in the least-squares case it is
the intersection N.er-1(zn). This shows that the two subsets are identical when the
matrix entries of L~! are all integer. This is the case when L is an admissible ambiguity
transformation [Teunissen, 1995].
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