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ABSTRACT: In this contribution we describe the internal reliability of single- frequency
GPS data. This is done for outliers in the code data and for cycle slips in the phase data.
The internal reliability will be given for three different GPS single-baseline models. They
are the geometry-free model and two variants of the geometry-based model, the roving-
variant and the stationary-variant.

1. INTRODUCTION

The quality of estimation is often measured by means of the precision of the estimators.
Precision, however, measures only one aspect of the estimator, namely the amount of
expected variability in samples of the estimator around its mean. This measure may
suffice in case the estimator is unbiased. But since this depends on the validity of the
model used, the unbiasedness of the estimator cannot be guaranteed. The purpose of
model testing is therefore to minimize the risk of having a biased solution. But like any
result of estimation, also the outcomes of statistical tests are prone to errors, It depends
on the strength of the model how much confidence one can have in the outcomes of these
statistical tests. A measure for this confidence is provided by the theory of reliability as
introduced by Baarda (1968).

Internal reliability, as represented by the Minimal Detectable Biases (MDB’s), de-
scribes the size of the model errors which can just be detected with the appropriate
test statistics. In this contribution, closed form expressions will be given for two type
of MDB’s, the ones that correspond with outliers in GPS code data and the ones that
correspond with cycle slips in GPS phase data. The models considered are of the single-
baseline type, separated by a short distance only, using single-frequency GPS data. They
form the common mode of operation in most local surveying applications. Within this
class, three different single-baseline models will be considered. They are the geometry-free



64

model and two variants of the geometry-based model, namely the roving-variant and the
stationary-variant. Both variants make an explicit use of the receiver-satellite geometry.
The only difference between the two variants is whether or not the baseline is assumed
stationary over the observation time span.

The general concept of the minimal detectable biases is easiest explained if we start
from the null-hypothesis Hy and alternative hypothesis H,

Hy: E{y} = Az 3 D{y} = Qy and H, : E{y} = Az + by ) D{y} = Qy (1)

where E{.} and D{.} are, respectively, the expectation and dispersion operator, y is the
m—vector of normally distributed observables, A is the m x n design matrix, x is the
n- vector of unknown parameters, @y is the variance matrix of the observables and by
is the bias that describes the model error. It will be assumed that the model error is
one-dimensional, that is, the bias by can be parametrized by means of a single parameter
V as by, = ¢,V, where the m-vector ¢y is assumed known and the scalar V unknown. The
vector ¢, specifies the type of model error. The test statistic for testing Hy against H, is
given as
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where Pi = I, — P4 and P, is the least-squares projector. The least-squares projector
projects onto the range space of A and along its orthogonal complement. The test statistic
w has a standard normal distribution under Hy and a mean shifted normal distribution
under H,.

Two type of errors can be made when testing the null hypothesis, a type I error and a
type Il error. A type I error is made when the null hypothesis is rejected while it is true.
The probability of making a type I error is referred to as the level of significance and it is
usually denoted as a. A type II error is made when the null hypothesis is accepted while
it is false. The probability of a type Il error is denoted as 3. Its complement y =1 — 4 is
referred to as the detection power of the test. The non-zero mean of w under H, can be
computed once the level of significance ap and the detection power -y, are chosen. In case
of a two-sided test it reads /3y = VeIQ, Pie, | V |, where Ap = Mo, 70) follows from
the normal distribution. For instance, for ap = 0.001 and 7o = 0.80, we get Ay = 17.075.
Once Ag is known, the corresponding size of the bias can be computed as )

Ao
V1= {5e @

This is the celebrated MDB. It is the minimal size of the bias that can be detected with
the test statistic w, when the leve] of significance and the power are set at, respectively,
ao and . Apart from the chosen level of significance and the power, the MDB depends
on the vector c,, the design matrix 4 and the variance matrix . In section 2 we specify
the variance matrix and construct the design matrix for the three different single-baseline
models. In section 3 the least-squares projector is derived. It is given in a form which
facilitates the computation of the MDB's. In sections 4 and 5 we give the closed form
expressions for the MDB’s. In section 4 they are given for outliers in the code data and
in section 5 for cycle slips in the phase data.
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2. CONSTRUCTING THE DESIGN MATRIX

In this section we will construct the design matrix for the following three single-
baseline models: the geometry-free model, the roving-receiver geometry-based model and
the stationary-receiver geometry-based model. When tracking satellite s at epoch ¢ using
two receivers 1 and j, the single-diflerence (SD) observation equations for single-frequency
phase and code read, see e.g. Hofmann-Wellenhof et al. (1994), Leick (1995), Teunissen
and Kleusberg (1996)

5(1) dtij(t) + 6i5(2) + p5(2) — I5(t) + TE(t) + 6m(t) + dis(to) + ANS + nj ;5(¢)
(1) di;(2) + di; () + p(2) + I5(2) + T5(2) + dm(t) + nj 5(t) "
4

where ¢7;(t) is the SD phase observable expressed in units of range rather than cycles,
pi;(t) is the SD code observable, dt;;(t) is the unknown relative receiver clock error,
&:;(1) and dy;(t) are the carrier phase and code equipment delays, pf;(t) is the unknown
SD receiver-satellite range, I5;(t) and 7T5(¢) are the ionospheric and tropospheric delays,
§mi;(t) and dm{;(t) are phase and code multipath terms, ¢y;(to) is the relative receiver
non-zero initial phase oflset, N is the integer carrier phase ambiguity that corresponds

with the wavelength A, and n} ;;(¢) and n; .(t) are, respectively, the noises of phase and

Il

I

code.

In the following we will assume that the two type of atmospheric delays can either be
corrected for using an a priori model or that they are sufficiently small to be neglected.
This is a realistic assumption if we consider sufficiently short baselines with a not too
big height difference between the two receiver antennas. This is the typical environment
for local surveying applications. We also assume multipath to be absent. Thus sufficient
precautions are assumed taken with respect to antenna siting and shielding. Finally
we assume that over the observation time span the same m satellites are tracked (s =
1,...,m). This too is a realistic assumption if we consider short time spans only. By
lumping the nonseparable parameters together as dty, = dt;;(ti)+8;(t), dt,, = dii(tx)+
dij(t) and af; = ¢i;(to) + AN, the 2m SD observation equations for epoch #x can be
written in compact form using vector notation as

(;5}: = emdt¢k +pk+a+nd’k (5)
Pk emdtm + ok + g,

where e, is an m-vector having all its entries equal to one.

The two clock terms dty, and dt,, can be eliminated by using double-differences (DD)
instead of single-differences. There are many diflerent ways in which double-differences can
be formed. Each of the m satellites for instance, can be taken as a reference satellite. This
already gives m different ways of forming double- differences. The DD-transformation that
takes the first satellite as reference reads [—em—1, Im—1], while the DD-transformation that
takes the last satellite as reference reads [[,—1, —€m—;). Although the DD-transformation
itself is not unique, the adjustment results will be unique if a proper care is taken of the
correlation that is introduced by the DD-process. We can therefore take any one of the
admissible DD-transformations. Let DT be such an (m — 1) x m matrix that transforms
single-differences into double-differences. The 2(m — 1) DD observation equations for
epoch {; follow then from (5) as

DT¢p = ri+a+DTng,,
DTp. = rp+ DTn,,

(6)
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where 7. = DTp, contains the DD ranges and ¢ = DTa contains the DD ambiguilies.
The DD ambiguities are integers now, since the non-zero initial phase offset has been
eliminated by the double- differencing as well. The DD observation equations can be
written in a more compact form as

Yk =(€2® Imo1)ri + (€1 ® [y )a + 1y (7)

where y, contains the DD phase and code data of epoch ik, n; contains the corresponding
DD noise terms and where ® denotes the Kronecker product. This set of DD observation
equations can now be used as starting point to construct the appropriate design matrices.

Geometry-free model: In this model the observation equations are not parametrized
in terms of the baseline components. Instead, they remain parametrized in terms of the
unknown DD receiver-satellite ranges. This implies that the observation equations remain
linear and that the receiver-satellite geometry is not explicitly present in these equations.
Hence, this model permits both receivers to be either stationary or roving. Since the
equations as given by (7) are the ones that belong to the geometry-free model, we get for
k epochs

Y=l ®(e2® In-1)Jr + [ex ® (1 ® Ioyey)Ja + (8)

where for i = 1,.. .k, the Yi, ri and n; are collected in, respectively, v, r and n. The
design matrix is of order 2(m — 1)k x (m — 1)(k + 1) and since it is of full rank, the
redundancy follows as (m — 1)(k—1). Thus in order to have redundancy, we need to use
more than one epoch of data while tracking two or more satellites. For every additional
epoch the redundancy increases by (m—1).

Roving-receiver geometry-based model: In case of the geometry- based model, the
observation equations are parametrized in terms of the unknown baseline components.
Since these equations are nonlinear, a linearization of the DD receiver-satellite ranges
with respect to the baseline components is needed

Ary = DTGLAb, with Gy = [%gi 9)
&

The geometry of the SD relative receiver-satellite configuration is captured by the m x 3
matrix Gy. It is well-known that due to the high altitude orbits of the GPS satellites, the
receiver- satellite geometry changes only slowly with time. We will therefore assume that
Gy is a time-invariant matrix, Gx = G = constant. This approximation is allowed for
short time spans, in particular since we restrict our attention to the computation of the
MDB’s only. With Gy = G and b = (&7,...,6])7, it follows from (9), when we omit the
A-symbol for notational convenience, that r = (I ® DT@)b. Substitution into (8) gives
the DD observation equations as

y=[L&(e2® DTG)b+ [ ® (c1 ® Iyn_i)]a + 7 (10)

The design matrix is of order 2(m ~ 1)k x (3k 4 m — 1) and since it is of full rank, the
redundancy follows as (m — 1)(2k — 1) — 8k. Thus in order to have redundancy for a
single epoch, more than four satelites need to be tracked. For every additional epoch
the redundancy increases by (2m — 5). Note that the design matrix of the geometry-free
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model follows from that of the roving-receiver geometry-based model, when the matrix
DTG is replaced by the unit matrix [n_;.

Stationary-receiver geometry-based model: When the two receivers are stationary,
the k baselines b, collapse to one single baseline b". Since in that case b = (e, ® [3)b™ it
follows that r = (ex ® DTG)b. Substitution into (8) gives the DD observation equations
as
y=[ex® (e ® DTG)b" + [ex ® (1 ® Im—1)]a+n (11)
The design matrix is of order 2(m — 1)k x (m — 4) and since it is of full rank, the
redundancy follows as (m — 1)(2k — 1) — 3. When compared to the previous model the
redundancy has increased by 3(k — 1), which equals the number of baseline components
that have been constrained.

3. THE LEAST-SQUARES PROJECTOR

Now that we know the structure of the three design matrices, we can start to construct
the least-squares projector P4. It is needed for computing the MDB's. The least-squares
projector is given as

Py = A(ATQ; AT ATQ;! (12)
Thus in order to construct it we need both A and @,. The variance matrix of the
observables is assumed to be given as

Qy =l ®Q with Q = blockdiag(c3DTD,s2DT D) (13)

where o} and o> are the SD variances of, respectively, the phase and code data. The

design matrix itself follows from the results of the previous section as

A=[Mk,Nk] with Mkr-fk@M, Ne=ert®N (14)
where
geometry — free : M=e®Il,., N=c ®I[,,
roving — receiver : M=e®DTG N=c¢ ®Il._,
stationary — receiver: M =0 N=(e;®D7G,e, ® Ino1)

We will now decompose the least-squares projector step-by-step in order to obtain a
form which can be used for the computation of the MDB’s. Since the range space of
[My, Ni] equals that of [M, Py Ni], where Py, projects orthogonally onto the orthogonal
complement of the range space of My, we have the projector decomposition

Pa = Amevg = Pu, + Ppy (15)

When using (13), we also have Py, = [; ® Py and Ppy N, = P, ® Ppyy- Substitution
. . k
into (15) while using Ppyx = Pimny — Py, gives the decomposition

Py =P.® Pu+ P, ® Py (16)

This decomposition clearly shows the time-dependent and the time- invariant contribution
of the design matrix. A [urther decomposition is possible if we consider the entries of the
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matrix (M, N]. For both the roving-receiver and stationary-receiver geometry-based model
we have [M,N] = [e, ® DTG, ¢, ® Im-1]. For the geometry-frec model we simply have to
replace DTG by I,,_;. Since the range space of [M, N] equals that of [c1®1m_1,@ DTG,
where the columns of the last matrix are partitioned in two mutually orthogonal scts,
we have Pumny = ¢1®Im_; + Pe,@pre, which can be decomposed further as Bmy =
Bo@l. 1+ F., ® Pprg. Substitution into (16) gives

PA:P;:®PM+Pck®[Pcl®[m—1+PC2®PDTG] (17)

The advantage of this decomposition is that the contribution of F., vanishes when outliers
are considered, while the contribution of P, vanishes when cycle slips are considered.
Note that the projector is still expressed in the DD receiver-satellite geometry. Since this
obscures our interpretations in the following sections somewhat, we prefer to express the
projector directly in the SD-matrix G, rather than in its SD counterpart D7G. This is
possible if we make use of Pprg = DTPIG‘,,“]D*‘T, where D* is the pseudo-inverse of .
As a result we get

Pa=F,®Py+ Py ®[P ® lny+ P, ® D" Fg, D7) (18)

This is the decomposition that will be used in the next two sections for deriving the
outlier and cycle slip MDB’s. It holds true for all three single-baseline models. Only Py,
varies for the three models and in addition FiG e needs to be replaced by I,, when the
geometry-free model is considered. For the projector Py we have

geometry — free : Py =i-e1® (Inoy, efmoi)
roving — receiver : Pu = 73762 ® DT (P, eHe., ) DY (19)

stationary — receiver: Py = 0

with the phase-code variance ratio ¢ = of/al.

4. OUTLIERS IN THE CODE DATA

In this section we will restrict our attention to outliers in the code data. The outlier
MDB’s will be derived for the geometry-free model, the roving-receiver geometry-based
model and the stationary-receiver geometry-based model. In order to compute the MDB
we first need to specify the appropriate c,-vector. For a code outlier at epoch [ (1 <[ < k)
in the range to satellite 1 € {I,... »m}, the c,-vector takes the form

&y =0 ®dy; with dy=c, ® D7¢ (20)

where ¢, ¢; and ¢; are canonical unit vectors of appropriate dimension, having the 1 as
their, respectively, {th, 2" and it} entry, The vector ¢ selects the appropriate epoch,
the vector ¢, selects the vector of code data of that epoch and the vector ¢; selects the
satellite to which the range error is supposedly made. The vector DT¢; describes how an
outlier in a SD observable affects a DD observable. This vector will become a vector of
all 1's in case the outlier occurs in the range to a reference satellite. Otherwise it will
remain a canonical unit vector.

With (18), (19) and (20) we are now in the position to consider each of the three
single-baseline models individually.
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Geometry-free model: Due to the absence of the receiver-satellite geometry we
have to set Fg.,, equal to I;,. Using (18), (19) and (20), and performing the necessary
multiplications according to (3), the outlier MDB follows as

Ao

b "”J 1= i — S0

(21)

The MDB is a function of the code precision, o,, the phase-code variance ratio, ¢, the
number of satellites tracked, m, and the number of epochs used, k. It is independent,
however, of the epoch the outlier occurs, [, and, of course, of the receiver-satellite geome-
try. At first instant it may seem curious that the MDB of the geometry-free model is still
dependent on the number of satellites tracked. This is due, however, to the correlation
intreduced by the double-differencing process.

Note, since in practice the phase-code variance ratio is very small indeed (e.g. ¢ =
1071), that the precision of the phase data has no significant impact on the value of the
MDB. Also note that due to the absence of redundancy, the MDB becomes infinite in
case k =1 or m = 1. Outlier detection in the code data is thus only possible when more
than one satellite is tracked over more than one epoch. Smaller outliers can be detected
when more satellites are tracked and more epochs are used. The smallest possible MDB

equals | V, | = opv/Ae.

The roving-receiver geometry-based model: In this case the receiver-satellite ge-
ometry is explicitly used. The baselines, however, are nonstationary. Using (18), (19)
and (20), and performing the necessary multiplications according to (3), the outlier MDB
follows as

Ao
Vilz=e 22
g \} [T= 0 - 1025 + L0 = o Powel -

Compare this result with that of (21). Again note that the precision of the phase data has
no significant impact on the value of the MDB. Also note that the impact of the receiver-
satellite geometry is felt through the projector Fg,,). Due to its inclusion, the MDB of
(22) is in general smaller than that of (21). The two MDB’s are identical, however, in case
satellite redundancy is absent. That is, when only four satellites are tracked {(m = 4). In
that case the projector Fg,,,) reduces to the identity matrix.

Due to the inclusion of the receiver-satellite geometry, outlier detection is possible
now with only one epoch of data. To get an indication of the corresponding value of the
MDB, the following average can be used. Since the trace of a projector is equal to its
rank and since the rank of the projector FG,cn) €quals 4, it follows that the average value
of a diagonal enlry of this projector equals %. Hence, if we use the approximations ¢ = 0
and CTP[G'E,"]C,' = —:;, it follows that

Ao
I-o(+3)
This shows that for k = 1 and Ag = 17.075, the MDB equals about six times the SD
standard deviation of code when eight satellites are tracked. The value of the MDB goes

up to about nine times the SD standard deviation of code, when only five satellites are
tracked.

va|=dp
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The stationary-receiver geometry-based model: In this case the receiver-satellite
geometry is still explicitly used, but now the projector Py vanishes. Using (18), (19)
and (20), and performing the necessary multiplications according to (3), the outlier MDB

follows as
| Vs | o (23)
= 0,
TN - T I - F Reayel

Compare this result with that of (22). Due to the fact that the baseline is assumed
stationary now, the MDB of (23) will of course be smaller than that of (22). Note,
however, since ¢ is very small, that these two MDB’s will not differ much in practice.
Hence, we may conclude that one’s ability to detect outliers in the code data will not be
improved by much when the baseline is assumed stationary instead of moving.

5. CYCLE SLIPS IN THE PHASE DATA

- We will now consider cycle slips in the phase data, They will be expressed in units
of range rather than in units of cycles. In order to compute the MDB we first need to
specify the appropriate ¢,-vector. For a phase-slip at epoch [ (1 < < k) in the range to
satellite € {1,...,m}, the ey-vector takes the form

¢y =$1@d with d; =¢, ® DT, (24)

where ¢; and ¢; are canonical unjt vectors of appropriate dimension, having the 1 as their
first and ith entry respectively. The slip vector s is a k-vector having zero’s as its first
{~1 entries and 1’s otherwise. Again we consider the three different single-baseline models
separately.

Geometry-free model: Using (18), (19) and (24), and performing the necessary multi-
plications according to (3), the cycle slip MDB follows as

| (1, e}l
Vsl=0, = 1 25
Vel "Ju—lmﬁﬂu—;] )

As with the outlier MDB’s, the cycle slip MDB is a function of the code precision, o,
the phase-code variance ratio, ¢, the number of satellites tracked, m, and the number of
epochs used, k. In contrast with the outlier MDB however, the cycle slip MDB now also
depends on the moment the slip started to occur. Note that the MDB becomes infinite
in case | = 1. This reflects the situation that cycle slips cannot be found when they
already commence with the first epoch. In that case the slip cannot be separated from
the corresponding phase ambiguity itself.

Also note, since ¢ is very small, that the precision of the phase data has no significant
impact on the value of the MDB. Hence the cycle slip MDB is predominantly governed
by the poor precision of the code data. This has an important impact on one's ability to
detect cycle slips with the geometry-free model. Let us first consider the case that | = k.
It corresponds with the situation that the cycle slip occurs at the Jast epoch of the data set.
In that case the smallest possible value of the MDB reads | Ve | = a,4/(1 + €)Aa. Hence,
in this case one cannot expect to find slips as small as one cycle. Let us now consider the
case that [ < k. If we denote the time window between k and las N = f— [ + 1, it follows
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that in this case the smallest possible value of the MDB reads | V, | = % (14 €)X
This shows that now sufficiently small slips can be found provided the time window N is
large enough.

The roving-receiver geometry-based model: With the receiver- satellite geometry
included, the cycle slip MDB follows from (18), (19), (24) and (3) as

(1 -f- C))\g

VeIt %J - 10 - 0 = 7)e+ (1 -l Agenal] .

Compare this result with that of (25). The impact of the receiver-satellite geometry is
felt through the presence of the projector Pg.,,). This impact is absent in case only four
satellites are tracked. In that case the projector reduces to the identity matrix and (26)
becomes identical to the MDB of the geometry-free model. Hence, satellite redundancy
is needed per se in order to get a sufficiently small MDB when [ = k. In that case it
is the precision of phase, instead of code, that governs the value of the MDB. To get
an approximate value for the MDB when ! = k, we use the approximations € = 0 and
cF Pgenjei = L. This gives

Ao
1-90-3)

This shows that for k = 2, m = 5 and A = 17.075, the MDB equals about thirteen times
the SD standard deviation of phase, which is about a quarter of a full wavelength.

| Vg | =04

The stationary-receiver geometry-based model: In this case the projector Py
should be set to zero. From (18), (19), (24) and (3), the cycle slip MDB follows then
as

Ao
'V”‘""‘J =0 - - 3] )

Compare this result with that of (26). Due to the fact that the baseline is assumed
stationary now, the MDB of (27) will of course be smaller than that of (26). Thus also in
this case one can expect to be able to detect sufficiently small cycle slips when | = k > 2.
When we compare (27) with its counterpart (25) of the geometry-free model, we note that
the ratio of the two MDB’s is about equal to the square-root of the phase-code variance
ratio. Hence in practice, the cycle slip MDB of the stationary-receiver geometry- based
model will be about one hundred times smaller than its counterpart of the geometry-free
model. Also note that (27) is independent of the receiver-satellite geometry, which is
quite remarkable. Although it is a consequence of the fact that matrix Gy was assumed
time-invariant, it does imply that the MDB is not significantly influenced by the receiver-
satellite geometry itself. Hence, in thi s case it is not so much the geometric distribution
of the satellites that counts, but more the number of satellites that are tracked.
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| MDB geometry-free roving baseline | stationary baseline |
—

A A A
1V l) o n-2n-0 | TP E-En-Te | Oy I

Ap Ao Ag
IVl o (=10=5T0— 1] %\/Ir—lm—iz—na 7\ Tn- EIn =

Table 1: MDB’s for an outlier/slip at epoch ! in code/phase based on k epochs, using

single-frequency data, with the approximations ¢ = ;5‘3 ~0and Gy =~ G (A = 17.075 for
?

o =0.001 and y = 0.80, and § = 1 — c;-rP[G-,,m]c.- with the average value 1 — 4.

6. SUMMARY

In this contribution we derived closed form expressions for the single- frequency mini-
mal detectable biases of outliers in the code data and of cycle slips in the phase data. The
MDB's were given for three different single-baseline models: the geometry-free model, the
roving-receiver geometry-based model and the stationary-receiver geometry-based mode],
For an easy reference the results are summarized in table 1. The entries in the table are
based on the approximation of neglecting the very small phase-code variance ratio .

It was shown that all outlier MDB’s are insensitive to the precision of the phase
data. They are predominantly governed by the precision of the code data. With the
geometry-free model single-epoch based outlier detection is not possible. It is possible,
however, when use is made of the receiver-satellite geometry, provided satellite redundancy
is present. This is true for the roving-variant and the stationary-variant.

It was also shown that there is practically no difference between the MDB'’s of the
roving-variant and the stationary-variant. Constraining the baseline to be stationary
does therefore not improve one’s ability to detect outliers in the code data,

Two out of the three cycle slip MDB’s were shown to be governed by the high precision
of the phase data. In these cases sufficiently small slips can be detected, even when using
the smallest possible time window of k — {+1 = 1. The exception occurs with the
geometry-free model. Then it is not the precision of phase, but the precision of code that
governs the MDB. This implies that small slips cannot be found, unless a sufficiently large
time window is used. In the absence of satellite redundancy, this same situation occurs
also when using the roving-variant. However, this will not happen with the stationary-
variant. Finally it was shown that the cycle slip MDB is not significantly influenced by
the receiver-satellite geometry when the baseline is stationary.

s e g : —r——
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