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ABSTRACT

The search for the integer least-squares estimates of the double-difference ambiguities
usually suffers from inefficiency when short observational time spans are used based on
carrier phase data only. In the present contribution the cause for this inefficiency will be
discussed on the basis of the partial search spaces of the double-difference ambiguities. In
particular some of the characteristics of the spectrum of conditional variances of the
double-difference ambiguities will be stressed. These characteristics are typical for the GPS
double-difference ambiguities and they are directly related to the structure of the carrier
phase model of observation equations. As a result the least-squares estimators of the GPS
double-difference ambiguities are highly correlated and their confidence ellipsoid extremely
elongated. It will be shown how the LAMBDA-method, of which the principles were
introduced in [8], allows one to overcome the drawbacks that are connected to the use of
the double-difference ambiguities. The method is based on an integer approximation of the
conditional least-squares transformation and it replaces the original double-difference
ambiguities by new ambiguities that show a dramatic decrease in correlation and
improvement in precision.

1.  INTRODUCTION

The computation of the integer least-squares estimates of the GPS double-difference
ambiguities is a non-trivial problem if one aims at numerical efficiency. This is particularly
true in case of very short observational time spans and in the absence of precise P-code
data. The topic of ambiguity fixing has therefore been a rich source of GPS-research over
the last decade or so, see e.g. [1-7]. For different applications, the research resulted in
effective search algorithms and provided important insights into the various intricacies of
the ambiguity fixing problem. Nevertheless, at present times, it is still expedient to seek
ways of improving the efficiency of the various search methods.

Paper presented at the 11l Hotine-Marussi symposium
on Mathematical Geodesy, L’Aquila, Italy, May 29-June 3,
1994.



This is in particular true for real-time or near real-time applications of GPS. In [8] the
author introduced a new method that allows for such a very fast integer least-squares

estimation of the ambiguities. The method makes use of an ambiguity transformation that

enables one to reformulate the original ambiguity estimation problem as a new problem

that is much easier to solve. First numerical results of the method were presented in [9]

and [10].

In the present contribution some of the typical characteristics of the GPS double-difference
ambiguities that can be seen as the cause for the inefficiency in the search, will be
highlighted and discussed. Ofcourse, it is well known since the relative positions of the
GPS satellites change only very little with respect to the receiver over short observational
time spans, that in such cases the least-squares double-difference ambiguities are generally
of a very poor precision. But as it will be shown, it is in particular the shape of the
spectrum of conditional variances of the double-difference ambiguities that prohibits one
from executing an efficient search for these ambiguities. This shape, which is so typical
for GPS, at the same time however allows one through a reparametrization of the
ambiguities, to overcome the inefficiency in the search.

2. THE DOUBLE-DIFFERENCE AMBIGUITY SEARCH SPACE

As our point of departure we consider the integer least-squares problem

min.(d-a)* Q' (G-a) , acZ" , 1
in which 4 denotes the n-vector of real-valued least-squares estimates of the double-
difference ambiguities and @, the corresponding variance-covariance matrix. Due to the
presence of the. integer-constraint aeZ" in (1), there are unfortunately in general no
standard techniques available for solving this least-squares problem as they are available
for solving ordinary least-squares problems. As a consequence one has to resort to methods
that in one way or another make use of a discrete search strategy for finding the integer
least-squares solution. The idea is to first restrict the solution space by replacing the space
of integers, Z", by a smaller subset that can be enumerated. This smaller subset is referred
to as the double-difference ambiguity search space or simply, ambiguity search space. The
ambiguity search space is defined as the set of all aeZ" that satisfy the ellipsoidal
inequality

(G-a)*Q,;' (G-a) < ¢, )

in which %2 is a suitably chosen positive constant. This ellipsoidal region is centred at
deR" and its orientation and elongation are governed by the ambiguity variance-
covariance matrix Q,. The size of the search space can be controlled through the choice
of the positive constant y2. It will be assumed that y? has been chosen such that the
search space at least contains the sought for integer least-squares solution.

In order to set up a search strategy that makes use of sharp bounds, the quadratic form of"
(2) is first written as a sum of squares. In order to do so the sequential conditional least-



squares principle is applied. It follows [8], if we denote the least-squares estimate of gq,
conditioned on the first (i - 1)-number of ambiguities as d, ; and its variance as ¢, , that
the elhpsmdal inequality (2) can also be written as oo

E(a“—a)z/c <yt N C))
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The sum-of-squares structure in this inequality now allows us to come up with a set of n

scalar inequalities that also can be used to characterize the ambiguity search space. This

set of inequalities is given by
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Note that this set of inequalities consists of scalar bounds on the individual ambiguities.
Hence, it can be used to formulate a search strategy for obtaining the sought for 1nteger
least-squares solution [8]. _

3. ON PARTIAL SEARCH SPACES AND THEIR NUMBER OF INTEGER
CANDIDATES

The complete set of » scalar inequalities of (4) characterizes the ambiguity search space

- for all the n-number of ambiguities. But, each one of the first j-number of inequalities of
(4), with j varying from 1 up to and including », may also be seen as characterizing a
search space. In this case however, they can be interpreted as characterizing a partial
search space. In order to see this consider the following.

If we relax the constraints of (1) by replacing aeZ" by the constraints aecZ for i=1,..,j
and a,R for i=j+1,..,n, then the integer least-squares problem (1) clearly reduces to

min.(d,-a,)* 0, (4, -a,) . a,eZ7 )
A

in which a( » stands for the j-vector a (a],az, ,a) and Q, stands for its variance-
covariance matrix. Hence, instead of solvmg for the integer least-squares -estimates of all
the ambiguities we are now solving for the integer least-squares estimates of only the first
j-number of ambiguities. It now follows from the sequential conditional least-squares
principle that we again can make use of the bounds of (4) to solve for the partial integer
least-squares problem (5). That is, the set of bounds consisting of the first j-number of
bounds of (4) characterizes the partial ambiguity search space :



@y, -ag,) -Qé-ul,(dm -a,) < x* - : (6)
Thus, a search based on these first j-number of bounds will allow us to solve for the
partial integer least-squares problem (5).

Now that we have defined the concept of the partial ambiguity search space, it is for the
purpose of this contribution of interest to count the number of integer ambiguity vectors
(or number of integer candidates) that are contained in these #n-number of partial ambiguity
search spaces. The relevance of knowing how the number of candidates behaves as
function of the level j, with j running from 1 up to and including », is that it gives an
indication on how well the search for the integer least-squares solution will perform. For
instance, a decreasing function shows that the number of candidates decreases with an
increase in level. This implies then, that for a number of integer candidates
a, =(aa,,..a)" of level j, no integer a;,, can be found such that a. =(a(]),aj*l)‘ is an
integer candidate of level j+1. As a result, the search will exhibit the property of halting
[8]. And the likelihood that the search halts will be more pronounced the steeper the
decrease in function value is. ’
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Figure 1: The number of candidates a,, =(a,,a,,..,a)" per partial search space j=1,2,..,12.

Figure 1 shows a representative plot of the number of candidates as function of the level
Jj, with j running from 1 up to and including n=12. Note the logarithmic vertical scaling.
The plot is based on dual-frequency data for a single baseline using carrier-phases only,
observing 7 satellites over an observational time span of 1 second, with the a priori
standard deviation of the L, and L, data chosen as o =3mm and the x> set at the value
of 100. We observe that the function increases from level 1, that it reaches its maximum
at level 3 and that it from then on strictly decreases. This behaviour of the function is very
typical for the GPS double-difference ambiguities. The fact that the function reaches its
maximum at level 3 is because only a single three dimensional baseline is solved for. Due
to the sharp decrease in function value when going from level 3 to level 4, the search for
the integer least-squares solution of the double-difference ambiguities will unfortunately
suffer from a high likelihood of halting. As a result, one will experience in practice that



the computational efficiency of finding the integer least-squares estimates of the double-
difference ambiguities will be rather poor.

4. WHY IS THE SEARCH FOR THE DOUBLE-DIFFERENCE AMBIGUITIES
. SO INEFFICIENT?

In the previous section it was shown that in case of GPS the halting problem of the search
for the integer least-squares ambiguities is indeed a very serious one. This is particularly
true, when the double-difference ambiguity estimates are based on carrier phase data only,
collected over a short observational time span. The inefficiency of the search was
illustrated by means of the typical behaviour of the function describing the number of
integer candidates per partial search space.

Now in order to understand the reason for the inefficiency of the search, we need to
understand why the function shown in figure 1 exhibits this typical behaviour. Consider
therefore again the scalar inequalities of (4). It will be clear that each one of these
inequalities will admit less integer candidates the smaller their respective bounds are. It
follows from (4) that these bounds depend on the chosen constant 2, on the conditional
least-squares estimates d,, on their conditional variances o, and on the prev1ously
chosen integer candidates. Since the general behaviour of the “Hifiction shown in figure 1
is typical for all GPS single-baseline solutions, this general behaviour cannot be data-
driven but has to be model-driven. Hence, the typical behaviour of the function shown in
figure 1 has to be due to the characteristics of the conditional variances ¢, , i=1,..n.
And indeed, this can be clearly recognized when one considers the spe&"’tx"'ﬁm of the
conditional variances of the double-difference ambiguities.
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Figure 2: The spectrum of conditional standard deviations of the double-difference
ambiguities.

For the same configuration as used in figure 1, figure 2 shows the spectrum of conditional
standard deviations of the twelve double-difference ambiguities. The standard deviations



are expressed in cycles. Again note the logarithmic scaling along the vertical axis. The
figure clearly shows a tremendous drop in value when passing from the third to the fourth
standard deviation. There are three large conditional standard deviations and nine -
extremely small ones. The first three bounds of (4) will therefore be rather loose, while
the remaining bounds will be very tight due to the discontinuity in the spectrum. As a
consequence the potential of halting will indeed be significant when one passes from the
third bound to the fourth bound.

The discontinuity shown in the above spectrum of conditional standard deviations is typical
for the GPS double-difference ambiguities. It is intrinsically related to the structure of the
GPS carrier phase model of observation equations and the chosen parametrization in terms
of the double-difference ambiguities. - ‘

S. THE LAMBDA-METHOD

In the previous section it was explained why the search for the integer least-squares
estimates of the double-difference ambiguities performs so poorly. The method introduced
in [8] of the Least-squares AMBiguity Decorrelation Adjustment (LAMBDA), allows for
a dramatic improvement in the computational efficiency of estimating the integer
ambiguities. In this section the underlying principles of the method are briefly discussed
and some numerical results illustrating its performance are presented.

As indicated in the previous section, it is the large discontinuity in the spectrum of
conditional variances that prohibits an efficient search for the integer least-squares
estimates. The search would therefore improve considerably in efficiency if we would be
able to eliminate the discontinuity in the spectrum and lower the values of the large
conditional variances. One trivial way of flattening the spectrum would of course be to
include more information in the model. This can be reached either through the use of a
longer observational time span or through the use of additional GPS observables such as
the code observations. It will be shown however, that also without the use of any
additional data, a very significant improvement in the spectrum can be reached.

The basic idea that lies at the root of the method is, that integer least-squares estimation
of the ambiguities becomes trivial once all the least-squares ambiguities are fully
decorrelated. In case of GPS however, the least-squares ambiguities are usually highly
correlated and their ambiguity search space is usually extremely elongated. This is
particularly true in case of short observational time spans and in the absence of precise P-
code data. As a consequence the spectrum of conditional standard deviations of the double-
difference ambiguities will exhibit a large discontinuity as illustrated in figure 2. The
essence of the LAMBDA-method is therefore to aim at a decorrelation of the least-squares
ambiguities such that the large discontinuity of the spectrum is removed. As a result the
original integer least-squares problem is reparametrized such that an equivalent formulation
is obtained, but one that is much easier to solve.

In order to explain the underlying principles of the method, we first need to know the



admissible class of ambiguity transformations. This.is an important issue, since it must be
guaranteed with each and any of the reparametrizations applied, that the integerness of the
ambiguities remains preserved. In [11] the class of admissible ambiguity transformations
was identified. It was shown that ambiguity transformations are admissible if and only if
they are volume preserving and have entries which all are integer.

With the admissible ambiguity transformations identified, we can concentrate on the
property of decorrelation. Consider therefore the two-dimensional ambiguity search space
as shown in figure 3. The search space is elongated and its principal axes are not aligned
with the grid axes. A full decorrelation of the two ambiguities can be reached if we replace
the second ambiguity estimate d, by the conditional least-squares estimate 4,
Geometrically this can be realized, if we push the two horizontal tangents of the ellipse
from their original level inwards to the +(0'. 2)’ level. While doing this, we keep the
area of the ellipse constant and also the location of the two vertical tangents constant. The
ellipse so obtained is less elongated and it has its principal axes aligned to the grid axes.

Figure 3: Decorrelating ambiguities by pushing tangents

Although the above transformation guarantees a full decorrelation, it is unfortunately not
admissible. The estimate d,), can namely not be interpreted as an unbiased estimate of an
integer. Fortunately we can repair this situation quite easily. The idea is therefore to use,
as an admissible transformation, the integer approximation of the above fully decorrelating
transformation. The price we have to pay for the guarantee of integerness is of course that
the full decorrelation property is not retained anymore. But although a full decorrelation
is now out of the question, one can proof that a significant decrease in correlation can still
be achieved [8]. This is possible through the use of a sequence of the above transformation
in which each time the role of the two ambiguities is interchanged.

When the above principles are generalized to the n-dimensional case, the decorrelation of
the least-squares ambiguities results in a transformation from the original ambiguity vector
4 and its variance-covariance matrix Q. to the new ambiguity vector Z and its variance-
covariance matrix Q,. The transformed ambiguities will then be much less correlated and
the variance-covariance matrix Q, will be much closer to diagonality than the original
variance-covariance matrix Q And as a consequence of the volume-preserving property

together with the decrease in correlation, the spectrum of conditional variances of the



transformed ambiguities will be largely flattened.
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Figure 4: The original and transformed spectrum of conditional standard deviations.

Based on the same data as used before, figure 4 shows both the original and the
transformed spectrum of conditional standard deviations. The dramatic improvement in the
spectrum is clearly shown. The large discontinuity has been removed and the transformed
conditional standard deviations are all of about the same small order.

Now that the original ambiguity vector 4 has been transformed to the new ambiguity

vector 7, we can again apply the principle of sequential conditional least-squares

estimation and parametrize the ellipsoidal inequality (3) in terms of the transformed
ambiguities as '

F Gy -zlo, <. | ™
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The corresponding set of n scalar inequalities which is used for the search reads then
(¢,-z,)) < o, %
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Due to the lowered and flattened spectrum of conditional variances, the search for the
integer least-squares solution based on (8) can now be executed in a highly efficient
manner. To illustrate how the method has succeeded in reducing the halting problem and
thereby- improving the efficiency of the search, the number of transformed integer
candidates are shown in figure 5 as function of the level j. The corresponding numerical
values are given in table 1.
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Figure 5: = The number of transformed integer candidates z ;=(2,,2,,---2;)" per partial

search space j=1,2,..,12 (solid line).

level j # candidates a, # candidates z,
1 1082 3
2 . 1984219 8
3 8.23 %108 19
4 4.77 # 0% 43
5 1.4 %108 84
6 33376533 146
7 7516578 | 223
8 1674159 331
9 261118 . 469
10 40999 616
11 6641 803
12 966 966
Table 1: The number of integer candidates in the original and transformed partial

search spaces.

Based on these results, the following observations can be made. First we note that the
original and transformed ambiguity search spaces both have an identical number of integer
candidates, namely 966. This is as it should be and is a consequence of the volume
preserving property of the ambiguity transformation. Secondly, we observe that for the first
eleven levels the numbers of integer candidates in the transformed partial search spaces
are very much smaller than the corresponding numbers of integer candidates in the original
partial search spaces. For instance, at the first level we only have 3 integer candidates for
z,, as opposed to the 1082 integer candidates for a,. This is due to the lowering of the



spectrum of conditional variances which results in a drastic improvement in precision of
the ambiguities. And finally we note that the number of transformed integer candidates is
strictly increasing as function of the level. This is due to the removal of the discontinuity
from the original spectrum of conditional variances. As a result of the above properties,
the search for the transformed integer least-squares ambiguities commences with tight
bounds and is largely freed from the potential problem of halting, thus assuring that the
solution can indeed be found in a highly efficient manner.
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