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ABSTRACT

The purpose of this contribution is to give a brief
review of the least-squares ambiguity decorrelation
adjustment as it was introduced in [1]. Starting from
the principle of integer least-squares estimation, it is
first discussed why the search for the traditional
integer double-difference (DD) ambiguities performs
so poorly in case of short observational time spans
using carrier phase data only. This is supported by
means of some ;eprésentative results about the
precision, correlation and spectrum of the DD-
ambiguities. Then the possibilities are explored for
using ambiguities other than the traditional DD-
ambiguities. This leads to the admissible class of
ambiguity transformations. It is then indicated how a
decorrelating ambiguity transformation can be
constructed. Its construction is based on an integer
approximation of the conditional least-squares
transformation. Finally it is demonstrated how the
method succeeds in decorrelating the ambiguities,
thereby making a highly efficient search for the
transformed integer least-squares ambiguities possible.

1. INTRODUCTION

The GPS observables are code-derived pseudorange
measurements and carrier phase measurements, which
can be available on both of the two frequencies L, and
L,. In particular the very low noise behaviour of the
carrier phase measurements makes high precision
relative positioning possible. However, since the GPS-
receivers only provide relative measurements of phase
from the start of signal tracking, the carrier phase data
are biased by an unknown integer number of

wavelengths, known as the phase ambiguities. A pre-
requisite for obtaining high precision relative
positioning results, based on carrier phase data, is
therefore that the phase ambiguities become
sufficiently separable from the baseline coordinates.
Such a separability is achieved when carrier phase data
are used that correspond to sufficiently differing
receiver-satellite geometries. But since GPS satellites
are in very high altitude orbits, their relative positions
with respect to the receiver change slowly, which
implies that long time spans between the first and the
last collected carrier phase data are necessary so as to
ensure separability. A large reduction in the time span
is possible however, if one explicitly aims at resolving
for the integer-values of the ambiguities. In the last
couple of years, importaht progress has been made in
this area of integer ambiguity fixing, see e.g. [2-6].
The inclusion of fast ambiguity resolution algorithms
has for instance made rapid static surveying with GPS
possible. Nevertheless, it is still expedient to seek
ways of improving the efficiency of the various
components of the ambiguity fixing process. At the
1993 IAG General Assemblee in Beijing, China, a new
method for the fast estimation of the integer double-
difference (DD) ambiguities was introduced [1]. This
method of the least-squares ambiguity decorrelation
adjustment (LAMBDA) has been developed so as to
transform the original integer least-squares problem
into an equivalent problem, but one that is much easier
to solve. The purpose of this contribution is to give a
brief review of the method and to demonstrate its
capabilities. In section two the relationship between
the integer and noninteger least-squares problem is
discussed. This relationship is established using the
principle of conditional least-squares estimation. In
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sections three and four, some of the statistical
characteristics of the least-squares DD-ambiguities are
discussed. They are the precision, correlation and
spectrum of the DD-ambiguities. Based on these
characteristics it becomes clear why the search for the
integer least-squares DD-ambiguity estimates performs
so poorly when short observational time spans are
used. Sections five and six deal with the method itself.
In section five it is shown what type of regular
transformations on the DD-ambiguities are admissible.
Some examples are given. Finally in section six it is
demonstrated how the method succeeds in
decorrelating the ambiguities, thereby retuming
ambiguities with a largely flattened spectrum and a
dramatically improved precision. As a result, the
search for the transformed integer least-squares
ambiguities can be performed in a highly efficient
manner. '

2. INTEGER AND NONINTEGER LEAST-
SQUARES

As starting point of our discussion we take the
linear(ized) system of observation equations

y = Aa+Bb+e (M

where:

y : is the vector of observed minus computed
DD carrier phase measurements,

a : is the vector of unknown integer DD
ambiguities, :

b : is the vector that contains the increments of
the unknown baseline components,

A,B : are the design matrices for ambiguity terms
and baseline components, and,

e : is the vector of measurement noise and

unmodelled errors.

Our estimation criterion for the determination of the
unknowns a and b will be based on the principle of
least-squares. The least-squares criterion for solving
the linear(ized) system of observation equations reads

min |y-4a-Bb|g , @
ab

where |5 = ()°Q,'(), @, is the variance-
covariance matrix of the DD carrier phase observables.

Z" is the n-dimensional space of integer numbers and
R?®is the 3-dimensional space of reals. The
minimization problem (2) would be an ordinary
unconstrained least-squares problem if all the
parameters were allowed to range through the space of
reals, i.e. if

acR” and beR’® ©))

would hold. In our case however, we do have the
additional information that all the DD-ambiguities are
integer-valued. Instead of (3), we therefore have

acZ" and beR? . @

The minimization problem (2) together with. (4) is
referred to as an integer least-squares problem. It is a
constrained least-squares problem due to the integer-
constraint aeZ”. The solution of the integer least-
squares problem will be denoted as & and 4. The
solution of the corresponding unconstrained least-
squares problem will be denoted as & and 4. The
estimates @ and b are sometimes also referred to as
the "float solution”, and & and b as the "fixed
solution”. As it was shown in [1], the objective
function of (2) can be decomposed into the following

sum of (n+2) squares

|y-4a-Bb|G = 1+1+101, )
with
I = |eélg,
I = E(diu_af)z/ca(iu,im ’
m = |bla-b]g,
and where
é = y-Aa-Bb
i-1
4 = di‘jg"a(ul/)"ﬁf]fwm(djw"aj)’

bla = 6-0;,0,'(d-a) .
In this decomposition, é is the unconstrained least-
squares residual vector, &, is the least-squares
estimate of the ith-ambiguity conditioned on a, up to
and including a; |, with o, , being its variance, and

bla is the least-squares estimate of the baseline vector
conditioned on a. Note that the estimates 4,, follow
from a sequential conditional least-squares adjustment

on the ambiguities.



The above decomposition has the advantage that it
easily allows us to relate the noninteger least-squares
problem to the integer least-squares problem. Let us
first consider the noninteger least-squares problem. In
that case, acR” and beR’ need to be chosen such
that the quadratic form of (5) is minimized. Varying
beR’ only has an effect on the third term III in the
decomposition. Both I and II are independent of
beR’. Hence, the value of b that needs to be chosen
is the one that minimizes III. The minimum value of
III is clearly III = 0 and it is obtained when b is
chosen to be equal to 5|a. Let us now vary acR”.
Varying acR” only has an effect on the second term
II. The first term I is independent of a and the third
term III will remain zero when b is taken to be equal
to b|a. Hence, the value of a that needs to be chosen
is the one that minimizes II. A closer look at the n-
number of squares of II shows that II is minimized
when the a, are chosen to be equal to the 4, for
i=1,..,n. With this choice also II reduces to zero.
Furthermore, it follows when a is chosen to be equal
to d, that b=h|a reduces to b=>5b|d. This shows
therefore that 4 and b are indeed the minimizers of
the noninteger least-squares problem. And since II =0
and III = 0, the corresponding minimum of the
objective function follows as

min |y-4a-Bblg = |é]g . ©6)

acsR"beR?

Let us now consider the integer least-squares problem.
In this case we have aeZ” and beR®. The
decomposition of (5) shows that we can again consider
the two squares II and III separately. That is, the
minimizer for g follows from minimizing II and the
minimizer for b follows from minimizing III. Starting
with b we can again make III equal to zero if we
choose 4 as 5 |a. In case of a however, we now have
the integer-constraint aeZ”. This implies, since the
sequential conditional least-squares estimates a,, are
generally real-valued, that II cannot be made equal to
zero. The values of a; that minimize II are denoted as
a,. With these values the corresponding estimate for b
becomes 5=54|4. In case of the integer least-squares
problem we thus have III = 0 and for the
corresponding minimum of the objective function:

min |y -4a-Bb

aeZ"beR

IZQ, = "é" é,+’_§(éi|1_‘ii)z/o'a(iu,im'

Q)
Above, the relationship between the integer least-
squares problem and the noninteger least-squares
problem was shown. The ordinary least-squares
estimates @ and 4 can be computed using standard
procedures. Also the estimate of b, being 5|d, can be
computed quite easily once 4 is known. For the
computation of the integer minimizers 4, however, no
standard procedure is available. The bottleneck in
finding the solution for the integer least-squares
problem (7) is therefore given by

®

min % (4, ~a)/ G -
aeZ =l

And this is particularly true in case the integer DD-
ambiguities a, need to be estimated for short
observational time spans based on carrier phase data
only. In order to solve (8), a search for the integer
least-squares ambiguities is performed which is based

on the following set of bounds [1]

(a,-d, < 1Gqpx* for i =1,..n €))

i

where
i-1
L= (-0 and X0y = L(a=d,)0 0y,
-

It is assumed that the positive constant y? has been
chosen such that the region (9) at least contains the the
sought for integer least-squares solution. As it was
remarked earlier the estimates 4, follow from a
sequential conditional least-squares adjustment on the
ambiguities. It is because of this adjustment that we
are in the position to formulate sharp and successive
bounds on the individual ambiguities. They form the
basis of our search for the integer ambiguities [1].

3. ON THE PRECISION OF THE DD-
AMBIGUITIES

In order to highlight some of the difficulties one will
face when computing the integer least-squares DD-
ambiguities, we first will discuss in this and the
folowing section some characteristics of the precision,

correlation and spectrum of the DD-ambiguities. Our

example is based on a 100 metre baseline with a 7
satellite configuration, using dual-frequency carrier



phase data only. The skyplot of the satellite
configuration is shown in figure 1. The results that
will be shown are based on the use of two epochs
separated by 1 second. The a priori standard deviation
of both the L, and L, carrier phases was set at the
value of o =3mm. Correlation in time and correlation
between the channels were assumed to be non-existent.

SKYPLOT (Azimuth vs Elevation)

North

South

Figure 1: Skyplot of the 7 satellite configuration.
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Figure 2: The standard deviations of the twelve least-
squares DD-ambiguities.

Since GPS satellites are in very high altitude orbits,
their relative positions with respect to the receiver
change slowly, which implies in case of short
observational time spans, that the DD-ambiguities -
when treated as being real-valued - become very
poorly separable from the baseline coordinates. As a

result, the precision with which both the baseline and
DD-ambiguities can be estimated will be rather poor.
This is particularly true in the absence of precise P-
code data. For our example the precision of the twelve
DD-ambiguities is shown in figure 2. Note that the
precision of the least-squares DD-ambiguities is indeed
rather poor since their standard deviations range from
64 cycles to 519 cycles.

One can of course improve the precision of the DD-
ambiguities by considering a longer observational time
span. The reason for choosing for our example the
short observational time span of 1 second using the
minimum number of two epochs, is, that we aim at
applications in which near real-time results are
required. One can of course also improve the precision
of the DD-ambiguities through the inclusion of code-
observations. In that case the minimum number of
epochs required reduces in principle from two to one.
For our example however, we have chosen to exclude
the precise code-observations. This has been done for
two reasons. First of all, it may indeed happen in
practical applications that one lacks the availability of
the precise code-observations. The second reason for
excluding the code-observations in this contribution is
to accentuate the performance of the LAMBDA-
method when it is based on the minimal amount of
information. Hence, the results that will be shown in
section 6 are obtained without the help of any code-
observations. In [7] however, it is shown and discussed
what the extra input of the precise code-observations
brings in terms of improving the computational
performance of solving the integer least-squares
problem.

Based on the above precision results, one may be
inclined to conclude that the poor precision of the DD-
ambiguities will have a detrimental effect on ones
ability to solve for the ambiguity fixing problem: Here
however, some remarks of caution are in order. As it
was stressed in [8], it is important that one
distinguishes between the following two problems of
GPS-ambiguity fixing:

1. The ambiguity estimation problem, and

2. The ambiguity validation problem.



The first problem, which is the topic of the present
contribution, is simply concerned with ones ability to
solve for the minimization problem (8). Hence, it deals
with ones ability to compute the integer least-squares
ambiguities. It has therefore nothing to do in principle
with the quality of the computed integer least-squares
solution. One will namely always be able to compute
an integer least-squares solution, whether it is of poor
quality or not. The question is however, how efficient
this computation can be performed. The second
problem of above depends on the outcome of the first
and is concerned with the question whether one is
willing to accept the computed integer least-squares
solution. This second problem is therefore, in contrast
to the first, completely dependent on both the quality
of the computed solution and the criteria formulated
for accepting the solution.

With the above distinction made, one can conclude
that a poor precision of the DD-ambiguities will affect
the validation-problem, but not necessarily the
estimation-problem. To.make this clear, consider first
the problem in one dimension. A DD-ambiguity of
poor precision will generally admit more integer
candidates than a very precise DD-ambiguity. Hence,
it will be more difficult to validate an integer value
stemming from a DD-ambiguity of poor precision, then
one stemming from a very precise DD-ambiguity. The
effort however, of computing the most likely integer
value will be the same for both cases in this one
dimensional example.

The fact that the precision of the DD-ambiguities in
itself not necessarily affects the estimation-problem
can also be carried forward to the n-dimensional case.
First consider the case in which the least-squares
ambiguities are of a very high precision. Let us for
instance assume that their standard deviations are all
very much smaller than one cycle. One may then
perhaps be inclined to believe that the search for the
integer least-squares estimates of the ambiguities can
be replaced by a simple rounding of the least-squares
ambiguity estimates to their nearest integers. This
however, is not true. That is, even if the ambiguities
are of a high precision, it is not guaranteed that one
will find the integer least-squares solution by means of
a simple rounding to the nearest integer.

Secondly we consider the case that the least-squares

estimates of the ambiguities are of a very poor
precision. In addition we assume that the variance-
covariance matrix of the DD-ambiguities is diagonal.
In that case all ambiguities are correlation-free and the
integer least-squares problem (8) reduces to

minz(al —c‘zl)z/o'd(l'l) +.+(a, —&")Z/csd(nﬂ) . (10)
In this case the objective function has been reduced to
a sum of independent squares, implying that we can
work with » separate scalar integer least-squares
problems. Hence, in this case the integer least-squares
solution sought does follow from a simple rounding of
@, to the nearest integer. And this effort is clearly
independent of the individual values the variances
Oy, MAY take.
4, ON THE CORRELATION AND

SPECTRUM OF THE DD-AMBIGUITIES

From the above we can conclude that the integer least-
squares problem becomes trivial, when all the DD-
ambiguities are fully decorrelated. In reality however,
the DD-ambiguities are highly correlated. Based on the
same data as used above, figure 3 shows a histogram
of the absolute values of all the DD-ambiguity
correlation coefficients.

correlation coefficients

20 T
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Figure 3: Histogram of the absolute values of the DD-
ambiguity correlation coefficients

With 7 satellites and dual-frequency carrier phase data,
the number of DD-ambiguities equals twelve. Hence
the number of correlation coefficients equals sixty-six.
The figure clearly shows that the majority of the



correlation coefficients are larger than a half in
absolute value. And quite a few of them are even very
close to one in absolute value.

conditional st dev [cyc] - ambiguities a
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Figure 4: The spectrum of conditional standard
deviations of the DD-ambiguities.

A measure of the diagonality of the variance-
covariance matrix @, is given by the ambiguity
decorrelation number ~,. It was introduced in [1] as
rl = det(R,), with R, being the correlation matrix of
the DD-ambiguities. In two dimensions we have
ri = 1-p2, with p, being the ambiguity correlation
coefficient. Since the ambiguity decorrelation number
r, is complementary to the correlation coefficients, the
variance-covariance matrix @, is diagonal when r,
equals one and it is far from diagonality when r, is
close to zero. Due to the usual high correlation
between the DD-ambiguities, the ambiguity
decorrelation number r, is typically very close to zero.
For our example it equals r,=2.998 *107¢. Other
numerical examples of typical values that r, may take
are given in [9].

The ambiguity decorrelation number also provides us
with a means of linking the correlation of the DD-
ambiguities with the bounds of the intervals of (9) as
used in our search for the integer least-squares
solution. As it was shown in [1], the ambiguity
decorrelation number squared equals the product of all
n-number of ratios of conditional variances and
corresponding unconditional variances: ri= T G101 »!
O ThIS shows, since the variances are all 'of about
the same order and r, is typically very small due to
the high correlation, that at least some of the

conditional variances G, must be very small
indeed.

The spectrum of the conditional standard deviations of
the DD-ambiguities is shown in figure 4. The figure
clearly shows that quite a few of the conditional
standard deviations are indeed very small. There are
three large conditional standard deviations and nine
extremely small ones. The shape of the spectrum as
shown in figure 4 is very typical for GPS relative
positioning. It is a consequence of the intrinsic
structure of the carrier phase model of observation
equations and the chosen parametrization in terms of
the DD-ambiguities. The implication of the
discontinuity in the spectrum for the search of the
integer least-squares DD-ambiguities is as follows.
Since the first three conditional variances are rather
large, the first three bounds (i=1,2,3) of (9) will be
rather loose. Hence, quite a number of integer triples
will satisfy these first three bounds. The remaining
conditional variances however are very small. The
corresponding bounds of (9) will therefore be very
tight indeed. This implies, when we go from the third
to the fourth ambiguity that we have a high likelihood
of not being able to find an integer quartet that
satisfies the first four bounds. Hence, the potential of
halting is very significant when one goes from the
third to the fourth ambiguity. As a consequence a large
number of trials are required, before one is able to find
an integer n-tuple that satisfies all » bounds. This is
therefore the reason why in case of short observational
time spans with carrier phase data only, the search for
the integer least-squares DD-ambiguities performs so
poorly.

S. THE CLASS OF ADMISSIBLE
AMBIGUITY TRANSFORMATIONS

In the previous section some characteristics of the
statistical properties of the DD-ambiguities were
discussed in order to illustrate the cause for the poor
performance of the search for the integer least-squares
estimates of the DD-ambiguities. The LAMBDA-
method aims at removing the drawbacks that are
associated with the use of the traditional DD-
ambiguities. The idea is to reparametrize the original
integer least-squares problem (8) such that an



equivalent formulation is obtained, but one that is
much easier to solve. The reparametrization is
achieved through a transformation of the original DD-
ambiguities to a new set of ambiguities. In this section
the class of admissible ambiguity transformations is
briefly reviewed. For more details on the
characteristics of the ambiguity transformations, the
reader is referred to [10].

Let the transformed ambiguities, their least-squares
estimates and corresponding variance-covariance
matrix be given as ‘

z=2Z"a:=2%60,=2'Qz, 11

with Z being an n-by-n matrix of full rank. It follows
then that (G-a)*Q;'(G-a) = (¢-2)"Q;'(¢-2).
However, in order to be allowed to replace the original
integer least-squares problem (8) with -the
reparametrized integer least-squares problem

(12)

n
min ¥ (Z,

-7\
i Z’.) /0'5
zeZ =l

LD
we need to be sure that the two minimization problems
are truely equivalent. As it turns out, this is not the
case if we only require Z to be of full rank. What is
needed in addition is the guarantee that the integerness
of the ambiguities remains preserved under the
transformation with matrix Z* . A first consequence of
this requirement is that all the entries of the matrix Z
need to be integer. The integer entries of Z together
with the integerness of the DD-ambiguity vector a
guarantees then that all the entries of z are integer as
well. The requirement that all entries of Z need to be
integer is however still not sufficient. This follows
from the fact that the entries of « need not be integer
even when all the entries of both z and Z are integer.
Such a situation is clearly not acceptable, since it
could imply that an integer fixing of the transformed
ambiguities based on solving the reparametrized
integer least-squares problem (12), corresponds to a
fixing of the original DD-ambiguities on non-integer
values. The second consequence of having to guarantee
that the integerness of the ambiguities remains
preserved is therefore that also all the entries of the
inverse of Z need to be integer.

In [10] it has been proven that the above given
restrictions on Z are indeed necessary and sufficient. In

order to get some feeling for the ambiguity
transformations that are admissible, some examples for
both the single-channel and multi-channel case will be
given. Let the DD-ambiguity vector a consist of pairs
of L,-and L,-ambiguities related to the same satellite
and let Z be partitioned as Z=diag(Z,,Z,,,...Z,,).
Examples of admissible ambiguity transformations on
the single-channel level are then

2 1 -1 2 1 -1
22 0 1 22 4 _5 ’

L

1]
1]

: ,
T R 53 -68
# -7 o9f P |1 9

It is easily verified that the entries of the inverses of
these matrices are all integer. This shows for instance
that it is allowed to pair the wide-lane ambiguity to the
L,-ambiguity. Note however, that it is not allowed to
pair the wide-lane ambiguity to the narrow-lane
ambiguity. In that case namely, we would have

. 1 -1 R 172 172
Zy = 11 and (Zzz) = >

-172 172

showing that the entries of the inverse are non-integer.
Examples of admissible ambiguity transformations on
the multi-channel level are for instance the class of all
permutation matrices and the class of transformations
that change the choice of reference satellite in the DD-
ambiguities. Also note, that once certain ambiguity
transformations are identified, other ambiguity
transformations can be derived from them by
performing certain matrix operations, like inversion,
transposition and multiplication.

6. THE LEAST-SQUARES AMBIGUITY
DECORRELATION ADJUSTMENT

In section 4 we have seen that the search for the
integer least-squares solution suffers from the fact that
the spectrum of conditional variances of the DD-
ambiguities shows a large discontinuity. The aim of
the LAMBDA-method is therefore to construct a
decorrelating ambiguity transformation Z that flattens
the spectrum of conditional = variances. In two
dimensions the ambiguity transformation is constructed
from a sequence of integer approximations of the



conditional least-squares transformation. They are of
the form

-1
A I 0 or Z* = 1 —[Ga(l,z)cd(Z,Z)

—[0-5(2_1)0-;()1,1)] 1 0 1

(13)

where [.] stands for "rounding to the nearest integer".
In the n-dimensional case a similar line of thought is
followed. For further details on the method, the reader
is referred to [1].

Application of the method to the data of our example
resulted in the following multi-channel ambiguity
transformation

-5 3 7 1-1-2 6-6-5203 0
2 1 -6 3-1-1-6-5 8 4-3 2
2 1 3-3 3 -3 9 -5 -2 01
2 4 1 -2-6-11 2-5-4 8 4
S -1 -2 -4 52 7-4 3 0 0 -1
N -1 -5 4-9 3 2 7 57
0 -6 2 3 3 -7 2 0-1-2 6
2 4 4 -32-4-3-6 2 4 6 1
-1 -2 4 2 -1 5-4 9 1 -3 -3 =2
4 5 -1 1 -1 -1 4 -2 7 -4 4 -
3-3-3 3-1-15 2 1-8 4 1
0 1 -1 2 3-3 1-2 4-3-2 2

Note that Z* is truely a multi-channel transformation.
Every new ambiguity is formed as a linear
combination of all original DD-ambiguities. Although
the way in which this transformation is constructed
guarantees its admissibility, the integerness of all
entries of the inverse of Z* is also easily verified
numerically. The inverse of Z* reads namely

-i99 -190 -353 -507 -199 489 118 380 -190 340 113 -1051
240 86 -154 127 272 41 82 -41 195 -27 -127 36
-675 -430 -308 -1019 -738 -856 359 711 -557 571 394 -1744
95 -27 -267 -208 91 -258 1i8 258 136 136 4 -562
136 118 290 186 68 195 -86 0 299 -240 41 498
-1078 -643 -231 -1585 -1250 -1282 5 1205 -729 761 729 -2514
-i55 -148 -275 -395 -155 -381 92 296 -148 265 88 -819
187 67 -120 99 212 32 64 -32 152 -21 -99 28
-526 -335 -240 -~794 -575 667 46 554 —434 445 307 -1359
74 -21 -208 -l162 71 -201 92 201 106 106 3 -438
106 92 226 145 53 152 67 0 233 -187 32 388
-840 -501 -180 -1235 -974 -999 4 939 -568 593 568 -1959

@y =

In order to illustrate the performance of the above
given decorrelating ambiguity transformation, we first
consider the correlation of the transformed ambiguities.
Based on the same data as used earlier, figure 5 shows
the two histograms of the absolute values of the
correlation coefficients of the DD-ambiguities 4, and

the transformed ambiguities Z,. It follows upon
comparing the two histograms that the ambiguity
transformation has indeed achieved a large decrease in
correlation between the ambiguities. None of the
correlation coefficients Py, 1s close to £l and the
largest is even smaller than a haif in absolute value.
The fact that the correlation has been largely reduced
is also clear when we consider the decorrelation
number of the transformed ambiguities. It reads
r,=0.087.

Parallel with the decorrelation of the ambiguities also
the precision of the ambiguities gets dramatically
improved. As it was shown in [1], the square of the
ratio of the decorrelation numbers equals the reciprocal
of the product of the ratios of corresponding variances.
That is, 73/r; = mo,,,/0,,,. This shows, sincer,/r,
is very small indéed, that the product of transformed
variances must be very much smaller than the product
of variances of the DD-ambiguities. In fact, since r, is
of the order 107% and r, of the order 107, it follows
with n=12 that the improvement of the standard
deviations is on the average of the order 0.001. This
dramatic improvement can clearly be seen from figure
6.

To accentuate the fact that the transformed ambiguities
are indeed of a very high precision, table 1 gives an
overview of the least-squares ambiguity estimates
themselves, all expressed in cycles. These results are
based on the same data as used before. Shown are the
ordinary noninteger least-squares estimates of both the
original DD-ambiguities, 4,, as well as the transformed
ambiguities, Z,. Also shown are the corresponding
integer least-squares estimates, 4, and Z, and the
differences between the noninteger and integer
solution. The given ’two epochs, one second’ integer
least-squares solution was validated by means of a
comparison with an integer least-squares solution
based on thirty minutes of data. The high precision of
the transformed ambiguities can clearly be seen from
the table. In fact, for this particular case a simple
’rounding to the nearest integer’ of the least-squares
estimates of the transformed ambiguities already would
suffice for finding the correct integer least-squares
solution. But as it was remarked earlier, a high
precision of the ambiguities is generally no guarantee
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Figure 5:  Histograms of |p, .| and [p,,,]|.
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Figure 6: Standard deviations of the original and transformed ambiguities.

a a a-a z 4 z-zZ
-380.85 -401.00 20.15 384.99 385.00 -0.01
-298.02 -300.00 1.98 -717.90 -718.00 0.10
-197.23 -229.00 31.77 776.05 776.00 0.09
-478.31 -496.00 17.69 ’ -87.03 -87.00 -0.03

307.75 306.00 1.75 1247.04 1247.00 0.04
-221.60 -276.00 54.40 -180.94 -181.00 0.06
-296.30 -312.00 15.70 471.01 471.00 0.01
-231.46 -233.00 1.54 716.14 716.00 0.14
-153.24 -178.00 24.76 -919.09 -919.00 -0.09
-372.19 -386.00 13.81 492.85 493.00 -0.11

240.36 239.00 1.36 491.83 492.00 -0.17
-171.60 -214.00 42.40 376.92 377.00 -0.08

Table 1: The noninteger and integer least-squares estimates of the original and transformed ambiguities.
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Figure 7: Original and transformed spectrum of conditional standard deviations.

that the integer least-squares solution is found by
means of a simple rounding to the nearest integer.
Hence, even if the ambiguities are of a high precision,
only a search as advocated in section 2 guarantees that
the integer least-squares solution is indeed found.

To conclude, we will finally consider the spectrum of
conditional standard deviations. As it was shown in
section 4, the original spectrum contained a large
discontinuity when passing from the third to the fourth
conditional standard deviation. The first three
conditional standard deviations were rather large,
whereas the remaining nine conditional standard
deviations were very small indeed. And it was due to
this large drop in value of the conditional standard
deviations that the search for the integer least-squares
ambiguities was hindered by a high likelihood of
halting. Figure 7 shows both the original and
transformed spectrum of conditional standard

deviations.

The improvement in the spectrum is clearly visible
from figure 7. The discontinuity has disappeared and
all conditional variances are now of the same small
order. The original three large conditional standard
deviations are pushed down to much smaller values
and the original nine small conditional standard
deviations have increased somewhat. That the original
nine small conditional standard deviations have to
increase somewhat in value when the first three are
pushed down, is a consequence of the fact that the

product of these conditional standard deviations
remains invariant under ambiguity transformations [1].
In fact it is the presence of the very small conditional
standard deviations in the original spectrum that allows
us to significantly decrease the three large values. This
therefore makes quite clear what role is played by
satellite redundancy and dual frequency data. When
both are absent, we only have three DD-ambiguities
and their conditional standard deviations will all be
large. Hence, in that case the absence of the small
conditional variances prohibits us to a high degree
from bringing the spectrum down to much smaller
values. In case of satellite redundancy and/or dual
frequency data however, the presence of the very small
conditional variances allows us to flatten the spectrum
to a much lower level, as is shown in figure 7. As a
result, the search for the transformed integer least-
squares ambiguities, based on sequential bounds
similar to those of (9), can be executed in a highly
efficient manner.
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