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Abstract

The Global Positioning System (GPS) double-difference

carrier-phase data are biased by an integer number of cycles.

In this contribution a new method is introduced that enables

very fast integer least-squares estimation of the ambiguities.

The method makes use of an ambiguity transformation that

allows one to reformulate the original ambiguity estimation

problem as a new problem that is much easier to solve. The

transformation aims at decorrelating the least-squares

ambiguities and is based on an integer approximation of the

conditional least-squares transformation. And through a

flattening of the typical discontinuity in the GPS-spectrum of

conditional variances of the ambiguities, the transformation

returns new ambiguities that show a dramatic improvement

in precision in comparison with the original double-difference

ambiguities.
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1 Introduction

Nonlinear optimization, nonlinear least-squares and densities

of nonlinear estimators are a trilogy of problems that are

intimately related in the framework of estimation or

adjustment of geodetic data. The description of physical

phenomena generally proceeds through models in which a

mapping, A, is defined, from a set of parameters, N, to a set

of experimental outcomes, M. M is supposed to contain the

image of the map A. The usual assumptions are that the

map A is sufficiently smooth and that both the spaces M

and N are continuous subspaces of Rm and Rn respectively.

And indeed many of our geodetic estimation problems can

be described as such. But not all! In particular it may

happen that we know a priori that some of the parameters

of interest have a discrete-like nature and are therefore not

allowed to range through the whole of R. If this happens to

be the case, standard gradient-like algorithms, such as for

instance the Gauss-Newton method as used for solving

smooth nonlinear least-squares problems fail to hold.

Therefore alternative methods need to be devised for

solving estimation problems in which N is of a discrete-like

nature.

An important estimation problem where the parameters fail

to range through the whole of R occurs in the field of GPS

phase-data processing. The GPS double-difference phase

ambiguities are known to be integer valued. And it is this

a priori information that one would like to incorporate in

the estimation procedure so as to improve the precision of

the result. This is a non-trivial problem if one aims at

numerical efficiency. And indeed, this topic has been a rich

source of GPS-research over the last decade or so, see e.g.

[2-8], [10], [17]. Starting from rather simple but time-

consuming integer rounding schemes, the methods have

evolved into complex and very efficient search algorithms.

Nevertheless, at present times, it is still opportune to seek

ways for improving the efficiency of the various search

methods. This is in particular true for the real-time

applications of GPS. But, to a certain extent, this is also

true for some typical static applications of GPS. Because, if

we are really able to significantly reduce the computational

effort for estimating the integer ambiguities, it may also

become worthwhile to tackle problems that have dimensions

higher than the one’s considered so far. And in particular

this could open the way of treating all ambiguities of the

various baselines in a GPS-network simultaneously.
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The present study was initiated by the desire to obtain a

better understanding of existing ambiguity search algorithms

and through this, to obtain a better grip on the nature of the

intrinsic difficulties that are associated with the problem of

GPS-ambiguity fixing. And in particular, improve the

computational speed of integer estimation. This would then,

hopefully, also lead to ways of improving existing methods

of GPS-ambiguity fixing. Based on our numerical

experiences sofar, we believe to have succeeded in

formulating such an improved method of GPS-ambiguity

fixing. Our proposal, which in part is based on existing ideas,

is presented in section 5 and section 6, and is summarized in

section 7.

Our proposal is based on a one-to-one transformation from

the original double-difference ambiguities to a new set of

integer ambiguities. And the essence of the method is that

this reparametrization enables one to obtain new ambiguities

which have a smaller variance and that are less correlated.

The idea of transforming the double-difference ambiguities is

of course not completely new. It can be recognized in the

transformation from the L1- and L2- ambiguities to the wide-

lane ambiguity. This trans-formation, however, is not one-to-

one. Also this trans-formation is enacted at the level of a

single channel and therefore does not take into account the

presence of the receiver-satellite geometry. The idea of

transforming the double-difference ambiguities can also be

recognized to some extent in the customary practice of

choosing that reference satellite which has a favourable

influence on the precision of the double-difference

ambiguities. In fact, as will be shown in the sequel, the one-

to-one transformation from one set of double-difference

ambiguities to another set having a different satellite as

reference, belongs to the class of admissible transformations

that will be considered in the sequel.

In order to properly judge the significance of the present

contribution, it is important that one distinguishes between

the following two problems of GPS-ambiguity fixing. First

one has the problem of finding ways, preferably efficient

ways, for fixing the ambiguities. This in fact is the estimation

problem. Secondly, one has the problem of validating the

fixed values of the ambiguities. This is the testing problem.

And for a proper evaluation of the validity of the fixed

ambiguities one will need the probability densities of the

corresponding estimators; reference is made to the

discussions in e.g. [2] and [13]. Although the procedures for

validating the fixed ambiguities which are currently in use in

practice, appear to work satisfactory, it is the author’s

opinion that a sound theoretical basis for these validation

procedure is still lacking. As a case in point, consider the

customary practice of ambiguity validation. Usually the

fixed ambiguities are validated by testing the ratio of the

quadratic forms of residuals belonging to the most-likely

and second most-likely integer candidates. This ratio is then

tested against a critical value computed from an F-

distribution. But this is incorrect, because of the stochastic

dependency that exists between the two quadratic forms.

Despite the importance of proper validation procedures, the

present contribution only addresses the first problem and not

the second. Hence, we will only be concerned with the

problem of finding a numerically efficient way for

estimating the integer ambiguities. There is therefore no

harm in stressing, if the data is contaminated with

unmodelled effects, that our method, efficient as it may be,

might still come up with the wrong ambiguities.

Although the material of this contribution is intended for

solving GPS-ambiguity fixing problems, we have tried, for

those who are not too familiar with the typical intricacies of

GPS, to refrain as much as possible from the use of

standard GPS-terminology. The presentation is therefore

cast in the framework of adjustment-theory and the problem

of GPS-ambiguity fixing based on the least-squares

criterium is formulated as an integer least-squares problem.

Also detailed derivations of results are avoided in the paper.

They will be taken up in a future presentation [15]. Instead

we keep to the basic ideas involved and try to motivate the

main results by appealing to intuition and stochastic or

geometric interpretations.

This paper is organized as follows. In section 2 we briefly

review the standard linear and nonlinear least-squares

problem, and emphasize the (differential) geometric

interpretation that can be given to least-squares problems

[14].

In section 3 we introduce and define the integer least-

squares problem. Again the geometric interpretation is

emphasized. For reason of simplicity we assume the map A:

Rn → Rm to be linear. This also allows an easier access to

the more intricate details of the integer least-squares

problem. It is shown how an integer least-squares problem

can be decomposed into parts. This is shown both for the

hybrid as well as for the non-hybrid case. The

decomposition is based on the theorem of Pythagoras and

allows one to solve the problem in two steps. The first step

is rather straightforward and amounts to an ordinary least-

squares adjustment. The second step comprises the

minimization of a non-homogeneous quadratic form over
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the set of integers. And it is with this second step that the

intricacy of the problem manifests itself. The stepped-wise

approach agrees with the approach that is usually taken in

case of GPS-ambiguity fixing. Since the minimizer of the

original integer least-squares problem is shown to be identical

to the integer minimizer of the quadratic form, the remaining

part of the sequel will focus on finding ways of solving for

this integer minimizer.

The sections 4, 5 and 6 are closely related. In each one of

these three sections a concept for solving integer least-

squares problems is presented. The concepts of section 4 and

section 5 have already been in use, in one form or another,

for fixing GPS-ambiguities. The reason for including these

two concepts is not only because they are of importance in

their own right and that they reveal clearly the intricate

nature of integer least-squares problems, but also because

they pave the way for a proper discussion of the material of

section 6.

The first concept is reviewed in section 4. It is based on the

idea that an ellipsoidal region can be described by using the

infinite set of ellipsoidal planes of support. This approach is

very similar to the use of simultaneous confidence intervals

in statistics for multiple comparisons [11]. Within the context

of GPS-ambiguity fixing the method of Frei is based on it

[6]. In this section it is shown how a finite subset of the

infinite ellipsoidal planes of support can be used for selecting

integer candidates from which then the sought for integer

minimizer is chosen.

The second concept, which is based on the completion of

squares of a quadratic form, is reviewed in section 5. This

concept makes use of a triangular decomposition of the

positive-definite matrix that describes the ellipsoidal region.

This allows one then to come up with bounds for the integer

candidates that are sharper in general then the bounds derived

in the previous section. It is shown how these bounds can be

employed for the formulation of an efficient search

algorithm. Within the context of GPS-ambiguity fixing,

examples of approaches that, in one form or another, make

use of a triangular decomposition, are [2], [5] and [17]. The

method of Wübbena [17], resembles the approach of the

present section most. The method of Euler/Landau, [5],

however, still uses an a priori chosen rectangular search

window. That is, the triangular decomposition is not used for

selecting integer candidates, but instead, it is used after a

candidate set has been selected, for efficiently eliminating

candidates.

Our proposal for efficiently solving the estimation problem

of GPS-ambiguity fixing is presented in section 6. First the

idea of reparametrization is introduced. It is argued that the

integer least-squares problem becomes easier to solve if the

reparametrization can achieve a scaling and rotation of the

ellipsoidal region that will result in a region which has its

principal axes (almost) parallel to the grid axes. The

objective is thus, to decorrelate the least-squares ambiguities

and to diagonalize their variance-covariance matrix. For

GPS, this is in particular of relevance when only short

timespan carrier-phase data is used. The ambiguities will

then be extremely correlated, their confidence ellipsoid will

be extremely elongated, and the spectrum of conditional

variances of the ambiguities will then show a large

discontinuity. In fact, it is the discontinuity in the spectrum

of conditional variances, that prohibits an efficient search

for the integer least-squares ambiguities. Although the aim

is to decorrelate the ambiguities, true diagonality of the

variance-covariance matrix will be difficult to reach. This

is due to the fact that only a particular class of ambiguity

transformations is admissible. They need to be integer and

volume-preserving. Based on an integer approximation of

the conditional least-squares transformation, a decorrelating

two-dimensional transformation, which is both integer and

volume-preserving, is introduced in subsection 6.3. It

returns ambiguities with an improved precision and

guarantees that the correlation coefficient stays sufficiently

bounded. To tackle the n-dimensional problem, the two-

dimensional transformation is repeatedly applied to pairs of

conditional least-squares estimates of the ambiguities. This

approach has been motivated by the presence of the typical

discontinuity in the GPS spectrum of ambiguity conditional

variances and is based on ideas from [9]. The success of

our method is largely due to the presence of the

discontinuity. And this discontinuity in the GPS-spectrum of

ambiguity conditional variances also stipulates the relevance

of satellite-redundancy and the use of dual-frequency data.

By removing the discontinuity with the ambiguity

transformation, the spectrum is flattened and lowered, and

transformed ambiguities are obtained that show a dramatic

improvement in precision. As a result the search for the

transformed integer least-squares ambiguities can be

performed in a highly efficient manner.
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2 Least squares

The problem of least-squares can be formulated as the

minimization problem:

where: and Qy is positive-

(1) min
x

y A(x) 2, x∈R n ,

A:R n→R m (m≥ n); 2 ( ) Q 1
y ( )

definite. For varying values of , A(x) traces (locally) anx∈R n

n-dimensional surface or manifold embedded in Rm. With the

metric Qy
-1 of Rm, the scalar therefore equals they A(x)

distance from the datapoint y to the point A(x) on the

manifold. Hence, the problem of (1) corresponds to the

problem of finding that point on the manifold, say ŷ=A(x̂),

which has least distance to y.

There are two conditions that ŷ=A(x̂) needs to satisfy in order

for it to be a (local) solution of (1). The first condition states

that the least-squares residual vector ê=y-ŷ should be

orthogonal to the tangentspace of the manifold at the solution

ŷ. And the second condition states that the datapoint y should

lie within a hypersphere with centre ŷ and a radius equal to

the largest principal normal curvature corresponding with the

normal direction of the least-squares residual vector. Both

these conditions are necessary and sufficient. And both these

conditions are intrinsic in the sense that they are invariant to

a change of variables or a reparametrization.

If the map A(·) is nonlinear (which happens to be the case

in the majority of geodetic applications), the corresponding

manifold traced by A(x) is curved, and then generally no

direct methods exist for solving (1) (there are exceptions). In

this case one has to fall back on using iterative solution

techniques. These iteration methods, such as the Gauss-

Newton method, are usually based on repetitively solving

linear or linearized least-squares problems.

If the map A(·) is linear, the corresponding manifold traced

by A(x) is flat. In this linear case the absence of curvature

allows one to solve the minimization problem (1) explicitly.

The corresponding linear least-squares estimates are given by

the well-known formulae:

where: matrix PA is the orthogonal projector that projects

(2) ŷ PAy, ê P ⊥
A y,

x̂ A PA y, ê 2 P
⊥

A y 2,

onto the range space of A and along its orthogonal

complement; ; and A- is an (arbitrary) inverse ofP ⊥
A I PA

A. The estimates ŷ, ê and are all unique, and theê 2

estimate x̂ is unique if and only if the linear map A has full

rank n.

In the remaining of the sequel we will assume the map A to

be linear. This does of course restrict the focus of our

discussion somewhat. But it is of importance to first

understand the linear case before the nonlinear case can be

tackled.

3 Integer least squares

A least-squares problem is said to be of the integer-type if

the parameters are constrained to integer values. The

problem of integer least-squares can therefore be formulated

as the minimization problem:

Compare with (1) and note that Rn has been replaced by Zn.

(3) min
x

y Ax 2, x∈ Z n.

In order to describe the integer least-squares problem

geometrically, consider the standard grid of coordinate lines

in Rn. This standard grid is mapped by A into a new, but

non-standard oblique grid in the data space Rm. This new

grid is superimposed on the flat manifold spanned by the

columnvectors of A. The set of gridpoints of this grid equals

the set that follows when Zn is mapped under A. Hence, it

is from this mapped set of gridpoints in the manifold that

points should be chosen as possible candidates for solving

(3). In fact, the point of this mapped set of gridpoints that

has the least distance to the given datapoint ,y∈R m

minimizes the constrained objective function of (3). In the

linear case there are at most such points; in the nonlinear2n

case however, there may be even more. Once such a point

has been found, the corresponding parameter vector may be

obtained through an inverse mapping of A. And this solution

is unique if A has full rank n. Note however that in some

cases the solution may still be unique even if A is not of

full rank. This happens if the set ,x∈R n x z u, Au 0

where z is an integer minimizer of (3), has only one point

in common with Zn, namely z. In the following we will

assume A to be of full rank.

The integer least-squares problem (3) may be decomposed

in two parts. In order to show this we apply Pythagoras to

get the following decomposition of the objective function of

(3):

The second term on the right-hand side equals the squared-

(4) y Ax 2 PAy Ax 2 P ⊥
A y 2.

norm of the least-squares residual vector ê. Since this term

is independent of the parameters, the minimizer of (3) is

identical to the minimizer of
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Hence, the two problems (3) and (5) are equivalent in

(5) min
x

PAy Ax 2, x∈Z n.

the sense that the parameter vector that minimizes (3) also

minimizes (5), and vice versa. From this follows that the

solution of (3) can be obtained in two steps. In the first step

an ordinary least-squares estimation is performed. This

amounts to replacing y in (3) by its least-squares estimate PA

y. This then gives (5), which is solved in the second step.

Once the minimizer of (5) has been found, the minimum

value of the original objective function is obtained by adding

the squared-norm of the least-squares residual vector to the

minimum value of the objective function of (5).

In the above discussed integer least-squares problem the

complete parameter vector x was constrained to lie in Zn. It

may also happen however that only some, but not all, of the

parameters are constrained to integer values. In that case we

are in a hybrid situation where, with , we havex ( x1 ,x2 )

and . The integer least-squares problem (3)x1∈R n1 x2∈Z n2

is then replaced by

But also this integer least-squares problem can be

(6) min
x1 ,x2

y A1x1 A2 x2
2 , x1∈R n1 , x2∈ Z n2 .

decomposed into parts. First we introduce a reparametrization

through the one-to-one transformation

With this reparametrization we may now replace (6) by

(7)










x
1

x2













I
n1

(A1 Q 1
y A

1
) 1 A1 Q 1

y A
2

O In2











x
1

x2

where . Analogous to (4), we can then

(8) min
x1,x2

y A1x1 A2x2
2 , x1∈R n1, x2∈Z n2,

A2 P ⊥
A1

A2

decompose the objective function of (8) as

Since the second term on the right-hand side is independent

(9) y A
1
x

1
A

2
x

2
2 P

A
(y A

1
x

1
A

2
x

2
) 2 P ⊥

A y 2 .

of the parameters we only need to consider the first term for

the minimization. With , this first term can bePA PA1
PA2

further decomposed as

Hence, it follows from (9) and (10), that (8) may be written

(10)
PA (y A1x1 A2x2 ) 2

P
A1

(y A
1
x

1
) 2 P

A2

(y A
2
x

2
) 2 .

as

From this decomposition follows then how one can proceed

(11)
min

x1 ∈R n1,x2∈Z n2

y A1x1 A2x2
2 P⊥

A y 2

min
x1∈R n1

PA1
y A1x1

2 min
x2 ∈Z n2

PA2
y A2x2

2 .

to obtain the x1- and x2-minimizers of (6). First the x2-

minimizer is obtained from solving the integer least-squares

problem

Hence, in the hybrid case, (12) takes over the role of (5).

(12) min
x2

PA2
y A2x2

2 , x2 ∈Z n2 .

Once the x2-minimizer is known, the x1-minimizer can be

computed as follows.

Note that since the second term on the right-hand side of

(11) equals zero, the corresponding minimizer is given as
^

. This estimate together withx1 (A1 Q 1
y A1 ) 1 A1 Q 1

y y

the x2-minimizer allows one then to compute the x1-

minimizer through the use of transformation (7). In the

remaining of the sequel we will assume for reasons of

simplicity to have a non-hybrid integer least-squares

problem. Hence, we will consider (3) instead of (6).

Decomposition (4) implies that as far as the minimizer of

(3) is concerned we may as well start from the

minimization problem (5). If x̂ is the least-squares estimate

of x, then PAy= Ax̂ and (5) may be written as

where and .

(13) min
x

x̂ x 2
Q

x̂
, x ∈Z n,

2
Q

x̂
( ) Q 1

x̂ ( ) Q 1
x̂ A Q 1

y A

As was pointed out already in the previous section, the

minimization problem (13) may not have a unique solution.

Although it is very unlikely that (13) has more than one

solution, it is possible in principle that (13) has up to2n

different minimizers. Still however, we will assume in the

present sequel that (13) has one and only one solution. Our

motivation for this assumption stems from the way the

integer least-squares problem is applied in the context of

GPS-ambiguity fixing. If x stands for the vector of double-

difference ambiguities, a non-unique solution for (13) will

namely imply that a reliable fixing of the ambiguities is not

feasible. In the remaining of the sequel we will focus on

solving (13).

Unfortunately there are in general no standard techniques

available for solving (13) as they are available for solving

ordinary least-squares problems. As a consequence one has

to resort to methods that in one way or another make use of

5



a discrete search strategy for finding the minimizer of (13).

The idea is to use the objective function of (13) for

introducing an ellipsoidal region in Rn, on the basis of which

a search is performed for the minimizer of (13). The

ellipsoidal region is given by

Through the selection of the positive constant χ2 the size of

(14) (x x̂) Q 1
x̂ (x x̂)≤ χ2.

the ellipsoidal region can be controlled. However, already

with the selection of χ2 care has to be excersized. A small

value for χ2 may result in an ellipsoidal region that fails to

contain the minimizer of (13). And a too large value for χ2

may result in a region for which the search for the minimizer

becomes too time-consuming. Unfortunately it is difficult to

formulate a data-independent criterion for selecting χ2, that

ensures that the region contains one or more gridpoints. This

is due to the fact that the ellipsoidal region is centered at

and not centered at a gridpoint of Zn. Would the latterx̂∈R n

be the case, then the volume of the ellipsoid could be used

to set a reference value for χ2. It can namely be shown that

for the case , the ellipsoidal region (14) would at leastx̂∈Z n

contain one gridpoint other than x̂ if its volume is larger than

or equal to 2n (which is the volume of the cube xi ≤1,

i=1, ,n). In our case an alternative approach has to be taken.

One approach would be to round all the individual

coordinates of x̂ to their nearest integer, substitute the so

obtained vector for x in the left-hand side of (14) and then

take χ2 to be equal to the function value of the quadratic

form. This approach at least ensures that (14) contains

minimally one gridpoint. However, the so obtained value for

χ2 may also be overly conservative. And this may occur

especially when the ellipsoidal region is extremely elongated

(which is typically the case with GPS when the observational

timespan is short). In the context of selecting χ2, it is of

interest to note that our numerical experiments indicate that

the volume of the ellipsoidal region (14) gives a good

approximation to the number of integer vectors that lie within

the ellipsoidal region. This suggests that one could use the

volume of the ellipsoidal region as indicator to decide

whether or not the scalar χ2 should be scaled down or scaled

up.

An alternative and from a statistical testing point of view

more appealing approach would be to rely on and to make

use of the statistical distribution of the least-squares estimator

of x. If the observables are normally distributed with mean

Ax and variance matrix Qy, then the quadratic form of (14)

has a central Chi-square distribution with m-n degrees of

freedom (it is a central F-distribution if Qx̂ has been scaled

with the a posteriori variance factor). As reference value for

χ2 one may now choose χ2 to be equal to the α-percentage

point of the Chi-square (or F-) distribution. With this choice

for χ2 one is of course not certain that (14) indeed contains

a gridpoint. But the choice does ensure that (14) contains a

grid point with probability 1-α. This gridpoint is the mean

of the least-squares estimator of x.

The above shows that one should give some consideration

to the way χ2 is selected. If the only objective is to solve

the minimization problem (13), then χ2 should be chosen in

a way that guarantees that (14) contains the minimizer. If

however the objective is also to statistically validate the

minimizer, then the approach based on the α-percentage

point of the Chi-square (or F-) distribution can be used.

Because, if α is chosen small enough and (14) still fails to

contain a grid point, then the minimizer of (13) can be

considered to be invalidated.

From now on it will be assumed that a value for χ2 has

been selected. With this value for χ2 the ellipsoidal region

(14) is then taken as the point of departure for developing

a search strategy to obtain the minimizer of (13). Different

search strategies are possible and some of them have in fact

been proposed already in the GPS-literature. In the

following we will review two of such concepts that already

have been in use for GPS ambiguity fixing. They are based

on using the planes of support of an ellipsoid and on

completing a quadratic equation to squares. These two

concepts are reviewed in sections 4 and 5.

4 Ellipsoidal planes of support

One way of finding the minimizer of (13) is to identify first

the set of gridpoints that satisfy the inequality (14) and then

to pick that gridpoint that gives the smallest function value

for the quadratic form. However, the quadratic form of (14)

can not be used as such to identify the set of candidate

gridpoints. The idea is therefore to replace inequality (14)

with an equivalent description that is based on using the

planes of support of the ellipsoid. This equivalence can be

constructed as follows: Let a be an arbitrary vector of Rn

and let x-x̂ be orthogonally projected onto a. The orthogonal

projection (where orthogonality is measured with respect to

the metric ) of x-x̂ onto a is then given as:a(a*Q x̂
-1a) -1Qx̂

a*Qx̂
-1(x-x̂). And the square of the length of this vector reads:

[a*Qx̂
-1(x-x̂)]2/(a*Q x̂

-1a). Now, since the length of the

orthogonal projection of a vector onto an arbitrary direction

is always less than or equal to the length of the vector
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itself, we have

From this follows then, when a is replaced by Q x̂c, the

(x x̂) Q 1
x̂ (x x̂) max

aεR n

[a Q 1
x̂ (x x̂)]2

a Q 1
x̂ a

.

equivalence

Both type of inequalities describe the same ellipsoidal region.

(15) (x x̂) Q 1
x̂ (x x̂) ≤χ2⇔ [c (x x̂)]2

c Q x̂c
≤χ2,∀c∈R n.

In the second type we recognize c*(x-x̂)= ±(c*Qx̂c)½ χ,

which is the pair of parallel planes of support of the ellipsoid

having vector c as normal. The above equivalence therefore

states that the ellipsoidal region coincides with the region that

follows from taking all intersections of the areas between

each pair of ellipsoidal planes of support. Hence, in order to

find the candidate gridpoints that satisfy (14) we may as well

make use of the ellipsoidal planes of support.

When working with the above equivalence for our purposes,

there are however two restrictions that need to be

appreciated. First of all, the above equivalence only holds for

the infinite set of planes of support. But for all practical

purposes one can only work with a finite set. Working with

a finite set implies however that the region bounded by the

planes of support will be larger in size than the original

ellipsoidal region. Of course, one could think of minimizing

the increase in size by choosing an appropriate set of normal

vectors c. For instance, if the normal vectors c are chosen to

be in the direction of the major and minor axes of the

ellipsoidal region, then the resulting region will fit the

ellipsoid best. But here is where the second restriction comes

into play. One simply has no complete freedom in choosing

the planes of support. Their normals c should namely be

chosen such that the resulting interval [c*(x-x̂)]2 ≤ c*Qx̂c χ2

can indeed be used for selecting candidate grid points. Hence,

the normals c can not be chosen arbitrarily.

The simplest approach to the above would be to submit

oneselves to this situation and to choose the normals to be

parallel to the grid axes. When the normals are chosen as ci=

(0, , 1, 0, , 0)*, with the 1 as the ith-coordinate, the region

bounded by the planes of support becomes

where is the variance of the least-squares estimator of xi.

(16) (xi x̂i)
2 ≤ σ2

x̂
i
χ2, i 1, ,n,

σ2
x̂ i

The intervals of (16) can be used to select candidate grid-

points from which then the minimizer of (13) can be chosen.

Although the approach based on (16) is certainly a valuable

one, it will be clear that it can become quite time-

consuming when the region defined by (16) is significantly

larger than the original ellipsoidal region. And this will

definitely be the case when the ellipsoid is both elongated

and rotated with respect to the grid axes. Of course, one can

reduce the size of the region by introducing additional

planes of support. For instance, in addition to ci=

(0,...,1,0,...,0)* , admissible choices for the normals are the

sum or differences of ci and cj, i, j=1, ,n, i≠j. And

depending on the elongation and orientation of the ellipsoid,

this may indeed significantly reduce the size of the region

enclosed by the planes of support. The problem remains

however that this way of including additional planes of

support is somewhat ad hoc and need not necessarily lead

to a significant reduction in size of the region.

One conclusion that can be drawn from the above

discussion is that the efficacy of the method depends to a

large extent on the elongation and orientation of the

ellipsoid. This observation has been the motivation for

developing the method that will be discussed in section 6.

First however we will review another interesting concept

that already has been in use, in one form or another, for

GPS ambiguity fixing. This concept is based on completing

the square of a quadratic equation, or phrased in statistical

terms, it is based on a sequential conditional least-squares

adjustment.

5 Conditional Least-Squares

When use is made of the planes of support as previously

discussed, all bounds (such as in (16)) are set prior toσ2
x̂

i
χ2

the actual search. That is, the setting of the bounds is

independent of the search process. One may wonder

however whether it is not possible to keep adjusting these

bounds during the search process. For instance, let x be

partitioned as x=(x1
*, x2

*)* and assume that already candidate

integers have been found for the elements of x1. Then

clearly it is possible to formulate new bounds for the

elements of x2 that are sharper in general than the original

bounds in the previous section. And as it turns out, this idea

can be implemented very efficiently when use is made of

completing the square of a quadratic equation.

In order to describe the method we will start with the two-

dimensional case first. Let the two-dimensional ellipsoidal

region be given as

(17) ax 2
1 2bx

1
x

2
cx 2

2 ≤ χ2 ,

7



where a>0, c>0, ac-b2>0. For the moment we simply assume

the ellipse to be centered at the origin. When we use the

approach of the previous section and apply (16), the two

bounds for x1 and x2 follow as

and

(18)
x 2

1 ≤










1

0











a b

b c

1









1

0
χ2 χ2/(a b 2/c),

Bound (18) is the sharpest possible bound for x1 when

(19)
x 2

2 ≤










0

1











a b

b c

1









0

1
χ2 χ2/(c b 2/a).

nothing is known about x2. Similarly, bound (19) is the

sharpest possible bound for x2 when nothing is known about

x1. But each of these bounds can be improved once the other

parameter is known. This can be seen when (17) is

completed to a sum of squares . Completing the square of

(17) gives

And from this follows that one can bound x1 as

(20) a(x1
b

a
x2)

2 (c b

a

2
)x 2

2 ≤ χ2.

This shows, since a≥ a-b2/c and x2
2≥0, that except for the

(21) (x1
b

a
x2)

2 ≤ c b 2/a

a











χ2

c b 2/a
x 2

2 .

trivial case b=0, the bound of (21) is always sharper than the

bound of (18). Advantage can therefore be gained from

replacing (18) by (21). And this gain may be considerable

when the ellipse is elongated and rotated with respect to the

grid axes. Since the bound of (21) depends on x2, first (19)

should be used to come up with an integer candidate for x2.

This step is then followed by (21) for determining an integer

candidate for x1. Once a pair of integer candidates has been

found, a new and smaller reference value for χ2 can be

computed. This enables us then to shrink the ellipsoidal

region and to perform a renewed search for integer

candidates. In this way one can efficiently scan the ellipsoidal

region to locate the sought for minimizer of (13).

In order to generalize the above to the multi-dimensional

case, we first note that (20) can be written in vector-matrix

form as

(22)











x
1

x2











1 0

b/a 1











a 0

0 (c b 2/a)











1 0

b/a 1











x
1

x2

≤ χ2.

This shows that completing the square corresponds to a

triangular decomposition. Also note that with

the inequality of (20) can be written as











a b

b c











σ2
1 σ

12

σ21 σ2
2

1

,









1 0
b /a 1











1 σ12σ
2

2

0 1
, and











a 0

0 c b 2/a











(σ2
1 σ2

12 /σ2
2)

1 0

0 1 /σ2
2

,

and the two inequalities (19) and (21) can be written as

(23) (x̂
1 2

/σ
1 2

)2 (x
2
/σ

2
)2 ≤ χ2 ,

in which we recognize the conditional least-squares estimate

(24) x 2
2 ≤ σ2

2χ2 and x̂ 2
1 2 ≤

σ2
1 2

σ2
2

(σ2
2χ2 x 2

2 ),

and its variance . Thisx̂1 2 x1 σ12σ
2

2 x2 σ2
1 2 σ2

1 σ2
12 /σ2

2

shows that the triangular decomposition corresponds to a

conditonal least-squares adjustment [1], [12]. To generalize

we therefore will use a sequential conditional least-squares

adjustment for the multi-dimensional case.

A sequential conditional least-squares adjustment (or an

LDU-decomposition of , starting with a conditioningQ 1
x̂ )

on and ending with a conditioning on , will then inxn x1

analogy to (23) give for the multi-dimensional case,

From this and in analogy to (24), we can construct the

(25)
n

i 1

(xi x̂i i 1, ,n)
2 /σ2

i i 1, ,n ≤ χ2 .

following bounds

with

(26) (x
i

x̂
i i 1, ,n

)2 ≤ λ
x̂i

σ 2
i i 1, ,nχ2 , i 1, ,n,

Here we have made use of the notation to denote

(27) λ x̂
i











1
n

j i 1

(x
j

x̂
j/j 1, ,n

)2

σ2
j/j 1, ,nχ2

.

x̂i i 1, ,n

the least-squares estimate of conditioned on fixingx i

.xj, j i 1, ,n

Compare (26) with (16). Since clearly 0≤λi≤1, and since a

conditional variance is always smaller than or equal to its

8



unconditional counterpart, it follows that theσ2
i/i 1, ,n≤σ2

x̂
i

,

bounds of (26) (or (23)) are always sharper than or at least

as sharp as the bounds of (16).

Also note the regularity in the above bounds. The bound for

x i is equal to the gap in the previous bound times the ratio

. The above set of inequalities can now beσ2
i i 1, ,n /σ2

i 1 i 2, ,n

used as follows for solving (13). First a candidate integer is

determined for xn using the first bound. This candidate

integer is then used to compute the second bound, from

which a candidate integer for xn-1 is determined. This process

is continued up to the point that a complete vector x with

candidate integer coordinates is constructed. With this vector

one can then shrink the ellipsoidal search region and perform

a renewed search within the shrunken ellipsoidal region.

Repeated application of the above steps will then finally lead

to the minimizer of (13). Note that the renewed search need

not necessarily commence with xn. If for instance it is known

that due to the shrinking of χ2, the integers xn, xn-1..., xk-1 are

the only candidates, the renewed search may commence with

xk.

It may happen that the above procedure halts before a

complete candidate vector x has been found. This occurs

when the size of the bound is such that no candidate integer

lies within the interval. If this happens to be the case, one

should return to the previous bound and increase (or

decrease) the previously found candidate integer by one.

From there on one can then continue again.

It can be deduced that the bounds of (26) have the tendency

to become smaller as the index i gets smaller. Clearly λi gets

smaller as the index i gets smaller. But generally also

has the tendency to get smaller as the index i getsσ2
i/i 1 , ,n

smaller. The more constraints are included the smaller the

conditional variance gets. This tendency can also be

explained if we interpret geometrically. It can beσi/i 1, .. ,n

shown that

where: ai is the ith-column vector of matrix A, A(i) is the

σ 2
i i 1, ,n P ⊥

A(i)
a

i
2 a

i
2sin2α

i
,

matrix that follows from taking the first (i-1)-number of

column vectors from A and α i is the angle between vector ai

and the range space of matrix A(i). Now, the angle αi will

have the tendency to become smaller the larger the dimension

of the range space of A(i) gets. In fact the angle will be zero

when the dimension of the range space equals n. Therefore,

when the lengths of the column vectors of matrix A are

approximately constant, also will have the tendencyσ 2
i i 1, ,n

to decrease when the index i gets larger.

The above suggests that in order to reduce the potential of

halting, it may be worthwhile to order the elements of x̂

according to their (conditional) precision. Because, even if

the bound of (26) is small at a certain level i=l, halting will

not take place as long as is sufficiently pushedx̂ l/l 1 , ,n

towards an integer value. But this requires that the

previously chosen integers xi, i=l+1, ,n, are indeed

coordinates of an integer vector x that lies within the

ellipsoidal region. And the probability that this will be the

case is higher the better the precision of these elements is.

The problem that the search for the integer candidate vector

halts, is a serious one in case of GPS carrier-phase

processing. For a single baseline model, it can namely be

shown, see [15], that the spectrum of conditional variances

of the ambiguities, for , has a large dis-σ2
i i 1, ,n i n, ,1

continuity when passing from to . Inσ2
n 2 n 1,n σ2

n 3 n 2,n 1,n

fact, one can show that σ2
j j 1, ,n < < σ2

i i 1, ,n for j 1, ,n 3

and . This implies, since the first three boundsi n 2, n 1, n

of (26) will be rather loose, that quite a number of integer-

triples satisfy these bounds. But, this on its turn implies,

when we start working with the fourth bound, which is very

tight due to the steep decrease in value of the conditional

variances, that we have a high likelihood of not being able

to find an integer candidate that satisfies this fourth bound.

The potential of halting is therefore very significant when

one passes from the third to the fourth bound. As a

consequence a large number of trials are required, before

one is able to move on to the next bound. And it is this

inefficiency, that will be tackled by our method proposed in

the next section. The method that will be introduced in the

next section, overcomes the problem of halting, through a

flattening and a lowering of the level of the GPS spectrum

of ambiguity conditional variances.

6 The integer GPS ambiguity transformation

6.1 The idea of reparametrization

In the previous two sections we have dealt with two ways

of solving the integer least-squares problem (5) (or (13)).

First the use of the ellipsoidal planes of support was

discussed. But as was pointed out, the bounds that follow

from using the ellipsoidal planes of support can be rather

conservative, in particular when the ellipsoid is elongated

and rotated with respect to the grid axes. Moreover, these

bounds are fixed from the outset. This observation then led

9



to the idea to introduce adjustable bounds, bounds that are

made dependent on the stage of progress of the search

process. These bounds were obtained through a sequential

conditional least-squares adjustment, which resulted in the

introduction of the conditional least-squares estimates

. And it was shown that these bounds arex̂ i/i 1 , ,n , i 1, , n

indeed much less conservative. Up to this point however, we

have been working solely on the basis of representation (14).

But one may wonder whether it is not possible to obtain a

further improvement in the search process, if one can replace

(14) with an alternative but equivalent representation. And

this indeed turns out to be the case. A new idea of the

present section is therefore to reparametrize the integer least-

squares problem such that an equivalent formulation is

obtained, but one that is much easier and hence much faster

to solve. In order to understand what our reparametrization

should achieve, we first pause for a moment to present two

ways of visualizing the integer least-squares problem. We

will start with the data space point of view.

Assume that (if this is not the case one simply hasQy Im

to replace in the following, A by andQ ½
y A

) , and let be thePAy by Q ½
y PAy Gy y∈ R m|y Ax ,x ∈Z n

set of gridpoints that is generated by the column vectors of

A. Then (5) amounts to finding that element of Gy that has

the least (cartesian) distance to the least-squares estimatePAy

.In general this is a nontrivial problem to solve. The intricacy

of the problem stems from the fact that although the metric

is standard (Qy=Im), the grid Gy is not (the columnvectors of

A are oblique in general). The problem becomes trivial

however if in addition to the metric being standard, also the

grid is standard (or at least orthogonal). Because if this

happens to be the case, then the columnvectors of A are

mutual orthogonal and (5) can simply be solved as follows.

First the consistent system of equations

is solved for x, giving the least-squares estimate x̂. And then

PAy Ax

the minimizer of (5) is obtained from a simple rounding of

the individual elements of x̂ to the nearest integer.

The same conclusion is reached if we visualize the integer

least-squares problem from a parameter space point of view.

But contrary to the data space point of view we now have a

non-standard metric with a standard grid. In formulation (13),

x ranges namely through the standard set of gridpoints of Rn,

which is Zn, whereas distance is now measured with a non-

standard metric, namely . But as with the data spaceQ 1
x̂

point of view we again observe that (13) becomes a trivial

problem once both the metric and grid are standard. The

conclusion reads therefore that the integer least-squares

problem (5) or ((13)) can simply be solved by means of

rounding, if the columnvectors of A are mutual orthogonal,

or if the matrix is diagonal. In order to see whatQ x̂

happens to the methods of section 4 and 5, when isQx̂

diagonal, consider the following. If is diagonal, theQx̂

orientation of the ellipsoid is such that its major and minor

axes are parallel to the grid axes. And in that case the n-

dimensional rectangular box defined by (16) indeed fits the

ellipsoid best. In that case the conditional variances also

reduce to ordinary variances, and the left-hand sides of (23)

become identical to those of (16). The bounds of (23)

remain however sharper than those of (16).

Since the situation where is diagonal is the best one canQx̂

hope for in any integer least-squares problem, we will try

to find ways to come as close as possible to this ideal

situation. This in short, is the essence of the method of this

section.

6.2. The admissable ambiguity transformations

Let Z be an n-by-n matrix of full rank and define

Then

(28) z Z x , ẑ Z x̂ , Qẑ Z Qx̂Z .

The variance-covariance matrix is clearly diagonal if

(29) (x x̂) Q 1
x̂ (x x̂) (z ẑ) Q 1

ẑ (z ẑ) .

Qẑ

matrix Z contains the eigenvectors of . UnfortunatelyQx̂

however, this choice for matrix Z is not admissible in case

of our integer least-squares problem. Because, if this choice

for Z would be used, the vector in Zn that follows from

rounding the coordinates of ẑ to their nearest integer would

in general fail to produce a vector x in Zn. In other words,

if then generally . This dilemma pointsz∈ Z n x Z z∉Z n

out that only a restricted class of transformations qualifies

for reparametrizing the integer least-squares problem.

Fortunately, this class of transformations can easily be

characterized [16]. They need to be volume preserving and

have elements which are integers. Typical examples of

matrices that fall in this class are the identity-matrix and the

permutation matrices. Note that we already made use of the

permutation matrices in the previous section when ordering

the elements of according to their (conditional) precision.x̂

Also within the context of GPS double-difference ambiguity

fixing, one in fact already has been using transformations

that are volume preserving and have integer elements. This

is the case when one changes from one set of double-
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difference ambiguities to another set having a different

satellite as reference. This can be seen as follows. Take as an

example the situation that five satellites are available. The

single-difference ambiguity related to satellite i is denoted as

ai, and the corresponding double-difference ambiguity having

satellite j as reference is denoted as . The regulara (j)
i ai aj

transformation from to reads thena (1)
i a (2)

i

The transformation matrix in this expression has integer























a (2)
1

a (2)
3

a
(2)

4

a (2)
5

























1 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1























a (1)
2

a (1)
3

a
(1)

4

a (1)
5

.

elements and its determinant equals -1. Hence, it follows that

this matrix is indeed a member of the class of admissible

ambiguity transformations. In a similar way one can show

that all transformations that change the reference satellite of

the double-difference ambiguities belong to the above

mentioned class of admissible transformations.

By choosing a matrix Z from the above mentioned class, we

can now replace our original integer least-squares problem

(13) by the equivalent, but reparametrized integer least-

squares problem

And once the minimizer of (30) has been found, the

(30) min
z

(z ẑ ) Q 1
ẑ ( z ẑ ) , z∈Z n .

minimizer of (13) can be recovered from invoking .x Z z

It will be clear that because of the restrictions on Z, no true

diagonality of can be hoped for. This leaves us with twoQẑ

questions. Firstly, how to measure the non-diagonality of ,Qẑ

and secondly, how to choose matrix Z so as to obtain near-

diagonality. In order to answer the first question, we note that

the variance-covariance matrix is diagonal if and only ifQ
ẑ

its correlation matrix equals the identity matrix. That is,Rẑ Qẑ

is diagonal if and only if all elements of are fullyẑ

decorrelated. In the two-dimensional case the determinant of Rẑ

is related to the correlation coefficient as: .det(Rẑ) 1 ρ2
ẑ

This shows that for the two-dimensional case, is diagonalQ
ẑ

if and only if det( ) = 1. But, it can be shown that this alsoRẑ

holds true for dimensions higher than two [15]. We therefore

introduce as measure of diagonality of , the scalarQẑ

Since the scalar measures the decorrelation between the

(31) rẑ det(Rẑ)
1

2 (0 ≤ rẑ ≤ 1).

rẑ

elements of , it will be referred to as the decorrelationẑ

number of . The elements of are fully decorrelatedẑ ẑ

when equals one, and they are poorly decorrelated whenr ẑ rẑ

is close to zero. It follows from the triangular

decomposition of , that is related to the spectrum ofQ ẑ rẑ

conditional and unconditional standard deviations as

From the fact that the nominator in this expression is

(32) r
ẑ

Π
n

i 1

σi i 1, ,n

σ
ẑ i

.

independent of Z, since ,det(Q ẑ) det(Z Qx̂Z) det(Qx̂)

follows, that the elements of are less correlated than thoseẑ

of . Hence, the variance-x̂, rẑ > rx̂ , when σx̂
i

> σẑ
i

covariance matrix is less non-diagonal than , whenQẑ Qx̂

its diagonal elements are smaller than those of . TheQ
x̂

gain in decorrelation can be measured by the ratio

This gain can be given the following geometrical

(33) rẑ/rx̂ Π
n

i 1
σx̂

i

/σẑ
i

.

interpretation. The volume of the n-dimensional rectangular

box (16) that encloses the ellipsoidal region (14) is given as

. Similarly, the n-dimensional box that encloses the2nχnΠ
n

i 1

σ
x̂ i

ellipsoidal region defined by , has volume . ThisQ ẑ 2nχnΠ
n

i 1
σẑ

i

shows, that it is the relative decrease in volume of the n-

dimensional box, that directly measures the gain in

decorrelation. A maximum decrease in volume is achieved

when , in which case .Π
n

i 1

σ
ẑi

Π
n

i 1

σ
i i 1, ,n

r
ẑ

1

6.3 On the choice of reparametrization in 2D

In order to answer the question as to how to construct

matrix Z, we first consider the problem in two dimensions.

Let and be given asx̂ Qx̂

We now need to come up with a matrix Z, which has

(34) x̂










x̂1

x̂2

and Q x̂











σ2
1 σ12

σ21 σ 2
2

.

integer entries, which is volume-preserving, and which

allows us to decorrelate the two elements of . We alreadyx̂

know from section 5, see equation (23), that a complete

decorrelation is obtained, when is replaced by itsx̂1

corresponding conditional least-squares estimate . Thex̂1 2

transformation that achieves this, is given as
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For reasons of convenience, we have assumed the

(35)










x̂1 2

x̂2











1 σ12σ
2

2

0 1











x̂
1

x̂2

.

expectations of and to be simply zero for the moment.x̂
1

x̂
2

Note, that transformation (35) not only decorrelates, but, in

line with the correspondence between linear least-squares

estimation and best linear unbiased estimation, also returns

as the element which has the best precision of all linearx̂1 2

unbiased functions of and . Instead of using (35), wex̂
1

x̂
2

can ofcourse also interchange the role of the two entries of x̂

and use the transformation

Both of the above transformations fully decorrelate. Also

(36)










x̂1

x̂2 1











1 0

σ 21σ
2

1 1











x̂1

x̂2

.

note, that both transformations are volume-preserving. Hence,

the only condition that is still not satisfied, is the condition

that the entries of the transformation need to be integer. In

order to repair this situation, we approximate the above

transformations by replacing by , or byσ21σ
2

1 [σ21σ
2

1 ] σ12σ
2

2

, where [.] stands for "rounding to the nearest[σ12σ
2

2 ]

integer". The volume-preserving property is retained by this

integer-approximation. The decorrelation-property is however,

not retained. But still, one can show, although the integer-

approximation does not allow for a complete decorrelation,

that it allows one to improve the precision of the elements

and that it allows one to bound the correlation between the

elements when the two transformations are used in an

alternating fashion. Based on (35) and (36), the idea is

therefore to use the following two type of transformations

in which z12 and z21 are appropriately chosen integers. The

(37) Z1











1 z12

0 1
and Z2











1 0

z21 1
,

two type of transformations are applied in such a way, that

they replace the element with the poorest precision with one

that has an improved precision. Thus, when , weσ2
2 ≤ σ2

1

start with Z1
* and we choose the scalar z12 as z12 = .[σ12σ

2
2]

This gives

Then, if the precision of the first element is still not better

(38) Z1 Q x̂Z1













σ2
1’ σ1’2

σ21’ σ2
2

with σ2
1’ ≤ σ2

1.

than that of the second, , we stop, else we continueσ2
2 ≤ σ2

1’

with Z2
* and choose z21 as z21 = . This gives then[σ21’σ

2
1’ ]

Then, if the precision of the second element is still not

(39) Z2 Z1 Q x̂ Z1Z2













σ2
1’ σ

1’2’

σ2’1’ σ2
2’

with σ2
2’ ≤ σ2

2.

better than that of the first, , we stop, else weσ2
1’ ≤ σ2

2’

continue again with Z1
* and choose z12 as z12 = .[σ1’2’σ

2
2’ ]

This whole process of alternatingly using Z1
* and Z2

* finally

stops when one fails to improve the precision of the

elements. And when this happens, the correlation coëfficient

is bounded as , since then both of the inequalities,ρ2
ẑ ≤ 1

4

, are satisfied.σ1’2’σ
2

2’ ≤ 1

2
and σ2’1’σ

2
1’ ≤ 1

2

Geometrically, the above sequence of transformations can

be given the following useful interpretation. Imagine the

confidence-ellipse of . The first transformation Z1
* thenx̂

pushes the two vertical tangents of the ellipse from the

level towards the level, while at the same time±σ1χ ±σ1’χ
keeping fixed the volume (area) of the ellipse and the

location of the two horizontal tangents of the ellipse. The

second transformation Z2
* then pushes the two horizontal

tangents of the ellipse from the level towards the±σ2χ
level, while at the same time keeping fixed the±σ2’χ

volume of the ellipse and the location of the two vertical

tangents. And this process is continued until the next

transformation reduces to the trivial identity. Since the

volume of the ellipse is kept constant at all times, whereas

the volume of the enclosing rectangular box is reduced in

each step, it follows that not only the decorrelation number

gets improved, but also that the shape of the ellipse is

forced to become more sphere-like.

Once the above sequence of transformations that make up

Z* has been applied, we have , which implies for theρ2
ẑ ≤ 1

4

decorrelation number that

(40) r 2
ẑ ≥ 3/4.

This is a very significant result, since we know that the

original double-difference ambiguities are extremely

correlated when based on short timespan carrier-phase data.

From this bound also follows, together with

, thatσ2
ẑ2

≤ σ2
ẑ 1

and σ 2
ẑ1 2

r 2
ẑ σ2

ẑ1

(41) σ2
ẑ 1 2

≥ 3

4
σ2

ẑ2
.

Hence, the transformation Z* guarantees that the transformed

conditional variance will never be much smaller thanσ2
ẑ 1 2

12



the variance . But this implies, that the transformationσ2
ẑ2

removes to a large extent any discontinuity that might be

present in the original variances, . And as weσ2
x̂1 2

< < σ2
x̂2

observed earlier in section 5, this is precisely the situation

that we are confronted with in case of GPS carrier-phase

processing.

6.4 Bounding the triangular factor

In order to obtain a higher-dimensional version of Z*, we first

try to find a generalization of . In two dimensions, isZ1 x̂

transformed by asZ1

If we substitute the inverse of (35) into the right-hand side of

(42)










x̂1’

x̂2











1 [σ12σ
2

2 ]

0 1











x̂1

x̂2

.

(42) and apply the error propagation law, we get

It is the inverse of the unique LDU-decomposition of the

(43)













σ2
x̂1’

σx̂1’x̂2

σ
x̂2x̂1’

σ2
x̂2













1 ε

0 1













σ2
x̂1 2

0

0 σ 2
x̂2













1 ε

0 1
with ε ≤ 1

2
.

inverse of the variance-covariance matrix of and . Thisx̂1’ x̂2

result illustrates once again that tries to diagonalize theZ1

variance-covariance matrix, by bounding its triangular factor.

In order to generalize (43) to dimensions higher than two, we

start from the inverse of the LDU-decomposition of . ItQ 1
x̂

reads . Note that like is lowerQ
x̂

U 1D 1L 1 L, L 1

triangular having one’s on the main diagonal. Also note that

if the elements of L would be integer, then so would be the

elements of . In fact, matrix L, being integer and volume-L 1

preserving, would then be the perfect candidate to diagonalize

. One would then be able to truely diagonalize in justQ
x̂

Q
x̂

one step. This observation suggests, even though the entries

of L will be non-integer in general, that we choose the n-by-n

matrix Z1 as a lower triangular matrix, with integer entries

and with one’s on the main diagonal. Now, in order to makeZ1 Qx̂Z1

approximately diagonal, one could in first instance think, in

analogy with the two-dimensional case, of setting Z1 equal to

L after all its elements have been rounded to their nearest

integer. Unfortunately, this approach fails for the higher-

dimensional case. It can namely not guarantee that all the

non-diagonal entries of get sufficiently bounded.L 1Z
1

Fortunately, one can do better than this by means of

sweeping integer-multiples of the rows of . MatrixL Z1

can then be constructed from subtracting suitable integer

multiples of the last (n-i) rows of from row i of ,L L

for . Using this matrix , one obtainsi 1, ,(n 1) Z1

in which, in analogy with (43), the absolute values of all

(44) Z1 Q
x
Z

1
(Z1 U 1)D 1(L 1Z

1
) ,

non-diagonal elements of are guaranteed to beL 1Z1

bounded by a half. This implies, when the non-diagonal

elements of are larger than a half in absolute value,L 1

that the diagonal entries of will be smaller thanZ1 Q
x̂
Z

1

those of . Hence, the decorrelation number will undergoQ x̂

an improvement through . But note, since (44) is theZ1

inverse of the unique LDU-decomposition of the inverse of

, that all the conditional variances stay invariantZ1 Qx̂Z1

under the transformation . For the GPS-ambiguities thisZ1

implies, not only that the variance remains large, butσ2
n

also that the discontinuity in the spectrum of conditional

variances, which is so distinctive of GPS carrier-phase

processing, stays untouched. Hence, one should not expect

too much from the single transformation .Z1

6.5 Flattening the spectrum of conditional variances

In the two-dimensional case, the two type of trans-

formations and of (37) are used in an alternatingZ1 Z2

fashion in their construction of . Instead of and ,Z Z1 Z2

one could also say that only the type is used, but thenZ1

each time followed by a permutation of the two elements in

the vector to be transformed. This suggests for the n-

dimensional case, that we perform a re-ordering of the n-

elements after each time that the transformation of theZ1

previous subsection is applied. The difficulty that we are

faced with is however, what type of re-ordering to choose?

That is, in dimensions higher than two, different reordering

schemes are possible, all of which reduce to a simple

interchange when applied to the two-dimensional case.

Hence, no unambiguous generalization of the two-

dimensional case seems to exist.

Fortunately, in case of GPS carrier-phase processing,

already the two-dimensional scheme based on a pairwise re-

ordering, allows us to obtain results that show a dramatic

improvement over the original ambiguities. In order to make

this clear, we first need to consider the spectrum of

conditional variances. For the GPS single baseline model,

based on carrier-phase data only, we have

And it is this large discontinuity in the spectrum of

(45) σ2
x̂

j j 1, ,n
< < σ2

x̂
i i 1, ,n

for j 1, ,n 3; i n 2,n 1,n .
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conditional variances, that forms a hindrance for the efficient

search for the integer least-squares estimates. Our aim in

constructing transformation should therefore at least be,Z

to remove the discontinuity from the spectrum of conditional

variances. And a very important consequence of such a

flattening of the spectrum is, that when n>3, the three large

variances in the spectrum get reduced by a very significant

amount. The volume-preserving property of impliesZ

namely, that the product of conditional variances remains

unaffected by the transformation. Hence, by flattening the

spectrum, the presence of the very small conditional

variances automatically implies, that the three large variances

in the spectrum have to get much smaller.

This observation now also stipulates the significance of

satellite redundancy and dual frequency data. When both are

absent, we have n=3. In that case, the absence of very small

conditional variances prohibits us from "pulling down" the

large variances in the spectrum. In case of satellite

redundancy and/or dual frequency data however, we have

n>3. Now the presence of the very small conditional

variances does allow us to bring the large variances in the

spectrum down to much smaller values. And the larger n-3

is, the more we are able to bring the flattened spectrum to a

lower level.

Thus, in case of GPS carrier-phase processing, a dramatic

improvement can be realized, if we would be able to remove

the discontinuity and enforce the spectrum of conditional

variances to become much flatter. We know from subsection

6.3, see (41), that this is precisely what the transformation

does for the two-dimensional case. But this suggests forZ

the n-dimensional case, that a steep decrease in value

between two consecutive conditional variances, andσ2
x̂

i 1 i, ,n

, can be removed when the two-dimensionalσ2
x̂

i i 1, ,n

transformation is applied to the (i-1)th and ith least-Z

squares estimates both of which are conditioned on the last

(n-i) estimates: and . Thus, instead ofx̂i 1 i 1, ,n x̂ i i 1, ,n

applying the two-dimensional transformation of subsection

6.3 to the unconditional least-squares estimates, the idea is to

apply it to the conditional least-squares estimates. This would

then give, in analogy of (41),

Note that the other conditional variances remain unaffected

(46) σ2
ẑi 1 i, ,n

≥ 3

4
σ2

ẑi i 1, ,n
.

by the transformation. This is simply a consequence of the

fact that we are transforming conditional least-squares

estimates. Result (46) implies for i=n-2, that we are able to

close the large gap between the (n-3)th and (n-2)th

conditional variance. Ofcourse, after the transformation has

been applied, other, but smaller, discontinuities emerge. For

instance, if the transformation has been applied for i=n-2,

then and .But, also they canσ2
ẑ

n 2 n 1,n
< σ2

x̂
n 1 n

σ2
x̂

n 4 n 3, ,n
< σ2

ẑ
n 3 n 2, ,n

be removed by applying the two-dimensional

transformation. In fact, one can continue in this way and

flatten the complete spectrum of conditional variances.

In summary, the proposed method thus flattens the n-

dimensional spectrum of conditional variances through a

repeated application of the two-dimensional transformation

to the conditional least-squares estimates. And the largerZ

n-3 is, the lower the level of the transformed spectrum. As

a result the nth ambiguity shows a dramatic improvement in

precision, . And this can also be assured for theσ2
ẑ

n
< < σ2

x̂
n

remaining ambiguities, when the low level of the

transformed spectrum is combined with a bounding of the

triangular factor, as given in the previous subsection. Thus

the proposed method of ambiguity-transformation, returns

less correlated ambiguities with a significantly improved

precision and allows for a very efficient search for the

transformed integer least-squares ambiguities. Our numerical

experiments indicate for instance, that with dual-frequency

carrier-phase data, based on two epochs of data, with a one

second sampling interval, standard deviations of the

transformed ambiguities are obtained that usually are well

below the one cycle level.

7 Summary and concluding remarks

In this contribution a new method was introduced for

computing the integer least-squares estimates of the GPS

ambiguities. It was shown in section 3 that this problem can

be reduced to the integer least-squares problem

In case of GPS however, when short timespan carrier-phase

(47) min
x

( x̂ x) Q
1

x̂ (x̂ x) , x∈Z n .

data is used, the elements of , being the least-squaresx̂

estimates of the double-difference ambiguities, are

extremely correlated. Also the confidence ellipsoid will then

be extremely elongated. It is not uncommon for instance, to

have an elongation in the order of , when the data is104

based on two epochs, one second apart (if length of minor

axis 1 cm, then length of major axis 100 mtr.). The amount

of correlation between the ambiguities and therefore the

non-diagonality of can be measured by the determinantQx̂ r 2
x̂
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of the correlation matrix. When equals one, isrx̂ Q x̂

diagonal, and when is close to zero, then is far fromr
x̂

Q
x̂

diagonal. The scalar reads in terms of the conditionalr 2
x̂

variances and unconditional variances, as

And because of the large discontinuity in the spectrum of

(48) r 2
x̂ Π

n

i 1

σ2
x̂

i i 1, ,n

σ2
x̂ i

.

conditional variances of the ambiguities, is usuallyr x̂

extremely small. For instance, with dual-frequency data and

a satellite redundancy of only one, can be in the order ofrx̂

, when the data is based on two epochs of data, one10 19

second apart. As a result of this extreme non-diagonality of

, the efficiency in solving the above integer least-squaresQ x̂

problem is severely hindred. The idea is therefore to

reparametrize the above integer least-squares problem, such

that an equivalent formulation is obtained, but one that is

much easier to solve. By introducing the reparametrization

with being integer and volume-preserving, we obtain the

(49) ẑ z Z (x̂ x),

Z

equivalent minimization problem

with the new variance-covariance matrix . The

(50) min
z

(ẑ z) Q 1
ẑ (ẑ z) , z∈Z n ,

Qẑ Z Q x̂Z

transformed integer least-squares problem becomes trivial,

when the new variance-covariance matrix is diagonal.Qẑ

That is, when equals one. The idea is therefore to comerẑ

up with a matrix that allows to be close to one. BasedZ r
ẑ

on integer approximating the conditional least-squares

transformation, the construction of such a matrix was given

in subsection 6.3 for the two-dimensional case. It returns

ambiguities with an improved precision and guarantees,

because of , thatr 2
ẑ ≥ 3

4

From this it followed, that one can remove the discontinuity

(51) σ2
ẑ1 2

≥ 3

4
σ2

ẑ 2
.

in the spectrum of conditional variances of the original

ambiguities, by means of a repeated application of the two-

dimensional transformation to the sequential conditional least-

squares estimates of the ambiguities. As a result, the method

returns: less correlated ambiguities (for instance an

improvement from the above given to );rx̂ ≅ 10 19 rẑ ≅ 0.5

significantly more precise ambiguities (standard deviations of

the transformed ambiguities that are well below the one cycle

level are not uncommon, when dual-frequency carrier-phase

data is used, based on two epochs of data, with a one second

interval); and it allows one to perform the search for the

transformed integer least-squares ambiguities, based on

in a highly efficient manner.

(52) (z
i

ẑ
i i 1, ,n

)2 ≤ λ
ẑi

σ 2
ẑi i 1, ,n

χ2 ,

To conclude, we finish with a few remarks on some

untouched GPS issues. As it was pointed out in the

introduction, the proposed method is directed towards

solving the estimation problem of GPS-ambiguity fixing.

But still, it also bears some relation to the validation step.

This is particular true, when the validation step is based on

a comparison of the most-likely and the second most-likely

integer minimizer. With some minor changes in the search,

the method namely also allows an efficient computation of

the second most-likely integer minimizer. Also, since the

method is significantly faster than existing methods for

GPS-ambiguity fixing, the gain in efficiency leaves us room

for handling higher dimensional integer least-squares

problems. This may in particular be useful in a GPS-

network approach. And finally, we would like to point out

that the given ambiguity transformation is completely

determined by the variance-covariance matrix of the

ambiguities. Even the a posteriori variance-factor need not

be known. This stipulates that actual measurements are not

needed to perform the transformation to near-diagonality.

Hence, the necessary computations can be done in principle

at the designing stage, prior the actual measurement stage.
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