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Abstract

Real-time estimation of parameters in dynamic systems becomes increasingly important
in the field of high precision navigation. The real-time estimation requires real-time quality
control of the models underlying the navigation system. The DIA-procedure for the de-
tection, identification and adaption of model errors is particularly suited for the real-time
validation of integrated navigation systems. The DIA-procedure is completely recursive and
avoids the explicit use of a parallel bank of augmented navigation filters. Real-time testing
in the DIA-procedure is done with uniformly-most-powerful-invariant test statistics. In the
present contribution the test statistic used in the DIA-procedure for validating GPS phase
ambiguities is given and its power is discussed using the concept of minimal detectable
biases (MDB). The high power of our test statistic is proven through the size of the MDB.
It is also shown that the MDB of our test statistic compares very favourable to the MDB
that follows when testing for GPS phase ambiguity slips is done on a single-channel basis.

I. INTRODUCTION

The objective of the present paper is to illustrate the power of the test statistics as used
in the DIA-procedure [1-5]. In order to do so, we have chosen to apply the DIA-procedure
to a simplified partially constant state-space model. The structure of the partially constant
state-space model is chosen such that it resembles one of the simpler models of kinematic
GPS positioning. To facilitate the discussion we will therefore use the terminology of GPS
and speak of pseudo ranges, phase measurements and phase ambiguities. Applications of
the partially constant state-space model are however not restricted to GPS only. The model
is in fact applicable to all problems for which parts of the state vector can be considered
constant or only slowly changing in time. This may for instance be the case with instru-
mental parameters.

Our working hypothesis will be based on the assumption that during the kinematic survey
an m-number of pseudo ranges and an m-number of carrier phases are observed at every
epoch k. The observables are assumed to be uncorrelated and their variances are assumed
to be time-invariant. The observables are also assumed to be Gaussian distributed. The
variance of the pseudo ranges is denoted as 0%, and the variance of the carrier phases as
a.f. The m-number of unknown carrier phase ambiguities are collected in the state vector
v. The state vector v is constant in time in case phase ambiguity slips are absent. The
remaining unknown parameters [such as (relative) coordinates of mobile receiver and (rel-
ative) receiver clock errors| are collected in the n-state vector z;. In order to keep our
model as simple as possible, we will assume that no dynamic model is introduced for the
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time-varying state vector i . The 2m-by-n (linearized) design matrix of the state vector
z; which contains a.o. the receiver-satellite geometry, is denoted as (A}, A})".

The above model constitutes our working hypothesis H,. Under this hypothesis, recursive
least-squares filtering provides us at every epoch k with the state vector estimates Z; and
Vi, and corresponding covariance matrices Qs , QV;’ and Q 2,9, If H, is true, the estima-
tors produced by the navigation filter are optimal with well defined statistical properties.
Misspecifications in the working hypothesis H, will however invalidate the results of filtering
and thus also any conclusion based on them. It is therefore of importance to have ways
to verify the validity of H, . This is done in real-time with the DIA-procedure. Since the
objective of the present contribution is to illustrate the power of our test statistics as used
in the DIA-procedure, we will restrict our attention in the following to the identification
step of the DIA-procedure. It is therefore assumed that the overall model testing has been
performed and that detection of unspecified model errors indeed took place. Identification
implies then that a search among candidate hypotheses is done for the most likely alter-
native hypothesis and their most likely time of occurrence. Since only phase ambiguity
slips are considered in the present contribution, each member of the class of alternative
hypotheses describes one particular misspecification in the mean of v.

II. THE TEST STATISTIC ;‘(;.’; FOR GPS PHASE AMBIGUITY SLIPS

It will be clear that misspecifications in the mean of v can only be tested if the navigation
system provides for redundant information. It is namely this surplus of information which
enables one to test whether the data can be considered to be statistically consistent with the
assumed model. If we assume rank deficiencies to be absent, the overall redundancy of our
model with pseudo ranges and carrier phases equals k(2m — n) — m. At every epoch we have
a redundancy of m — n (we assume that m > n) due to the fact that both pseudo ranges
and carrier phases are observed. This makes for a redundancy of k(m — n) after k number
of epochs. In addition, it is also assumed under H, that all the phase ambiguities remain
constant. This takes care of the additional redundancy of (k — 1)m. Under the assumption
that sufficient redundancy is available, the test statistic as used in the DIA-procedure for
the identification of a slip in the §*» phase ambiguity reads as

(1) thE = Q% %1-1 — &l
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where c; is the canonical unit vector with a 1 as its **-element. Note that the test statistic
depends on the filtering results of the two epochs [ and k. Therefore a testmatriz with the
test statistics t"'.k as its elements is formed for each particular alternative hypothesis H,;.
This is shown in figure la. An important aspect of the above test statistic is the choice for
1, which is the time that the slip(s) are assumed to have started, and its relation with k > [,
which is the time the testing is performed. The simplest choice would be to set ! equal to
the running time index k. In this case we speak of local identification, since no information
is taken into account that has a bearing on data collected after epoch I. We speak of global
tdentification if k > I. The power in case of global testing is of course higher than in case
of local testing. However with k being larger than [ one may be confronted with a possible
delay in time of identification. Therefore in order to bound the possible delay, a moving
window of length N is introduced by constraining { to k— N +1 < [ < k. With this window
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the time of delay is at most equal to N — 1. The corresponding testmatrix is shown in figure
1b. The choice of the window length N depends on the testing power that is required in a
particular application. The choice of N is therefore typically a problem one should take into
account when designing the navigation filter. Instead of constraining{to k— N+1 <1<k,
it may be advantageous for some applications to constrainlevento k— N+1 <l < k- M.
This is shown in figure 1c. The rationale behind this constraint is that the test statistic
may be too insensitive for identification purposes if [ > k — M. But again it is stressed that
this choice should be based on the power required by the particular application.
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Figure 1: Testmatrix with (a) no window, (b) a moving window with k — 2 < I < k and
(c) a moving window with k—2 <1<k~ 1.

Our identification step based on the test statistic (1) can now be described as follows.
At the time of testing k one first determines per alternative hypothesis Hg,; the value of [
for which |t | is at a maximum. This value of [ would then be the most likely starting
time of the shp if the corresponding alternative hypothesis would be true. In order to ﬁnd
both the most likely alternative hypothesis and most likely value of /, the values mazg[t(,)|
for the different alternative hypotheses H,,, s = 1,2,.., are compared The maximum of
this set identifies then both the most likely time of occurrence and most likely alternative
hypothesis. After this the significance of the identified slip has to be tested. Since the
test statistic (1) is standard norma.lly distributed under H,, the identified slip is considered
likely enough to have occurred if |t | > N1/22(0,1).

The above expression (1) for the test statistic simplifies in case the design matrices Aj

1 (03 +02)I, and (1) reduces

are square. When the design matrices are square, then Q¢ = p

to
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with ¥% being the §*» — element of the vector ¥,. Note that in this case the test statistic
is simply a scaled version of the difference of the estimated phase ambiguities at times ! —1
and k. The overall redundancy in this case equals (k — 1)m, and is due to the assumed
constancy of the phase ambiguities under the working hypothesis H, .

III. THE MDB OF THE PHASE AMBIGUITY SLIP

The with the test statistic ;’(;.'; corresponding minimal detectable bias (MDB) of a slip in
the *» phase ambiguity follows as [2-6]
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with A(a = a,,1,7 = 7,) being the inverted power function in symbolic notation. The
above MDB describes the minimal size of the ambiguity slip of the §** phase observable
that can be detected and identified with a probability 4, at a level of significance a,. The
MDB’s are therefore an important diagnostic measure for inferring how well particular
model errors can be detected and identified. And by propagating the MDB’s through the
navigation filter operating under H, , it becomes possible to diagnose the expected biases
in the filtered states [4,6).

In order to illustrate the importance of the MDB-concept and the high detection -and
identification power of our test statistic, we will give a practically useful approximation to
(3). In order to obtain this approximation, we will assume that the design matrices A; are
time-invariant, i.e. they are assumed to be constant. This of course impairs our generality
somewhat. But the assumption is still considered to be realistic enough because of the
relatively slow change of the receiver-satellite geometry in case of GPS. With the design
matrices being constant, the square of the MDB for ambiguity slips can be shown to read
as

(4) |V".k 2_ 1 k (03 +03)2
@) N ({—-1)1+[o3/o%]c! Pge; |

with A, being the reference value A(a,, 1,7,) of the noncentrality parameter, and where
Pp = B[B*B]~!B" is the orthogonal projector that projects onto the range space of B
which equals the orthogonal complement of the range space of A. From an analysis of (4)
some important conclusions can be drawn:

1. The case m =n and | = k:

First assume that m = n and that detection, identification and adaptation is done in-
stantaneously. Then the projector Pp is identically zero, and N = 1 and [ = k. Expression
(4) reduces then to

k
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This shows since g2 < 01, that for k large enough the MDB's are approximately equal to
01/\5/ ? and independent of the receiver-satellite geometry. With a, = 0.001 and Yo = 0.80
this amounts to an identifiable size of an ambiguity slip of approximately four times the
standard deviation of the pseudo range. Thus in this case one can conclude that detection
and identification of realistic ambiguity slips is virtually impossible.

2. Thecasem=nandl=k—- N +1:
Let us now, in order to improve the power of identification, include a window in our
testing procedure. But we still assume that Py = 0. In that case expression (4) becomes

1
(6) Ivi31? = (ot + o).

N(1-N/k



This result shows that with the inclusion of a window of length N, the MDB’s are
approximately equal to g1[),/N]'/? for k large enough. If in a particular application the
required level of the MDB is given, expression (6) can be used directly to obtain the correct
window length N.

8. The case m > n and | = k:
Let us now assume that detection, identification and adaptation is done instantaneously,
and that m > n and therefore Pg # 0. Expression (4) becomes then

kki2 _ k (0’% +0’§)l\o
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In this case the MDB does depend on the receiver-satellite geometry. Note that (7

reduces to (5) if ¢} Pge; = 0. This happens when the canonical unit vector ¢ is orthogonal
to the range space of matrix B, or, in other words, when ¢; lies in the range space of matrix
A. In the context of single point positioning based on pseudo ranges only, this would mean
that the receiver-satellite geometry is such that an error in the s** pseudo range would pass
the tests unnoticed. This shows that it is of importance from a designing point of view to
know in advance what the (approximate) receiver-satellite geometry will look like during
navigation.
Another important conclusion that can be drawn from (7) is that, relative to our previous
results, a drastic decrease takes place in the level of the MDB’s when ¢;Ppc; # 0. This
is due to the very large amplification factor o? /o2 with which ¢; Ppc; is multiplied in the
denominator of (7). A crude but useful approximation of (7) can be obtained in the following
way. Since Pp is an orthogonal projector of rank m — n, we have trace(Pg) = m—n. Hence,
since Pp is an m — by — m matrix, (m — n)/m can be considered a crude average value of
the diagonal elements of Pp and therefore of ¢! Pgc;. With this approximation and using
the fact that o7 <« 0;, the following crude but useful approximation to the MDB can be
obtained for k large enough,

®) (W12 = aalmo/(m — ]2

With a, = 0.001, 4, = 0.80, m = 8 and n = 4 this amounts to an identifiable size of an
ambiguity slip of approximately six times the standard deviation of the phase observable.
This small value of the MDB indicates that the introduction of a window will not be
necessary for most applications, and that instantaneous local testing will suffice.

IV. A COMPARISON BETWEEN ¢} AND SINGLE-CHANNEL TESTING

As was pointed out earlier the test statistics used in our DIA-procedure are uniformly-
most-powerful-invariant test statistics. Without going into the theoretical details, this im-
plies somewhat loosly formulated that our test statistics have the property of correctly de-
tecting and identifying model errors with the highest possible probability. In other words,
the sizes of the MDB’s of our test statistics are the smallest possible. No other test statistics
exist with smaller MDB’s, provided of course that one starts from identical assumptions.
In order to illustrate this, we shall compare our one-dimensional test statistic gi;’; with a

test statistic _t‘:‘(’,’)‘ that is based on single-channel monitoring.
Let us assume that the 1*» phase observable is subject to a slip in its ambiguity at epoch /.
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It would seem reasonable then to confront the estimate of the i** ambiguity at the time of
testing k with the estimate of the *» ambiguity at the epoch just before the slip started to
occur, | — 1. Hence, it seems reasonable to look at the difference ¥}_; — ¥}, since one may
expect that the slip should show up in this difference. In order to obtain a test statistic
from this difference, it is standardized by dividing it by its standard deviation. Since the
variance of the difference equals c; [QV,_, - Qyg, Jei, the following test statistic is obtained

k ¢;[V1-1 — ¥4
(c [Qﬁ, L "Qv ]‘:l)l/2

This test statistic is just like our uniformly-most-powerful-invariant (UMPI) test statistic
(1) standard normally distributed under H, . Upon comparing (9) with (1) we note that the
two test statistics are very much alike except for the presence of the covariance matrix Qe,_,
in (1). In (9) the covariance matrix Qg  is absent, implying that testing is done directly
on the basis of the estimation results that correspond with the i** channel. Hence, in this
case testing is done on a single-channel basis. In (1) however the presence of the covariance
matrix Qv implies that also the information content of the covariances between the
channels is taken into account. The two test statistics are therefore only identical when
the covariance matrix QV1_1 is diagonal. This is the case when the design matrices A; are
square and thus when m equals n. In general however the two test statistics differ, which
implies that they will also differ in their power of testing. If we assume like we did in our
derivation of (4) that the design matrices A; are time-invariant, then the MDB of the test
statistic (9) can be shown to read as

©) iy =
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When we compare this result with that of (4) some important remarks can be made. First
note that both MDB’s are affected in an identical manner by the introduction of a window
with length N. Also note that both MDB’s are equal in case Pg vanishes identically. This
is of course due to the fact that both test statistics (1) and (9) become identical when
the design matrices A are square. In this case both test statistics simplify to (2). The
two MDB’s (4) and (10) also happen to coincide when Pg # 0, but either ¢ Pgc; = 0 or
c¢;Pgci = 1 holds. This shows that the two MDB’s are identical when the c;-vector lies
either in the range space of A or in its orthogonal complement. If the ¢;-vector lies in the
range space of A then both MDB’s are dominated by ¢? and therefore take on large values.
If on the other hand the receiver-satellite geometry is such that the ¢;-vector lies in the
range space of B then both MDB’s are dominated by o2 and therefore take on very small
values. Thus there do exist situations where the MDB of the single-channel test statistic
f(’,’; coincides with the MDB of our UMPI test statistic (1). In general however, the two
MDB’s differ when Pg # 0. And most importantly this difference can reach very large
values indeed. In order to show this, we will look at the ratio of the two MDB’s. If we
divide (10) by (4), one can show that the following result holds true

~l klz
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This result can now be used to bound the ratio of the squares of the MDB’s from above
and below. If we denote the angle between the two vectors ¢; and Py4¢; as a;, then ¢; P4c; =

=1+ [(03/0}) + (03/0%)?| " ¢} Pacic} Ppci.



cos’a; and ¢} Pgc; = sin’a; . Hence, ¢} Pycic} Pge; = 4sin22a,-. From this follows that (11)
is bounded as

2
(12) 'vif,Z:z <1+ 1(03/a%) + (o3/al) .

This result shows since 02 < o1 that the ratio can reach very large values indeed. This
illustrates the superiority in terms of power of our test statistic over the single-channel test
statistic (9). A somewhat crude but useful average value of the ratio can be obtained if we
use the approximation ¢} Pac; = n/m. Then, since 07 < 0y,

(13) |V(.)|2 ginm-n
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In order to illustrate numerically the lack of power of the single-channel test statistic as
compared to the power of our test statistic Lt'..k, a simple kinematic GPS survey based on
both pseudo ranges and carrier phases was simu{ated (o1 = 3m, 02 = 3mm). Two ambiguity
slips of 10cm were introduced in the data. One slip was introduced at epoch 100 in channel
1, and the other slip was introduced at epoch 150 in channel 3. The same data was processed
twice. Once it was processed using the DIA-procedure with the uniformly-most-powerful-
invariant test statistic L'('S (I = k), and once it was processed using the single-channel test
statistic. In both cases testing was done with a window length of one. The sample values
of the two test statistics are plotted in figure 2 for the first three channels.
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Figure 2: a) The UMPI test statistic ¢ l( (I = k) for i = 1,2,3; b) The single-channel test
statistic &~ (I = k) for { = 1,2,3.

Figure 2a shows the results of the DIA-procedure. This figure shows that the sample
values of our test statistic first exceed the critical value of Ny/2(0,1) = 3. 29 (= 0.001)

at epoch 100. In this case the sample values of all three test statistics t( )(I k), i
1,2,3, exceed the critical value. The largest sample value is that of t'(: (I = k) showing

that the correct channel is identified. After the identification at epoch 100, adaptation
of the recursive navigation filter was performed to eliminate the presence of biases. That



adaptation was done correctly is reflected in the sharp decrease in the sample values of the
test statistics in figure 2a. The second instant that the sample values exceed the critical
value occurs at epoch 150. And in this case identification and adaptation is again performed
successfully. Now the third channel is identified as the one containing the ambiguity slip.
Figure 2b shows the sample values of the single-channel test statistic for the first three
channels. The results shown are based on exactly the same data as was used for figure 2a.
The poor power of the single-channel test statistic is now clearly evidenced from the fact
that it is unable to detect and identify the slips that occured at the epochs 100 and 150.
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