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Abstract

It is shown in this paper that the iterated extended Kalman filter has a local linear
rate of convergence. An expression for the rate of convergence is given. And some
practical estimates of the rate of convergence for distance and azimuth observations
are derived.

1. Introduction

Consider the minimization problem

(1) min{lyo — Ao(zo)ll5, + Z lye = Ai(z)ll}, + lldi + Bisorzios — zillZ )

where: y; € R™ are given da.ta vectors; d; € R" are given system inputs; z, € R"
are the unknown state vectors of epoch i; A; : R® — R™ are (non)linear vector
functions that map the state space R" into the data space R™;®,; ; : R* — R"
are the transition matrices; ||.|[2. = (.)"Q;'(.) with Q,, the variance matrix of y;
and ||.|I3 = (.)'@z'(.) with Q4 the variance matrix of d,.

Minimization problems of the type (1) typically occur in navigation applications.
Consider for instance the problem of recovering the trajectory (u(t),v(t))* of an
object that moves in the plane. If positioning is based on discrete-time sampling of

distances and azimuths, then the entries of the maps A, take the form

Ai(zi) = ([ul + vzl”z,arctan{u,/v;])'.

And if in addition acceleration (f(t),7{t))" is observed as a white-noise process
with spectral densities g3, g, the state vectors take the form z, = (u,,4,,v,,¢;)" and
the system input, its variance matrix and the transition matrix for the u-axis read

d, = ] [“;’]a(rldr,
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M=) M- te)? _r -t
Qu, = du [ ;(ti _ t‘__ll)z (zt,- L t.‘-1)1 ] R = [ 0 1 ] .

In navigation applications the minimization problem (1) often has to be solved in
real-time. This implies that (1) has to be solved recursively. If this is done when the
maps A, : R™ — R™ are linear, the well-known Kalman prediction- and filtering
equations are obtained. They read

-1 = Prp-1Zr-1p-1 + di,
(2) by s B Kily = dad
Zijk = Zijk—1 T k[yk kxx[k—l]a

with corresponding variance matrices

Qi1 = Prp—1@u—1-19% 41 + Qaes
Que = [T — KiAw)Qupi-1,

where

Ky = Quu-141Qy, + AxQue-143) 71

is the so-called Kalman gain matrix.

In the present contribution we will assume the maps A; : R® — R™ to be non-
linear. This implies that in general no direct method exists for solving (1) either
in batch or recursive form. One therefore has to take recourse to computational
techniques that are iterative in nature. The necessity to iterate, however, puts a
strain on the requirement of being able to perform the computations in real-time.
It is therefore of importance for a particular application to know in advance the ex-
pected number of iterations that are required to obtain a given numerical precision
in the computed results. In other words, one needs to know the expected rate of
convergence of the iteration method applied. This will therefore be the subject of
the present contribution.

Although various iterative techniques exist for solving nonlinear optimization prob-
lems like (1), we will restrict ourselves in the present contribution to the Gauss-
Newton method. The reason is that the Gauss-Newton method takes advantage of
the sums of squares structure of the objective function. The method is therefore
especially suited for solving minimization problems like (1).

II. Nonlinear Least Squares

Since (1) is essentially a least-squares problem, a brief review is given in this
section of some of the geometrical and numerical characteristics of general nonlinear
least-squares problems. The main results are taken from |Teunissen, 1984, 1985].
The general nonlinear least-squares problem reads

(3) min [ly - A(z)],
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where: ||.||* = (.)@;*(.); @y is positive definite; y is an m-dimensional data vec-
tor; and A(.) is a nonlinear vector function or map from R” into R™.

For varying values of z € R", A(z) traces locally an n-dimensional manifold em-
bedded in R™. If the metric of R™ is described by the positive definite matrix
Q; ', the scalar ||y — A(z}|| equals the distance from point y to the point 4(z) on
the manifold. Hence the minimization problem (3) corresponds to the problem of
finding that point on the manifold, say § = A(%), which has least distance to y.
This geometry of the nonlinear least-squares problem is shown in figure 1.

Figure 1: Geometry of nonlinear least-squares

The minimizer % of (3) can in principle be located by any one of the existing
iterative descent methods. The Gauss-Newton method, however, is especially suited
for solving nonlinear least-squares problems, since it takes advantage of the sums
of squares structure of the objective function. With the Gauss-Newton method the
minimizer £ of (3) is located according to the following iterative scheme:

2% = 2% + 190, A(2°)" Q; '8, A(2%)] 0. A(z*)" @} v - A(z%)}, a=0....

(4)

The positive scalar t* is used to control the line search strategy. It is determined
such that [ly — A(z®*')|| < |y — A(z®)|| holds in each iteration step. In many
applications it suffices to take ¢* = 1. The iterative scheme (4) is initialized through
an externally provided initial parameter vector . And the iteration is terminated
once a stop criterion is met. The stop criterion is based on the convergency test

a+l

E 2% e <€,

with ¢ an a priori given tolerance leve]l and |.||2 = ()'@(z%)7'(),@(z%) =
8. A(z°)"Q;'8:A(z®)]™'. Once the stop criterion is met, z°*! is accepted as the
solution of (3).
Each iteration step of the Gauss-Newton method provides a solution of a linear(ized)
least-squares problem. The geometry of the Gauss-Newton method is therefore one
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of orthogonal projection. That is, the vector 8;A(z%)(z**! — z%), wich lies in the
tangent space of the manifold A(z) at A(z®), is the orthogonal projection of the
residual vector e(z®) = y — A(z®) onto this tangent space. See figure 2. This indi-
cates that the geometry of the manifold A(z) must play an important role in the
local behaviour of the Gauss-Newton method. And indeed it turns out that the
local convergence of the Gauss-Newton method depends on the normal curvatures
of the manifold A(z) at A(%).

Figure 2: Orthogonal projection onto tangent space of A(z) at A(z?).

Since [see Teunissen, 1985, section I'V.4],

(5) =% — 2= [(1— )] + t°Q(2)[e(2) @} 82, A(2)]] (=" - 2) + O(l|=* — £),

it follows that the Gauss-Newton method has a linear rate of convergence for
points z° sufficiently close to solution Z. If we define the normal curvature of
manifold A(z) for v € R™ and n € R(8.A(z))*, with n*Q;'n =1 as

_ v [n'Q; 0% Alz)v
() kn(v) = v'Q(z) "ty !

the Q(z)~'-weighted norm of (5) follows for t* =1 as

(7) llz** — £]| < max [ka(v)|lle(2)][]]=* - £,

where # = e(z)/]|e(2)||. This important result shows that local convergence of
the Gauss-Newton method is guaranteed if the observation point y lies within a
hypersphere with centre A(%) and radius 1/ max, |ka(v)|.

II1. Iterated Filtering

In this section we will apply the results of the previous section to the recursive
solution of the minimization problem (1). For k = 0, the recursion first has to be
initialized. This is done by solving with the Gauss-Newton method the nonlinear
least-squares problem
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(8) min lys — Ao(zo)|l,-

The next step after initialization is the propagation in time of the minimizer
#)0 with corresponding variance matrix Qqo. Prediction is accomplished with the
time-update equations

(9) Zxk-1 = Bra-1Zr-1pe-1 + di,
and
(10) Qup=1 = Prk-1Qi-1k-1P5 2y + Qus-

It should be noted that although both equations (9) and (10) are exact, the matrix
Q@i-1k-1 and therefore also the matrix Qgje-1, will usually be only an approxima-
tion of the actual variance matrix. This is due to the nonlinearity of the maps
Aii=0,1,..,(k = 1). If Qe-1x—; is taken as the inverse of the normal matrix of
the corresponding linearized least-squares problem, then higher order terms of the
variance of unit weight are neglected. See |Teunissen, 1989] for an expression of
the variance matrix which includes the second order terms of the variance of unit
weight.

The step following prediction is filtering. This implies solving the nonlinear least-
squares problem

(11) min [|y, = Ar(z)l3, + 12ee-1 — ZallRa-1s

where |[3,_; = (.)'Qgi-1(). The filtered estimate Z follows then as the
minimizer of (11). Since the map A, is assumed to be nonlinear, filtering has to be
iterated in principle. When the Gauss-Newton method with line search is applied
o (11), the following terative filtering scheme is obtained:

I:ﬁ:l =[1- tszzu + tx [Zepe-1 + Kk(xﬁk)[yk - A;,(zi",‘) — 0. Ak (I:u:)(ﬁklk-l - x:\k)HJ

(12)
with

Ki(z3) = Quie-10: Ar(z5) [Quy + 0= Ar(25)s) Quin-10:Ax (25) "]

or
Kk(zgu:) = inli—l + azAk(Iflk—l)'Q;.lazAk(zf\k)]_lazAk(If\k)’Q;:'

The positive line search scalar t§ is used to enforce that the value of the objective
function of (11) decreases in each iteration step. Although the iterative filtering
scheme (12) can be initialized with an ezternally provided initial state vector zf,,
it is in the present situation more expedient to take as the initial state vector the
predicted estimate Zy-;:
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(13) Iz% = iklk—l-
If with (13) and for t§ = 1, zj, is accepted as the filtered estimate Zji, it follows
from (12) that

(14) iék}k = Zip—1 + Ke(Zre-1){ys — Ab(ékik—l]]J

This is the ertended Kalman filter [see e.g. Gelb, 1974]. This shows that the
extended Kalman filter is identical to the first iteration step of the Gauss-Newton
method when applied to (11). In a similar way we obtain the iterated eztended
Kalman filter [see Gelb e.g., 1974] from (12) by excluding the line search strategy:

‘I:{:l = Zyp-r T Kk(z:u)[yk = Ak(":u) - B:Ak(zﬁlk)(ikﬂz—l - If!k)l a= Dalﬂ

(15)

This shows that the iterated extended Kalman filter is sdentical to the Gauss-
Newton method when applied to (11). The implication is therefore that the con-
vergency characteristics of the iterated extended Kalman filter can be found from
those of the general Gauss-Newton method. This idea will be pursued in the next
section.

IV. The Rate of Convergence of the Iterated Extended Kalman Filter

It will be clear that at each recursion step of the filter, iteration is needed in
principle to take care of existing nonlinearities. But iteration contributes to the
computation time and therefore puts a strain on the requirement of real-time filter-
ing. It would therefore be ideal if one can show for a particular application that it
suffices to base the filtering on the extended Kalman filter. In that case iteration
is avoided and filtering is based on simple recursive formulas. But in order to be
able to show this, one first needs to know the convergency behaviour of the iterated
extended Kalman filter. That is, the decision whether to iterate or not should be
based on the number of significant digits that are gained in each iteration step.
And this implies that knowledge of the rate of convergence of the iterated extended
Kalman flter is needed. The local convergency behaviour of the iterated extended
¥ alman filter can be derived from the results of section II. By excluding the line
search strategy, we obtain analogous to (5) for the iterated extended Kalman filter:

2500 — Eee = |Qua(Eue) [ex(Ea)" @y, 02 Ak (2}l (250 — Zue) + O3 — £11°),
(186)

where: Qui(Zip) = [Qitoy + Oz Ar(Zrx) Q) 0 Ak(Zu)| ™" and ex(Zan) = Vi —
Ax(Zxi). The residual ex(Zy) shouid not be confused with the predicted residual,
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Equation (16) shows that the iterated extended Kalman filter has a linear rate of
convergence for points zf, sufficiently close to the filtered estimate Zy;. In practical
applications this will often be the case if the iteration is initialized with (13).
From taking the Qu(Zk) }-weighted norm of (16), the linear convergency factor
(CF) of the iterated extended Kalman filter follows as

% llwe = AxlZen) e

v [eQ; ot A(Z
L) CF < max| .Q‘”‘ £= (_:“‘)]
, ’ v* QL) 'Y
with @ = ex(Zx)/]lex(Zx)llys- Note that the unit vector i not necessarily has to
be orthogonal to the range space of 8;Ax(Zx). The above result shows that the
rate of convergence of the iterated extended Kalman filter is governed by:

1. The consistency of the data: [ye — Ag(Zuie) s
2. The nonlinearity of the map Ay : 82, Ax(Zun).
3. The a priori and a posteriori precision: Qy,, Qi (Zaie)-

Hence, an increasing precision of the predicted state vector for instance, will
result in a higher rate of convergence. This implies that a higher discrete-time data
sampling rate will also increase the rate of convergence.

V. Estimates of the Rate of Convergence for Distance and Azimuth
Observables

In this section we will derive some practical estimates for the rate of convergence
of the iterated extended Kalman filter. The estimates will be given for both distance

and azimuth observables. The estimates will be based on the following upperbound
of (17):

mi
(18) CF <[5 B /al IR,
i=1
where the A; are the in absolute value largest eigenvalues of the eigenvalue prob-
lems

(19) 102, A% (2 ) Quie(Zae) — Ad[ =0, 1=1,...,my.
In (18) it is assumed that @, is a diagonal matrix.
We will first consider the distance observable. The corresponding Hessian reads

g gl _1[ wi v/l ]
R o B YL B R

and its singular value decomposition is given as

(20) 82,1 821] [ cosa sina|[ 1/l O] cosa —sina
g 9%l | | —sina cosa 0 0 sina  cosa
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where sina = u/l and cosa = v/l. Note that the distance-Hessian is of rank one.
If we substitute (20) into (19), it can be shown that the in absolute value largest
eigenvalue is given as A = f,,;.,agm. From this follows that the convergency factor
of the iterated extended Kalman filter for a single distance observable is bounded
from above as

|
(21) CF< LI
O]k

: 2
ituaam]

[

We will now consider the azimuth observable. The corresponding Hessian reads
a dal| 1] —2uv ui-+?
Fa Fa| Hlu-v 2w |’

and its singular value decomposition is given as

2 2
(22) [ dl.a 9la ] _

2 2
d;.a .4

—cos(im +a) sin(ir+a) || 1/F O —cos(}r +a) sin(i7+a)
sin(ir +a) cos(ir +a) 0 -1/ || sin(3r+a) cos(in+a)

Note that the azimuth-Hessian is of rank two.
If we substitute (22) into (19), it can be shown after a considerable derivation that
the in absolute value largest eigenvalue is bounded from above as A < [/ f;;k]’ where
fi is the largest singular value of Qyx(Z). Hence, for the convergency factor of the
iterated extended Kalman filter for a single azimuth observable follows that

L
2B
Lepe

Gelb, A. (Ed.) (1974): Applied Optimal Estimation. MIT Press, Cambridge MA.

(23) CF < Be CHL ; ik
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