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Abstract

The Kalman filter produces optimal estimators, but the quality of the estimators is only guaranteed
of course as long as the assumptions underlying the mathematical model hold. Misspecifications
in the model will invalidate the results of filtering and thus also any conclusion based on them. It
is therefore of importance to have ways to verify the validity of the assumed mathematical model.
In this paper a brief review is given of a general real-time detection, identification and adaptation
(DIA) procedure for use in integrated navigation systems.

L. INTRODUCTION

It is well-known that the standard real-time minimum mean squared error navigation filter produces
optimal estimators with well defined statistical properties [1]. The estimators are unbiased and they
have minimum variance within the class of linear unbiased estimators. The quality of the estimators
is however only guaranteed as long as the assumptions underlying the mathematical model hold.
Misspecifications in the model will invalidate the results of filtering and thus also any conclusion
based on them. It is therefore of importance to have ways to verify the validity of the assumed
mathematical model.

The objective of the present paper is to give a brief review of the detection, identification and
adaptation (DIA) procedure, that has been developed during the last few years at the Delft Geodetic
Computing Centre [2-4]. It has been developed for the real-time model validation of integrated
navigation systems and can be seen as the natural extension of the static quality control theory as
described in [5-7]. The present review is partly based on the course ”Special studies in numerical
methods in geodesy and related surveying sciences” which the author was invited to give at the
Department of Surveying of the University of Calgary in March 1990. Derivations of results are
avoided in the paper. Instead we keep to the basic ideas involved and try to motivate the main
results by appealing to intuition and geometric interpretations. Some variations and extensions of
the theory, which are important for certain applications are mentioned but not further dwelt upon.
For these more advanced procedures the reader is refered to the referenced literature.

The DIA-procedure discussed in the present paper consists of the following three steps

1. Detection: An overall model test is performed to diagnose whether unspecified model errors
have occurred.

2. Identification: After detection of a model error, identification of the potential source of the
model error is needed. This implies a search among the candidate hypotheses for the most
likely alternative hypothesis and their most likely time of occurrence.

3. Adaptation: After identification of an alternative hypothesis, adaptation of the recursive nav-
igation filter is needed to eliminate the presence of state vector biases.

The DIA-procedure is completely recursive and avoids the explicit use of a parallel bank of aug-
mented navigation filters. It is based on the concept of a uniformly-most-powerful-invariant test-
statistic and is applicable in principle to any dynamic system that fits into the frame work of the
state-space formalism,
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II. FILTERING AND BIAS ACCUMULATION

It will be assumed that the reader is familiar with the standard navigation filter in state-space
formalism [1]. Based on the usual model assumptions, the optimal recursive prediction and filtering
equations for the state estimator read

Zpp—y = Phk—1Zp_yk—y tdx s Exp = By + Kily, — AeZee—d] (1)
I 2k !

with corresponding variance matrices

Pyjk—1 = Prk—1 Pe1ik-1®x k-1 + Q. , Pijx = [I — K Ax| Pejr—1. (2)

This filter can be shown to produce optimal estimators of the state vector with well defined
statistical properties. The state estimators are unbiased, are Gaussian distributed and have minimum
variance within the class of linear unbiased estimators. It is important to realize however, that
optimality is only quaranteed as long as the assumptions underlying the mathematical model hold.
Misspecifications in the model will invalidate the results of estimation and this also any conclusion
based on them. It is therefore of importance to have ways to verify the validity of the working
hypothesis H, for which (1) and (2) are optimal.

In order to verify the optimality of (1) and (2), the working hypothesis H, will be opposed to a class
of alternative hypotheses H,. The specification of appropriate alternative hypotheses for a particular
application is non-trivial and probably the most difficult task in the process of quality control. It
depends to a great extent on experience and ones knowledge of the dynamic system. For the present
discussion we restrict attention to misspecifications in the mean and assume that all second moments
of the various random vectors are specified correctly and known. This restriction still leaves room
for a sufficiently large class of alternative hypotheses that contains the most frequently occurring
model errors. An extension of the theory for the case the second moments are only partially known
is discussed in [8,9].

For a misspecification in the mean of the state vector we consider the following class of alternative
hypotheses:

H,: E{d;} = z; — ®;i—12i—1 — Cz,4V. , (3)

where E{.} is the mathematical expectation operator. The matrix C; ; is assumed to be known
and the vector V, is assumed to be unknown. Furthermore, it is assumed that C, ; #O0fori <t < m
and zero otherwise. The times ! and m are unknown. Thus we assume to know the type of model
error that may occur, but not the time period in which it occurs.

It will be clear that the slip C,;V, in the dynamic model can typically accommodate under-
parametrizations in the state vector. Assume for instance that the dynamics of a moving vehicle
is based on a constant velocity model under H,. Then, if at time { the vehicle starts accelerating
linearly the constant velocity model becomes inadequate and an additional parametrization in the
form of C;;V, is needed. In a way that is completely analogous to (3), one can also model under
the alternative hypothesis H,, slips in the measurement model. A slip C,;V, in the measumement
model can typically accommodate outliers in the data, sensor failures and instrumental biases. For
instance, an outlier at time [ in the j-th observable can be modelled as C,; = (0...10...0}* with the
1 on the j-th place and C;; = 0 otherwise.

If H, is true, filtering under H, will generally result in biased estimators. It is therefore of
importance to know how particular misspecifications in H, manifest themselves as biases in the
state vector or functions thereof. Knowledge of the impact of model errors can then be used to
set acceptance criteria for the sizes of these model errors. This is of importance for the design of
an appropriate navigation filter and for the design of a powerful enough DIA-procedure. Before
considering the impact of model errors, one should first make clear on what functions of the state
vector the impact is studied. This depends very much on the particular application for which the
navigation filter is designed and it may range from just one single function of the state vector to all
n elements of the state vector. For instance, the impact on instrumental parameters may or may



not be of interest, or, one may be particularly interested in position but not in velocity, or, as is the
case in some real-time GPS-applications, it is the horizontal solution which is of interest and not
the pseudo-range bias. In all these cases one generally has to specify a set of linear(ized) functions
of the state vector that is of particular interest. If we assume that these functions are collected
in a matrix F*, then it is the bias in F*Z,, which is of interest. The bias in can be computed
once a measure for V. is available. An appropriate measure for V. is provided by the minimal
detectable bias (MDB). The MDB is defined as the model error V. that can just be detected with
the DIA-procedure at a fixed probability level. For more details on the concept of the MDB’s and
their relevance as a diagnostic tool, the reader is referred to [3,10].
With a measure for V, available, the corresponding bias in F ‘_:?:_k|k can be shown to follow as

k k
F* Ve = F*®paa D (J] @ivr4ll - KiAi))Ce 5]V (4)

=l $=j5
The computation of (4) is straightforward and can be done recursively in a way that closely follows

the recursion of the actual navigation filter. Once the bias of (4) is known, its significance can be
tested with the following btas-to-noise ratio:

Apesyy = VELF[F* Py F* |7 F* Vi - (5)

Note that this scalar measure is tnvartant against reparametrizations of the state vector. Also
note that (5) can be interpreted geometrically as the square of the length of the vector that follows
from an orthogonal projection of Vik]k onto the orthogonal complement of the nullspace of F* (see
figure 1).

N(F*)

Rn

Feixp ;__:[__ N(F*)*
Pﬁ(F-)v:‘I‘:klk

Fig. 1. PAL,(F.)V:EWc is the orthogonal projection of VZx along the nullspace of F*, N(F*).

It can also be shown that (5) provides an upperbound for the bias-to-noise ratios of the individual
elements of F*Z,,, see [3] but also figure 1. In the DIA-theory, the bias-to-noise ratio (5) is used
together with the MDB’s to set acceptance criteria for the impact of model errors. This can be done
at the designing stage of the navigation filter.

If the bias-to-noise ratio (5) turns out to be unacceptable large and increasing as time proceeds, the
usefulness of the actual navigation filter is of course completely nullified if the alternative hypothesis
H, is indeed the true hypothesis. This phenomenon is related to what is known in the Automatic
Control literature as the divergence of the filter {11,12]: after a certain period of operation of the
filter, the biases in the state estimators eventually diverge to values entirely out of proportions to
the precision values predicted by the filter. This is illustrated for an elementary example in figure
2a. .
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Fig. 2. (a) Divergence after fix 20, (b) Filtering under H, for k > 0, (c) Filtering with increased
process noise, (d) DIA at fix 23.

In this example, ®x x—1 = 1 and Ax = 1 with C,; =t — 20, > 20 and zero otherwise. There
are a number of empirical techniques available that lesson such degradations due to model errors.
One, albeit drastic approach is to include all potential sources of model errors in the mathematical
model. This at least assures that the filtered state vectors are unbiased. But the disadvantage of
this approach is of course that it leads to overparametrizations for those periods of time where H,
holds. This is shown in figure 2b, where filtering is done under H, for the complete time period. A
more subtle approach is based on increasing the process noise of the dynamic model. By increasing
the process noise, one in effect increases the variance matrix of the predicted state as it is used in
the filter. This has as consequence that less weight is given to the predicted state and that the
bias accumulation gets damped. This is shown in figure 2c. The advantage of this approach is
its conceptual simplicity and ease of implementation. And it has proven its value for a number of
important applications [13]. The method has however also a number of drawbacks. First of all, one
may question whether it is appropriate to use second moments as a tool to control the first moments.
Of course, the increase in process noise may bound the impact of model errors and thus eliminate
divergence. But it will never eliminate the presence of bias completely. A second drawback of
increasing the process noise is that one obtains a filtered state estimator that is noiser than it needs
to be for those time periods where H, holds. This would not be the case, if one would know at what
‘time instant to increase the process noise. But knowing this, implies knowing the starting time [ of
the model error. This leads therefore to the necessity of having available a detector of model errors.
Finally, a third drawback of increasing the process noise is that it in effect reduces the redundancy



information of the filter. Assume for instance that each measurement-update of the filter is based on
only one measurement. A possible outlier in this measurement can then be detected by comparing
the measured value with its predicted value based on the predicted state vector. The power of the
outlier detection deteriorates however with an increase in the variancematrix of the predicted state.
As a consequence, outliers in the data may pass unnoticed due to an increase in process noise and
leave possible unacceptable biases in the filtered state vector.

A third approach of lessening degradations due to model errors is based on the concept of limited
memory filtering {14,15]. The idea is here to base the filtering only on recent data in a moving
window or fading window. In this approach the weight given to past information decreases as time
proceeds. As a result the dependence of the present filtered estimator on past information decreases,
with the effect that model errors are also damped out. The concept of limited memory filtering is
closely related to the concept of increasing of the process noise. In fact, it can be shown that
exponentially weighting of data is fully equivalent to an assumption of increased process noise [15].

Although the above approaches for eliminating divergence have proven their value for many im-
portant applications, it is the author’s opinion that they are not really suited for handling alternative
hypotheses as specified by (3). The methods are too empirical with no clearcut optimality prop-
erties. Nevertheless, the basic ideas of these approaches are sound and will (perhaps ironically) be
seen to reappear in the DIA-theory.

II1. DIA: DETECTION, IDENTIFICATION, ADAPTATION

Detection

The objective of the detectionstep is to test the overall validity of the mathematical model H,.
Detection is only possible if the navigation system provides for redundant information. It is this
surplus of information which enables one to test the statistical consistency of the data with the
model. Fortunately, the mathematical model on which the navigation filter is based has a built
in redundancy, because of the presence of the dynamic model. This implies that the redundancy
of each measurement-update k is equal to the number of measurements, say my, at this update.
The statistical consistency checking of the data with the model is based on the predicted residuals.
The predicted residual at time k, vy, is defined as the difference between the actual mg-vector of
observables at time k and the predicted vector of observables based on the predicted state vector:
Y = Y, — AkZgp_1- It can be shown that under the working hypothesis H,, the sequence of predicted
residuals constitute a Gaussian distributed white noise process [4]. It is exactly this knowledge of the
distribution of the predicted residuals under H, that enables one to test the validity of the assumed
mathematical model. Our global overall model (GOM) teststatistic for testing at time k, the overall
validity of the mathematical model H, is given as

: =T 4 g [T* — meTEY, (6)

with the input T* = Q;Q;:gk, where @, is the variancematrix of v, and gain g = 1/[2.’;, m;]
where m; is the number of observables at time 1 (see figure 3).

The filter is initialized with T"' = 0. Note that the GOM-teststatistic is computed recursively
and that it is based on the predicted residuals which are readily available during each measurement
update of the navigation filter. The GOM-teststatistic has been normalized, primarily for graphical
purposes, such that its expectation under H, is given as E{T"*|H,} = 1. Since its distribution under
H, follows a central F-distribution, the overall validity of H, is rejected at time k and an unspecified
model error is considered present in the time interval [I, k] if and only if T%* > F, (g, 00,0), where
a is the upper probability point of the central F-distribution with gi,co degrees of freedom.
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Fig. 3. The recursive GOM-teststatistic.

An important practical problem with the above GOM-test is the choice for [, the time that the
model error is assumed to be starting to occur. Since the starting time of the model error is unknown
a priori one has to start in principle with | = 1. But a fixed value for !, turns the filter (6) into
a growing-memory filter, with the potential practical problem of a possibly long delay in time of
detection. Rejection of H, at time k, may imply namely that a global model error started to occur
as early as time | = 1. In order to reduce the time of delay, a moving window of length N is
introduced by constraining l to k— N +1 <1 < k. When choosing N, one of course has to make sure
that the detection power of the GOM-test is still sufficient. This is typical a problem one should
take into account when designing the navigation filter. With the finite window of length N, the
filter (6) is essentially reduced to a finste-memory filter.

Instead of using a finite window, one may alternatively use a fading window. By setting ! equal
to 1, and replacing the gain gx = 1/[}:?=,m‘-] by the gain g = w"/[EL,m;wﬂ, with w > 1
the filter reduces to a fading-memory filter. Note that E{T"*|H,} = 1 still holds with the fading
window. The GOM-teststatistic however, instead of following an F-distribution now follows a linear
combination of independent x2-distributions. With the fading window, the same recursive filter
structure (6) is retained. This becomes advantageous when compared to the finite window, if a
particular application requires the use of long windows. The weight factor w, which determines the
nominal length of the fading window, is chosen on the basis of the detection power of the GOM-test.
A useful approximation to the nominal length of the fading window is given by (w — 1)~1. A value
of w = 1.2 would then correspond to a window length of N = 5. Although the type of window to use
depends very much on the particular application at hand, one should keep in mind that the choice
of the window length must always be based on the required detection power of the GOM-test.

The teststatistic (6) is termed the global overall model teststatistic, since it is designed to test
the overall validity of the model and to detect unspecified global unmodelled trends. It can be
shown that this teststatistic has the optimality property of being a uniformly-most-powerful-invariant
teststatistic. Loosly speaking this means that one has with the GOM-test, the highest probability of
correctly detecting unspecified model errors. In our applications of the DIA-theory, a distinction is
made for practical reasons between local validity and global validity of the model. This distinction
is introduced in order to have better detection and separation capabilities for model errors that have
either a local or more global character. This implies that in the actual implementation of the theory
detection consists of both a global overall model test and a local overall model test [2,4,9].



Identification

The next step after detection is the identification of the most likely model error. For identification,
candidate alternative hypotheses need to be specified explicitly. For the present discussion we restrict
attention to the class of alternative hypotheses as specified by (3). As with detection, identification
gratefully makes use of knowledge of the distributional properties of the predicted residuals. In order
to obtain a most sensitive teststatistic for identification purposes, we first need to know how a slip
C. iV, propagates into the predicted residuals. Let us denote the propagation of C,, for | <1 < k,
into the space of predicted residuals by the matrix C,,. The matrix C,, can then be found from
gimply following the recursion of the navigation filter. This is shown in figure 4.
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With the matrix C,, available, we are now in the position to formulate the appropriate teststatis-
tic. Let us assume for simplicity that the model error is one-dimensional and therefore that C,, is
an my-vector, which will be denoted by the lower case kernel letter c,,. The appropriate slippage
teststatistic for the identification of the slip ¢, ;V,,I < ¢t < k, follows then from an orthogonal
projection of the vector of predicted residuals v onto the vector c,. This is shown in figure 5. The
corresponding global slippage (GS) teststatistic reads therefore

k
> e, Qulty;
=l

tl.k =
= k
[ e5, Q5 ew,]H/2
=l

As will be intuitively clear, it is the orthogonal projection that quarantees that the GS-teststatistic
(7) is most sensitive for the model error ¢, ; V. Note that, with Q,, and y; readily available from the
navigation filter and the efficient recursion of c,,, the computation of the GS-teststatistic parallels
that of the actual navigation filter.

Strictly speaking, the GS-teststatistic (7), has to be computed for each alternative hypothesis
considered and for each k > I. However, since [ is unknown a priori, one has to start in principle
with { = 1. This implies that one has to compute k number of teststatistics per alternative hy-
pothesis at the time of testing k. As a result one obtains a testmatriz of increasing order with the
GS-teststatistics as entries. This is shown in figure 6a. Clearly, this is unpractical, both from a
computational point of view as well as because of the possible increase of the delay in time of iden-
tification. Fortunately, not all entries of the testmatrix may be necessary if one studies the power of
the teststatistics. Although the power will increase theoretically for an increasing size of the interval
I, k], the gain could be negligible for all practical purposes. This motivates, in accordance with
our discussion of detection, the use of a moving window. This is shown in figure 6b for the case
k—N+1 <1<k and in figure 6c for the case k— N+1 <l < k— M. The rationale behind this last
constraint is that in some applications the GS-teststatistic may be too insensitive for global model
errors if | > k — M. Instead of using a finite window, the concept of a fading window, as discussed
for detection can be applied to the teststatistic (7) as well

"
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Fig. 6. Testmatrix of GS-teststatistic with (a) no window, (b) a moving window with k — 2 < <k
and (c) a moving window with k — 2 < I < k — 1.

With the windows introduced, we are now in the position to describe our identification procedure.
At the time of testing k, one first determines per alternative hypothesis the value of [ in the window
for which the sample value of t!'* is at a maximum. In other words, the kth column of the testmatrix is
searched for the entry which is at a maximum. The corresponding row number of the testmatrix then
identifies [ as the most likely time of occurrence of the model error if the corresponding alternative
hypothesis would be true. In order to find both the most likely alternative hypothesis and most
likely value of !, the sample values of Mazk— N +1<i<k—mt"* for the different alternative hypotheses
are compared. The maximum of this set finally identifies the most likely time of occurrence ! and
most likely alternative hypothesis.

The procedure described above contains the minimum requirements for identification. For some
applications it may be necessary to develop a more advanced identification procedure. For instance,
it may be necessary to discriminate between local and global slippages in the mean, or, to take care
of possible masking effects due to different model errors, or to identify potential sources of model
errors for which V. is known. For the changes and/or extentions of the identification procedure
which are required to accomodate these situations, the reader is referred to [4,8,9].

Adaptation

After identification of the most likely alternative hypothesis, adaptation of the recursive navigation
filter is needed to eliminate the presence of biases in the filtered state of the navigation system. In
order to be able to adapt the filter, one first needs an estimate of the identified model error V.. It
will be intuitivily clear that the estimate of V. has to depend in some way on the predicted residuals.
In fact one can show that the best estimator (in the sense of minimal variance) of the model error
in the space of predicted residuals, is given by the orthogonal projection of the predicted residuals
onto the range-space spanned by the columns of the matrix formed by the C,; [3]. With this result
and the whiteness property of the predicted residuals follows then that the best estimator of V. can

be computed in a recursive form as shown in figure 7. This recursive filter is initialized with _ﬁ_“ =
[Cs, Q.1C, )7 Ye,, Q;‘ly,] and its gainmatrix is given as G, = Qé1.4-1C;, [Qu, +C,,~Q@,_.,_,C;k]"1,
where Qg ., is the variancematrix of j"k—l.

With the estimator i"k available, we are now in the position to correct the filtered statevector
at time k for the presence of bias. The adaptation consists of subtracting the bias accumulation due

alk
to V" from the state filtered under H,. The adapted filtered statevector reads

Aape = iZ|k - Xllc,kv o (8)
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The estimator £3); is unbiased and corresponds with H,. This shows that explicit filtering under
H, is not necessary and that the results can be based on the nominal navigation filter. The vanance

matrix of Z —klk follows from applying the error propagatlon law to (8). Since % —*Ik and V can be
shown to be uncorrelated, the variance matrix of Z —klk follows simply as

;(' P:lk = P:lk + XL'inl,kX,k‘:k. (9)
The ma.trix XL'k of (8) and (9) corresponds with the bias accumulation matrix of (4). Both

Xj. . and V * of (8) can be computed efficiently in recursive form. This follows essentially from a
combination of figure 4 and figure 7. The corresponding recursion is shown in figure 8. The recursion
of X'_,c is initialized with Xl.l (I — KiAi]Czy.

Ve + ﬁ?_ J ;’ga— Ql,k—
Cu Delay
I
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L P Delay

Fig. 8. The recursion of Vik and X,"'k.

With (8), adaptation takes place at time k. This implies that strictly speaking the filtered states
remain biased between [ and k. Thus it would be theoretically more correct to adapt all filtered



states in the time interval [l, k]. This is possible and may even be required for some applications.
The corresponding adaptation involves smoothing, but is again based on an expression like (8). The
reason why we have focussed in the present discussion on the above simple approach of only adapting
iz[ & 18 twofold. Firstly, in real-time applications it is the present estimate of the state vector which
is of interest and not so much the past estimators. And secondly, the bias in the state vector for
times between [ and k may considered to be negligible if the built up of the model error is still too
small to be detected with the GOM-teststatistic. Note that this again points out, that one should
choose the window length and detection power in relation to the biases one is willing to accept.
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