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Abstract

In [1] it was shown that the test statistic as used in the DIA-procedure for the purpose
of detecting and identifying GPS phase ambiguity slips is definitely superior in terms of
power when compared to the method based on single-channel monitoring of estimated
phase ambiguities. Instead of single-channel testing the present contribution is concerned
with a commonly applied method of single-channel data processing for (relative) kinematic
GPS positioning based on both pseudoranges and carrier phases. This recursive estimation
method is generally referred to as the phase-smoothed pseudorange algorithm. It will be
shown that the recursive phase-smoothed pseudorange estimator is not a recursive least-
squares estimator in a strict sense. Instead it is a recursive pseudo least-squares estimator.
Its precision is shown to be very close to optimal in case satellite redundancy is absent.
This however may not be the case when satellite redundancy is present. For this more
general case an alternative to the phase-smoothed pseudorange algorithm is presented in
the paper. It is referred to as the phase-adjusted pseudorange algorithm.

I. INTRODUCTION

Every integrated navigation system should contain real-time quality control procedures
for validating the models that underlie the navigation system. The DIA-procedure for the
detection, identification and adaptation of model errors is particularly suited for this task,
see e.g. [2]-[4]. The DIA-procedure is completely recursive and avoids the explicit use of
a parallel bank of augmented navigation filters. Testing in the DIA-procedure is based on
the use of uniformly-most-powerful-invariant test statistics. In [1} the power of the test
statistics as used in the DIA-procedure was illustrated for a particular partially constant
state-space model. This partially constant state-space model is often used when (relative)
kinematic GPS positioning is based on the measurement of both pseudoranges and carrier
phases. In order to illustrate the power of the test statistics as used in the DIA-procedure
two different test statistics for GPS phase ambiguity slips were given in [1]. The first test
statistic which was given is the one that is used in the DIA-procedure and which follows
when the requirements of uniformly most powerfulness and invariance are imposed. The
second test statistic which was given for GPS phase ambiguity slips is the one that follows
when monitoring of the estimated phase ambiguities is done on a single-channel basis. It
is based on a simple standardized scalar difference of the estimated phase ambiguities.
The power of the two test statistics was compared through the ratio of their respective
MDB’s. And one of the important results of [1] is that the power of the first test statistic
largely exceeds that of the single-channel test statistic. Hence the conclusion reads that
single-channel monitoring of estimated phase ambiguities for the purpose of detecting and
identifying GPS phase ambiguity slips is definitely inferior when compared to the corre-
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sponding test statistic as used in the DIA-procedure.

Was one of the objectives of [1] to analyse the power of single-channel testing for GPS
phase ambiguity slips, one of the objectives of the present contribution is to analyse the
optimality in terms of precision of a commonly used single-channel recursive estimator
for (relative) kinematic GPS positioning. This recursive estimator is generally referred to
as the phase-smoothed pseudorange estimator. The estimator was first proposed in [5]
and since then successfully used in a number of kinematic GPS positioning applications.
Experiences with the phase-smoothed pseudorange estimator as reported in the geodetic
literature can for instance be found in [6]-{12].

In section 2 a recapitulation of the phase-smoothed pseudorange algorithm will be given.
The recapitulation is based on [5] and [6]. It is argued in section 2 that two basic assump-
tions underlie the phase-smoothed pseudorange algorithm. The first assumption is that
the variance of the precise carrier phase observables may be set to zero in the derivation
of the estimator. Hence, the phase-smoothed pseudorange estimator is not a recursive
least-squares estimator in a strict sense. Instead it should be interpreted as a pseudo
least-squares estimator. The second assumption concerns the absence of satellite redun-
dancy. The single-channel processing of the phase-smoothed pseudorange algorithm and
its independence of receiver-satellite geometry is strictly speaking only valid as long as
satellite redundancy is absent.

In section 3 an alternative recursive algorithm for the processing of both pseudoranges
and carrier phases is presented. This phase-adjusted pseudorange algorithm provides for a
strict least-squares estimator and incorporates the information stemming from any satel-
lite redundancy.

Finally in section 4 a comparison is made between the phase-smoothed pseudorange es-
timator and the phase-adjusted pseudorange estimator. It is shown that under certain
conditions also the phase-adjusted pseudorange navigation solution can be computed on
the basis of single-channel processing. The conditions are time-invariance of the receiver-
satellite geometry or an absence of satellite redundancy. It is also shown if in this case
the variance of the carrier phases is neglected that then the phase-adjusted pseudorange
algorithm reduces to that of the phase-smoothed pseudorange algorithm. In that case the
phase-smoothed pseudorange navigation solution can be shown to be close to optimal.

II. THE PHASE-SMOOTHED PSEUDORANGE ALGORITHM

The phase-smoothed pseudorange algorithm reads in recursive form as [5],[6]:

&) By = Bpoapor t (B~ Byl
(1 1
b) Py = Byt ;[Bk — Dyp]
with:
P, the pseudorange observable at epoch ¢;
P the carrier phase observable at epoch t;
éklk-l the predicted pseudorange at epoch ¢,

the filtered (or phase-smoothed) pseudorange at epoch t;
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The algorithm is initialized with élll = p,- A single equation for the recursion is obtained
when (1a) is substituted into (1b):

. 1 k-1, _ _
(2) P = 22k + T[Ek—uk—l +(p, — P,_,)]

This equation shows that the filtered pseudorange at epoch t; is a linear combination of
the pseudorange at epoch t; with weight 1/k and the predicted pseudorange at epoch t;
with weight (k — 1)/k, where prediction is based on the phase difference between t, and
te 1.

If we assume the dispersion of the pseudoranges and carrier phases to be

_ 2 2 _
(3) Opeps =0 6, Opypy =T b , Operi = 0,

an application of the error propagation law to (1) gives:

. ka? + o?
Uﬁku—x = k—1
(4)
2 (k —1)a% + o*
aﬁuk = k .

This result shows that the filtered (or phase-smoothed) pseudorange becomes increasingly
more precise. The minimum value of its variance is obtained for the limit £ — oo as

(5) kll,rg, Uzuk = 62'

In order to understand the basic assumptions that underlie the phase-smoothed pseudor-
ange algorithm (1), it is expedient to find out whether the algorithm can be interpreted
in a recursive least-squares sense. In order to do so, we start from the following model of
observation equations:

2, 1
[ﬁ,—gl\ (—1 1 \(il\
P, 1 :
(6) E{| B,—B |}= -1 1 o,
b, _.Ek—l | -11 Pr-
Sl B 1)\ P

where E{.} stands for the expectation operator.

Note that the variance-matrix of the vector of observables of (6) is non-diagonal because
of the nonzero covariance between (p, , — p;) and (P__,- - Ej_l). It is this non-diagonal
structure of the variance matrix that prohibits one to solve (6) in a recursive least-squares
sense. The conclusion must therefore be that the phase-smoothed pseudorange algorithm

(1) is not a recursive least-squares algorithm in a strict sense. It is possible, however, to



interpret the phase-smoothed pseudorange algorithm (1) in a pseudo least-squares sense.
The phase-smoothed pseudorange algorithm follows namely as the solution of (6) when
(6) is solved in a recursive least-squares manner under the assumption that 2 = 0. The
approximation involved due to this assumption will probably be acceptable for all practical
purposes since 62 < o?.

A second assumption that underlies the phase-smoothed pseudorange algorithm (1) is the
absence of satellite redundancy. Note that the filtered (or phase-smoothed) pseudorange
Prjx of (1) is computed on a single-channel basis and that it is independent of the receiver-
satellite geometry. This however is strictly speaking only possible in the absence of any
satellite redundancy. The implication is therefore that an alternative recursive algorithm
for the filtered pseudorange needs to be devised in case satellite redundancy is present.
The derivation of this algorithm will be given in the next section.

III. THE PHASE-ADJUSTED PSEUDORANGE ALGORITHM

Instead of starting from model (6) we will start from an equivalent model that explicitly
contains the necessary parameters for the navigation solution. This model of observation
equations reads in its linearized form as:
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with:

the mx1 vector of linearized (observed minus computed) pseudoranges at

epoch t;,

the mx1 vector of linearized carrier phases at epoch t;,

the nx1 (n=4) vector of unknown parameters at epoch ¢; containing the

increments of the position coordinates of the receiver and the relative receiver

clock error,

the mxn linearized design matrix, consisting of the line-of-sight unit vectors to

the satellites with 1’s in the fourth column corresponding to the unknown

(relative) receiver clock error,

v:  the mx1 vector of unknown ambiguities which are assumed to be constant in
time in the absence of cycleslips,
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and where the variance matrix is block-diagonal with blocks Q,, = ¢2I and Q,, = &I
respectively. The above model is considered valid for the mobile receiver in a kinematic
relative positioning or DGPS set-up. GPS system errors such as orbital biases and satellite
clock errors are assumed to be corrected for by employing a stationary GPS reference
station. These errors are therefore not modelled in (7). It is also assumed that a model
is employed if necessary that takes care of the tropospheric delay through observation



corrections. And finally it is assumed that also the ionospheric delay need not be modelled
explicitly. The ionospheric delay is either been taken care of at the mobile receiver by
employing dual-frequency observations and/or corrections for it are provided through the
employment of a stationary GPS reference station.

Since the matrices A; are assumed to be of full rank, the overall redundancy of model (7)
equals k(2m — n) — m. At every epoch we have a redundancy of m — n due to the presence
of satellite redundancy. This makes for a redundancy of k(m—n) after k number of epochs.
In (7) it is also assumed that the phase ambiguities remain constant. This takes care of
the additional redundancy of (k — 1)m.

The first step in solving model (7) recursively consists of an initialization at epoch t;:

o (g p=(A ) ()2 )=(% a)

The least-squares solution of this model reads:
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Note that the variance matrix Q¢, of the estimated ambiguities is generally nondiagonal
if satellite redundancy is present (m > n). With the initialization established a start can
be made with the recursion. The following model of observation equations holds at epoch
tr:

Vi1 0 I z, Vs Qe,_,
00 5| 5 =4 o|() iy |- @
Y A4 1 Y, Qi

For the purpose of our derivation we rewrite model (10) as:

Vi1 0 I .
£ y, b={ a0 (%)
— - v
(11)
Vi1 Q,., O —Qv,_,
D{ Y, }= 0 Qus 0
_y_:k - y—k-l —ka—l 0 ng + ka—l

Note the two types of redundancy involved. There is a redundancy of m since E{y,} =
E{g, — %4-,}. This redundancy follows from the assumed time-invariance of the phase
ambiguities. And there is a redundancy of m — n since E{yk} must lie in the orthogonal
complement of the range space of A,. This redundancy exists only in the presence of
satellite redundancy. From (11) the least-squares navigation solution directly follows as:
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In order to complete the recursion we still need a tractable expression for the estimator 4.
Since the least-squares residual of ¥,_; can be written in terms of the least-squares residual

= A A‘ — N R _1 -~ . . ~ — ~ _ AA
of Yy Y1238 €9, | QVg_l(ﬂg—Vg-l)Q(gk—V,‘_l)g(ﬂk_vk_l) , the estimator ¥, = ¥,_, €9, ,
and its variance matrix follow as:

Yy = L1+ Q¢ [Qn + Qo 7T, — Tior — Ay
(13) Qv, = Qv,_, —Qs¢,_[Qn +Q¢,_ 17'Qs,_,

+Qeg_1[Qﬂk + Qek_ll—lAinkA;[ng + Q\‘?,‘_,]-IQ%‘_,

The two sets of equations (12) and (13) constitute the least-squares solution of (10) and
together they form the recursive phase-adjusted pseudorange algorithm.

IV. COMPARISON WITH THE PHASE-SMOOTHED PSEUDORANGE

In the previous section the recursive least-squares phase-adjusted pseudorange algorithm
was given. In this section this algorithm will be compared with the recursive phase-
smoothed pseudorange algorithm of section 2. In order to do so we first note that the
navigation solution of (12) can be written as

(14) ik = [AiQE:Ak]-lAiQ;:gk ’ Qik [AkQ Ak] 1
where

gk = — Qu.[Qu + Qg + Qv,‘ l] l[yk (_ — 951)]
(15)

Qi = [Q;: + (Qﬂk + Q@,‘_l)_lrl

The estimator g, is the least-squares pseudorange estimator which follows when at epoch
ty only the redundancy stemming from the assumed time-invariance of the phase ambi-
guities is taken into account. As such the estimator y, can be directly compared to the
phase-smoothed pseudorange estimator of section 2. The pseudorange estimator gy, can
be improved by taking the satellite redundancy at epoch ¢; into account. If this is done
one obtains the least-squares pseudorange estimator g, = AxZi. The two pseudorange
estimators g, and g, are therefore only identical in case satellite redundancy is absent. If
satellite redunda.ncy is absent then the variance matrix Qy¢,_, becomes diagonal and both
estimators of (13) and (15) can be processed on a smgle—channel basis. Thus like with the
phase-smoothed pseudorange algorithm, also the phase-adjusted pseudorange algorithm



performs on a single-channel basis if satellite redundancy is absent.

It turns out however, that this last condition can even be relaxed somewhat. It follows
namely that the phase-adjusted pseudorange algorithm can also be processed on a single-
channel basis under certain conditions if m > n. The conditions referred to are that the
design matrices A; need to be time-invariant, i.e. A4; = A for all :. In order to show this
we first note that (13) and (15) reduce to

. . o + o? (k —1)o? . .
Vi = zk—l+[k62+az - k(k6_2+0_2)PB“gk_zk—l_Azk]
(13"
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(15)
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Qau = [02(k62 + o?) k(ka? + 0?)

I~
if A; = A for all <. The matrix Pp in (13') and (15') is the orthogonal projector Pp =
B(B*B)~!B* that projects orthogonally onto the orthogonal complement of the range
space of A. The projector Pg is nondiagonal in case m > n and it vanishes identically in
case m = n. In case m > n the nondiagonal structure of Pg in (13') and (15') prohibits the
single-channel processing of y; and ¥, respectively. However, since PgA = 0 it follows from
(13'), (14) and (15') that the navigation solution £, itself is invariant for the Pg-terms of

(13') and (15'). Hence, the least-squares navigation solution £, also follows when g, and
Qj, in (14) are replaced by
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with 9] = g, — ¥,- This result shows that the phase-adjusted pseudorange navigation
solution can also be obtained on a single-channel basis if m > n provided that the design
matrices A; are time-invariant. In reality of course the design matrices A4; will never be
time-invariant due to the time dependency of the receiver-satellite geometry. But if the
time-span considered is such that the relatively slow change of the GPS receiver-satellite
geometry can be neglected then the results obtained from a single-channel processing based
on (13") and (15") are close to the exact phase-adjusted pseudorange navigation solution.
Let us now assume that satellite redundancy is absent and compare the phase-adjusted
pseudorange estimator with the phase-smoothed pseudorange estimator. If satellite redun-
dancy is absent then g, = At = Y, = Q;‘ and the phase-adjusted pseudorange algorithm
is formed by (13"), (14) and (15") with g, and Qy, in (14) replaced by g, and Q. And
the phase-smoothed pseudorange algorithm of section 2 follows then from (13") and (15")
if one neglects ti.e small term 6%. With 82 = 0, the first equation o' (13") can namely be
written for epoch t,_; as 9}, = g, , — 9,_,. This gives §, — ¢, _; = ¥, (@ -g,._)
which corresponds to the first equation of (1). The second equation of (1) follows then
from the first equation of (15") for % = 0.

It will be clear that the phase-adjusted pseudorange estimator Q; and the corresponding
phase-smoothed pseudorange estimator are both linear unbiased estimators. The differ-
ence between the two estimators lies in their precision. And indeed the variance Ugi of

the phase-adjusted pseudorange estimator [see (15")] differs from the variance 03, of the
phase-smoothed pseudorange estimator [see (4)]. Also the phase-adjusted pseudorange es-
timator becomes increasingly more precise. It follows from (15") that the minimum value
of its variance is obtained for the limit ¥ — oo as

(16) lim o3, =

Compare this result with that of (5).

The phase-adjusted pseudorange estimator QL, being a strict least-squares estimator, is a
best linear unbiased estimator. Hence, of all possible linear unbiased estimators the phase-
adjusted pseudorange estimator has the smallest variance. Its precision is therefore better
than that of the phase-smoothed pseudorange estimator. The difference in precision at

epoch t; between the phase-smoothed and phase-adjusted pseudorange estimator follows
from (4) and (15") as

2 _ 2 _ (k—1)5"
(17) e T %0 = k(07 1 07)"

This difference is zero at the initialization epoch ¢; and nonzero but very small (5% < %)
for the other epochs. The conclusion must therefore be that although the phase-smoothed
pseudorange estimator is theoretically nonoptimal it is a very close to optimal estimator
in case satellite redundancy is absent.
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