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ABSTRACT

Real-time estimation of parameters in dynamic systems be-
comes increasingly important in the tield of high precision navi-
gation. The real-time estimation inevitably requires real-time
testing of the models underlying the navigation system. This
paper presents: 1. A real-time recursive testing procedure that
can be used in conjunction with the well-known Kalman filter
algorithm: 2. Diagnostic tools for inferring the detectability of
particular model errors. The testing procedure consists of three
steps: detection. identification and adaptation. It can accommo-
date model errors in both the measurement model and dynamic
modet of the integrated navigation system. The tests proposed
are optimal in the uniformly-most-powerful-invariant sense.
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INTRODUCTION

It is well-known that the real-time Kalman filter produces
optimal estimates with well defined statistical properties. The
estimates are unbiased and they have minimum variance within
the class of linear unbiased estimates. The quality of the esti-
mates is however only guaranteed as long as the-assumptions
underlying the mathematical model hold. Misspecifications in
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the model will invalidate the results of filtering and thus also
any conclusion based on them. It is therefore of importance to
have ways to verify the validity of the assumed mathematical

‘model.

This paper presents a general procedure for the real-time val-
idation of the measurement—and dynamic model of an integ-
rated navigation system. The results present are based on the
quality control theory as developed at the Delft Geodetic Com-
puting Centre (1-5).

The contents of the paper is as follows. First we briefly dis-
cuss the model underlying linear(ized) dynamic systems and
introduce the recursive Kalman filter algorithm. In section 3
we introduce a teststatistic 7 that is optimal in the uniformly-
most-powerful-invariant sense for testing for the presence of
bias in the predicted residuals. Our recursive testing procedure
of section 4 is based on the teststatistic 7. The testing procedure
consists of three steps:

1. Detection
2. Identification
3. Adaptation

Anoverall model test is presented to detect unspecified model
errors in the nullhypothesis H,,. After detection of a model error.
identification of the potential source of the model error is
needed. The identification step consists of a search among all
candidates for the most likely alternative hypothesis A, and
most likely starting time /. Finally, after identifying the most
likely model error. adaptation of the recursive filter is carried
out to eliminate statevector biases. Our testing procedure is
recursive and can be computed in real-time through a scheme
that closely parallels the nominal Kalman filter algorithm. [t
does not need explicitly a bank of parallel running Kalman fil-
ters. The material of section 5 is based on the concept of the
power of a statistical test. Since one is generally in practical
applications less interested in the power probability than in the
bias that generated it, it is proposed in section 5 to use the in-
verted power function. In this way boundary values of the biases
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can be computed that are detectable with a certain prefixed re-
ference probability. These biases are termed minimal detectable
biases (MDB). An outline is given of how the MDB s can be
used for the design of a navigation filter that allows for a suf-
ficient control on the presence of bias.

In the last section some extensions of the presented quality
control theory are discussed.

RECURSIVE FILTERING UNDER H,

In this section we present the mathematical model of the dis-
crete time linear(ized) dynamic system under the nullhypothesis
H, and the corresponding recursive filtering equations that de-
fine the optimal estimators of the system state. The dvnamics
of the system are modelled by the equation

ZTiy1 = Qppipze +de , k=0,1,... (hH

where x, is the n-dimensional statevector at time &, ®,_,, is
the known n-by-n transition matrix and d, is the process noise.
assumed to be Gaussian distributed with mean zero and known
covariance

E{did}} = Qubu.

The initial state is also Gaussian distributed with known mean
X ...and known covariance P,,,, independent of d,. The meas-
urements of the system are modelled by the equation

3
Yi =‘Ak$k+ek ’ k=1,2,"' ( )
where A, is a known m,-by-n design matrix and the measurement
noise e,. independent of d, and x,,, is Gaussian distributed with
mean zero and known covariance

E{exd]} = Rubu. @

Based on the above model. the optimal recursive prediction
and filtering equations read

Ze-1 = Prr-1Zi-1p-1
. R R &)
T = Egpor+ Kelwe - Arii-)
with corresponding covariance matrices
Pipo1 = i1 Picip-1®iia + Qe
(6)

Py = [I— KiAi|Pipe
where

Ki = Py AL|Re+ ApPup-1 AL]™!
is the so-called Kalman gain matrix.

The above filter produces optimal estimators of the statevec-
tor with well defined statistical properties. The state estimators
are unbiased. are Gaussian distributed and have minimum vari-
ance within the class of linear unbiased estimators. It is impor-
tant to realize however. that optimality is only guaranteed as
long as the assumptions underlying the mathematical model
hold. Misspecifications in the model will invalidate the results
of estimation and thus also any conclusion based on them. It
is therefore of importance to have ways to verify the validity
of the working hypothesis H,,.
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An important role in the process of model testing is played
by the predicted residual. The predicted residual is defined as
the difference between the actual system output and the pre-
dicted output based on the predicted state

v = Yr — ArZijk-1. {7

Under the working hypothesis H,, the predicted residual is
Gaussian distributed with mean zero and covariance

E{vkv,‘} = Q.,,‘é,,, (8)

where
Q.. = [Ri + AxPrpe-141)-

This knowledge of the distribution of the predicted residual
under H, enables us to test the validity of the assumed
mathematical model. Although it is possible to develop
teststatistics for the second and higher moments of v, we will
restrict ourselves in this paper to the first moments of the pre-
dicted residuals. That is. we will only consider misspecifica-
tions in the mean of the predicted residual. caused by wunder-
parametrizations in the dynamic model and/or the measurement
model.

RECURSIVE TESTING OF H, AGAINST H,

In this section we present the uniformly-most-powerful-in-
variant teststatistic for testing the nullhypothesis 4 ; against an
alternative hypothesis H,. The teststatistic is a quadratic form
in the predicted residuals. We define the vector of predicted
residuals as

v = (v],v3,...,0z)
The following two hypotheses are considered

Hy: v~ N(0,Q,) and H,: v~N(Vv,Q). 9

We will assume that the (Z =, m,) vector Vv can be
parametrized as

Vv =C,V (10)

with
C,=(C;,,Csps---»C)"s

where C,.isa(Z *='m;) matrix and V is a vector of dimension
b. The matrix C, is assumed to be known and of full rank b.
and the vector V is assumed to be unknown.

The specification of appropriate alternative hypotheses for
a particular application is non-trivial and probably the most
difficult task in the process of quality control. [tdependstoa
great extent on experience and ones knowledge of the dynamic
svstem. The following two types of alternative hypotheses do

_contain however the most frequently occurring model errors:

I. Aslip C,,V in the vector of measurements that starts at

time [:

e = AeZi + C iV + e
with

Coe =0 for k<l
This alternative hypothesis can accommodate sensor failures
and outliers in the data. The matrix C, , propagates into the
matrices C,, of (10) as '
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Cu.- = Cy,i_AiXi,l ’ i=1...,k

Xirtg = @i X+ K€yl , Xiu=0 (an

In case of a failure in the jth sensor, the matrix C, , becomes
a vector that reads (0,..., 1,0,...)*, with a one at the jth
position.
. Aslip C.,v in the statevector that starts at time /:
Te = Ppp-1Zi-1 + CopV + dy

9

with

C.. =0 for k<l
This alternative hypothesis can accommodate under-
parameterizations in the statevector. For instance. assume
that the dynamics of a moving vehicle is based on a constant
velocity model under H,. Then, if at time / the vehicle starts
accelerating linearly the constant velocity model becomes
inadequate and an additional parametrization in the form of
C.,v isneeded. The matrix C, , propagates into the matrices
C,, of (10) as:

CU.'= —As'Xi,l H i=l,...,k

Xiv1g = Coi + Bigrill — KiAi Xy 5 X = Czy (12)

With (11) and (12) it becomes possible to construct the ma-
trix C, of (10) recursively.

Once the altemative hypothesis has been specified. the ap-
propriate teststatistic can be derived. The appropriate teststatis-
tic for testing H, against H, reads (see e.g.. (1),(2)):

T = v'Q;'C,[C;Q Cu ™ CrQ; (13)

Geometrically T can be interpreted as the square of the length
of the vector that follows from projecting v orthogonaily on
the rangespace of C,. Since the variance matrix Q, is block-
diagonal (see (8)) the teststatistic T may also be written as

k k k
T = [3CoQtwl (30 ClLQu Cul X ClQul ]
= 1=l =l (14)
in which / is the time that the slips start to occur.
Hence. the teststatistic can be computed recursively in a man-
ner that parallels the recursive filter algorithm of the previous
section. An alternative expression for T'# is given by

Tk — @:.hqsh G

where

k
Vi = Qo Z C;;Q:,-lvi

=l

is the best linear unbiased estimator of the b-vector ¥ under
H,, with variance matrix k 1
ar = -1
Qo =[D_C:. Q5 Cul] ™

o )
The teststatistic T+ is distributed ur;der H,and H, as
Ho: T'* ~ x%(b,0) and H,: TH* ~x*(b,A) (15

with noncentrality parameter
A= VQeLY.

The uniformiy-most-powerful-invariant test of size a is now
as follows: Reject A, in favor of H, if and only if 74 2 X 2(b.0).
where X, 2(b.0) is the upper a probability point of the central
X:-distribution with b degrees of freedom.
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A TESTING PROCEDURE

In this section we will develop a testing procedure for use
in integrated navigation systems. The testing procedure is based
on the teststatistic of the previous section. Our testing procedure
consists of the following three steps:

1. Detection: An overall model test is performed to diagnose
whether an unspecified model error has occurred.
Identification: After detection of a model error, identifica-
tion of the potential source of the model error is needed.
A search for the most likely alternative hypothesis and for
the most likely starting time / is performed. Also the likeli-
hood of their occurrence is tested.
3. Adapration: After identification of an alternative hypothesis.
adaptation of the recursive filter is needed to eliminate
statevector biases.

9

These three steps will now be discussed in more detail. In
a particular application one will never be sure whether the class
of alternative hypotheses specified indeed contains the true
hypothesis. It is therefore expedient to have ways to detect un-
specified model errors as well. This is possible if the degrees
of freedom b of the teststatistic T+ is chosen to be equal to
s _,m,. If bequals the maximum possible degrees of freedom.
the matrix C, of (13) becomes a square and regular matrix. im-
plying that the vector V' v of (10) remains completely un-
specified. In this case the invertible matrix C, can be eliminated
from (13) and the teststatistic (14) can be written as

k
T =3 v Q7 v
1=l

Hence. T+ can be computed recursively as

l?u: = Thk=1 4 Tk,ﬂ - (16

This teststatistic can be used to perform an overall model
test for detecting unspecified model errors in the nullhypothesis
H,. The overall model test is now as follows: An unspecified
model error in H,, is considered to be present if and only if 77+

2 XxZ ., m,0).

The next step after detection is the identification of the most
likely alternative hypothesis. As with detection, identification
is based on the teststatistic ( 13). The dimension of the b-vector
V depends on the alternative hypothesis considered and can
range for identification purposes from 1 to Z ., m;. Experience
has shown however that it suffices for most practical applica-
tions to restrict oneselves to the case b = 1. We will consider
therefore in this paper only the one-dimensional case. If b =
1. the matrix C, of (13) reduces to a vector. which will be de-
noted by the lower case kemnel letter c,, and the vector V re-
duces to a scalar. In this case the teststatistic ( 14) can be written

as TH* = (th+)?
with
k -1
thk — Lzt €3, Q; Ui

T (Shie,Quten)?

Hence. with 0'53“ =0gim t O i fracan be computed
recursivelv as '



gk =

h ) ghk=1 4 b2 gk
Ogte—1 Ogra (17

Strictly speaking. the teststatistic r* has to be computed for
each alternative hypothesis considered and for each k& 2 /.
Moreover. since /. the time that the model error starts to occur.
is unknown z priori. one has to start in principle with/ = 1.

This implies that one has to compute k number of teststatistics
t'+ per alternative hypothesis H, at the time of testing k. This
is shown in Figure la for an alternative hypothesis H,.

Our identification procedure can now be described as follows:
At the time of testing k one first determines per alternative
hypothesis the value of / for which lr4] ,1</< k. is at a
maximum. This value of / would then be the most likely time
of occurrence of the model error if the corresponding alternative
hypothesis would be true. In order to find both the most likely
alternative hypothesis and most likely value of / the values max,
.+ M+ for the different alternative hypotheses are compared.
The maximum of this set identifies then both the most likely

time of occurrence / and the most likely alternative hypothesis
H

a*

Since the one-dimensional teststatistic r+ is distributed under
H, and H, as

Ho: t'* ~N(0,1) , H,:t"* ~N(V/og,1), (18)

the likelihood of the corresponding alternative hypothesis can
be tested by comparing 4l with the critical value N, ,4(0.1).
Ifrsl <Ng,, (0.1), the corresponding most likely alternative
hypdthesis can be considered likely enough to have occurred.
However. if for the most likely alternative hypothesis | #.4t <

N, :.(0.1) holds. and the overall model test diagnoses an un-
specified model error. one should reconsider the aptitude of
the specified class of alternative hypotheses.

[t will be clear that the necessary computations for the above
described recursive identification procedure are less than when
done in a batch mode. The computations. however. can still
be somewhat involved. Furthermore. there is also still the prac-
tical problem of a delay in time of detection and identification.
In order to reduce the number of computations and the time
of delay, it is worthwhile to consider introducing a moving win-
dow of length N by constraining/tok — N + 1 £ [ <k. This
is shown in Figure 1b. With this window the time of delay is
atmostequaltoN — 1. When choosing N one of course has
to make sure that the detection power of the teststatistics is still
sufficient. This is typical a problem one shouid take into con-
sideration when designing the filter. Instead of constraining /
tok — N + 1< | < kone may achieve some further com-
putational savings by constraining /tok — N + | < /< &k

— M. This is shown in Figure lc. The rationale behind this
constraint is that the teststatistic may be too insensitive for iden-
tifying global model errors if I > k& — M.

After identification of the most likely alternative hypothesis,
adaptation of the recursive filter is needed to eliminate the pre-
sence of biases in the filtered statevectors. In principal one has
to correct the filtered states from time / to the present time 4.
This however may be a too heavy computational burden. In-
stead the following simple approach is suggested. At time k.
when the most likely alternative hypothesis has been identified,
one resets the real-time filter by correcting the fiitered state as
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Fig. 1A. No Window
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Fig. 1B. A Moving Window With N = 3,A = 0,

t1,2 tl,S °
° tZ.S t2,4
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Fig. 1C. A Moving Window With N = 3.M = 1,

Fig. 1. The One-Dimensional Recursive Teststatistic ¢+

aa  _ a0 1k
Zie = Zhe — Pran1 X4V (19)

where v, ;» and x, « are the fiitered statevectors corresponding
with H,,and H  respectively. The statevector x,, ., with approp-
riate variance matrix which follows from an error propagation
of (19) as

P = Pfu + Per+1 X+ 11Q os Xip 1P hir1s 20)
is then used as the new initial state for time %.

Note that the estimate V “4and its variance matrix 0V,
can be computed recursivelv as

Lk~ Gle-l + Gifve — Cﬂ@l,k—l]
2n
Q\’“v" = [I - chvt]Qﬁl-*-H ;
with gain matrix
G = Quia— CJ,‘[QN + Cy, Q@,_,,_.C;.]'l (22)

Also the n-by-b matrix X, ., ,0f (19) can be computed recur-
sively. Forinstance. in case of aslipC, , V inthe measurement
vector. X, _, reads:

k k
Xesrg =2 | [T @su15lI = K; As]| ®is1, i KiCyy,
=l |j=i+1
which can be computed recursively as shown in (11).

ON MINIMAL DETECTABLE BIASES (MDB)

In this section we introduce

1. A bias-10-noise ratio for diagnosing the impact of model
errors in H, on the statevector.
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2. A measure for the separability of alternative hypotheses
3. The concept of minimal detectable biases (MDB)

Undetected model errors in H, generally influence the
mathematical expectation of the statevector estimator £y,. Itis
therefore of importance to know how particular misspecifica-
tions in A, manifest themselves as biases in the statevector.
Knowledge of the impact of model errors in /, on i, can then
be used to set acceptance criteria for the sizes of these modetl
errors. This is of importance for the design of an appropriate
filter and for the design of a powerful enough testing procedure.

The bias V £, in £, due to a modei error in H, can be com-
puted rather straightfowardly from the equations that define
the filter algorithm. For instance, an outlier C,, ¥ in the data
at time / results in a bias in %, of '

k
Viklk = H [I - K,'Aj]@j.j..l K;C,,.,V .
j=i+1
This bias can be computed recursively in essentially the same
manner as shown in section 3. The significance of the biases
in the statevector can be tested with the following scalar bias-to-
noise ratio

Ay, = VL, Pt Vi, (23)

Using Cauchy-Schwarz’ inequality, the scalar A , can be
shown to give an upperbound on the bias-to-noise ratio of an
arbitrary linear function of <,

(a‘ Vég“‘.)z
a‘Pklga

Ay, Vae R (24)

Hence. A ,,, also gives an upperbound for the bias-to-noise
ratios of the individual elements of the statevector .

Assuming that for a particular application a quantification
of the demands is given in terms of criteria for N ., (23)can
be used to determine the sizes of the model errors that shouid
be detectable by the statistical tests at a certain level of prob-
ability. This brings us then to the important concept of the power
of a statistical test. The power y of a statistical test. being
the probability of rejecting H, when an alternative hypothesis
H ,is true. depends on the chosen level of significance a ( prob-
ability of false alarm), the number of degrees of freedom b,
and the non-centrality parameter A of the corresponding
teststatistic:

v =7(e,b,A) . (25)

The power v is a monotonic increasing functionin « and
A . and a monotonic decreasing function inb. Since X depends
on the assumed model errors in H,, the power function (25)
can be used to determine how well particular model errors can
be detected with the associated test. A low probability corres-
ponds with poor detectability and a high probability with good
detectability. Instead of using the power function (25), we pro-
pose to use the inverse power function

A= A(a,b,7) - (26)

The rationale for using the “inverse power function™ is that
in practical applications one is usually much more interested
in the size of the model error that can be detected with a certain
probability <, than in the power¥ itself. If we assume that
under the true hypothesis H,,,
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E{U I Htruc} = éuv ’ @7

the non-centrality parameter of the teststatistic T becomes
A= VCQ7CICIQTICTICQICY (28
This may be written in geometric terms as

A "_"” Pe, é,,V ”2=H c,v ”2 cosz¢1 (29

where P, is the orthogonal projector that projects orthogonally
onto the range space of C,, | .| is the norm defined by the metric
of 0,/,and ¢ is the angle between C,V and the range space
R(C,,.

With (26) and (29) we are now in the position to compute
the hyperellipsoidal boundary region of biases that can be de-
tected with a chosen reference probability <,,. For the one-di-
mensional case (b = 1) we get

| 7 = [/ | & II* cos®¢]'/? (30

with
Ao = AMa=a,b=1,7=17,).

The angle ¢ in (30) is a measure of the separability between
H,and H,,,. It becomes more difficult to distinguish between ‘
the hypotheses H, and H,,. if @ decreases. If we assume that
H, and H,,, only differ in their time of occurrences / and /,

frue

respectively, then

1,k
cosz¢,° = de,k.glo.k (31

where @ [+ fok is the covariance (or correlation coefficient) be-
tween the teststatistics -+ and ro%, The covariance @ /& joi
reaches its maximum of 1 for [ = [,. The result (31) can be
used as a diagnostic tool for inferring how well the true starting
time /, can be determined. The following simple example shoul:
make this clear.

Example
Assumethat® ., , = LA, = 1,P,, =p.R, =randQ, =
0. The following two cases are considered:

1. An outlier in the data at time /,. Then
sk | lr/fp+k—=1% for 1#1,
cos8 ¢l, - { 1 for | = la

2. A sensor failure that starts at time /,. Then
(k =1, +1)(r/p+1-1)
(k=1+1)(r/p+1,—1)

for 1<,
coszd;:;“ =
(k—=1+1)(r/p+1i—1)
(k=1 +1)(r/p+1-1)

for 1 >1,

A plot of the above two correlation functions is given in Fig-
ure 2. Note the distinct difference in behavior of the two cor-
relation functions. Figure 2a shows that the maximum of cos:®
.+ gets more pronounced for increasing k. Hence it become
easier to determine the correct time of occurrence. /,, of an
outlier when k increases. Figure 2b, on the other hand. shows
the reversed situation. In this case the maximum of cos’¢ '+
gets less pronounced for increasing k. In this case it becomes




|sqrt(coszwll': )

(=]
-
N
w4+
[

7
I 1-)

Fig. 2A. Correlation of Teststatistics for the Case of an
Outlier in the Data at Time I,

1
-~ k=15+3
o 0
-ns-’-' :
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Ip 1-)
Fig. 2B. Correlation of Teststatistics for the Case of a Sensor
Failure that Starts at Time [,

therefore more difficult to locate the true starting time /, of the
sensor failure when k increases. This implies that one should
make sure when designing the filter that a not too large value
of krelative to /, is needed for detecting a bias of a prefixed size.
We now introduce the concept of a minimal detectable bias
(MDB). A MDB is defined as the size of the model error
that can just be detected with a probability v , with the one-di-
mensional teststatistic 1, .. The MDB follows with | &, 12 = g
2.« from (30) and (31) as

1/2
i,k Aa !
| ¥ il T P

gl,k"lo.h

(32)

The MDB'’s provide an important diagnostic tool for inferring
how well particular model errors can be detected. Since a% ,;
is independent of /,IV | has its minimum at / = /,. This
is in agreement with the fact that the teststatistic -+ is most
powerful for / = /,. The minimum of 1A ./l decreases for
increasing k. Thatis. when! = [,, larger values of k correspond
with biases of a smaller size that can be detected with a prob-
ability<,. This result can be used to make an appropriate choice
for the windowlength N. For instance, if in a particular appli-
cation a criterion is set at a level of probability 7 . for the size
of the MDB. k and therefore N can be chosen such that 14,/
meets the criterion. An appropriate level of the MDB can of
course also be obtained through the design of the filter (e.g..

a3l
<°
$
>~ 271
=)
‘->—~
1+
0 :
10 15 20
lg 1-)
4
3+
L
»
~ 2+ k=1p+4
5.5 el k=1y+3
B =lo  kelp+2
K=lp+1
1 &\///
0 ;
10 15 20

sampling rate. number of sensors. measurement precision and
geometry).

Example (continued)
The MDB that corresponds with a sensor failure starting at
time /, reads:

ogtder L) [Aole)

forl <,
| Vit |=

gt ) [sfe ]

{ forl 21,

In Figure 3 theratio 1A ,+¢1/\ 1 2is plotted as function of
[ for different values of k < [, and two different values of r.
The figure shows that | & /41 /X ' 2decreases for/ < /. that
it obtains its minimum at/ = /,, and that it increases at a some-
what faster rate / > [,. The figure also clearly shows the de-
crease in the minimum for increasing k. But note that since
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1/2
| A—
[ °r/p+l—1]
for 1<,
lim | V¥ |=
koo ° 1/2
\ r rlp+i-1
‘rlp+i-1 rlp+i,—1
for 121,

the improvement in the MDB is not without bounds. Hence.

it does not pay to test with re after a certain time delay.
Comparison of the two figures aand b shows the influence

of an increase in measurement precision on the size of the MDB.

The gradient with respect to k of | &1 / Ajzatl = 1 in-

creases. and the minimum of |4,'*l/\ 2 decreases for de-

creasing r.

CONCLUSION

In this paper a recursive testing procedure for use inintegrated
navigation systems was introduced. Our procedure can accom-
modate slippages in the mean of the predicted residuals caused
by for instance: outliers in the data, sensor failures or switches
in the dynamic model. The method is therefore also applicable
to the important problem of GPS failure detection and integrity
checking as discussed in e.g., (6-11).

One of the assumptions on which our method is based is that
the complete variance matrix of the predicted residuals is
known. Different teststatistics are needed however in case Q,
is unknown or only partially known. It can be shown thatit is
also possible to develop for this more general case recursive
algorithms. The procedures can become quite complex however
(4). The simplest extension occurs when Q, is known up to an
unknown scale factor. In this case the teststatistic T of (13)
has to be replaced by the teststatistic

v'Q;'Ca{CrQ G0 QM

vQty

sin?p =

and Surveying at the Faculty of Geodesy
Prof. Teunissen was senior lecturer at t

systems.

the University of Stuttgart (1982) and Calgary ( 198

The teststatistic sin?¢ is distributed under 4, and A, as

k k
H, : sin*p ~ B(b, Zm.-,O) : H, :sin*p ~ B(b,Zm‘-,M

1=l i=l

where B(f,.f; \ ) is the Beta-distribution with f,.f, degrees ot
freedom and non-centrality parameter A . It should be noted
thatsince sinzp = | forb = I *,_m,, nooverallmodel test
exists for the case that Q, is known up to a scale factor.
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