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1. Introduction

Nonlinear optimization, nonlinear least-squares and densities of nonlinear estimators are
a trilogy of problems that are intimately related in the framework of nonlinear inversion
or adjustment of geodetic data. Usually the description of physical phenomena proceeds
through models in which a mapping, A, is defined, from a set of parameters, N, to
a set of experimental outcomes, M. M is supposed to contain the image of the map
A. Obtaining the image y = A(z) € M of z € M in e.g. a least-squares sense, is
solving the inverse problem. The inverse problem is said to be linear if A(a;z; + azz;) =
a1 A(zy) + 02A(z2),Vay,a; € R;jzy,z; € N. Almost no geodetic inverse problem is
truely linear. A consequence of nonlinearity is that the inverse problem increases in
complexity. These complications manifest themselves: a) in the problem of finding the
numerical estimates of the parameters z; and b) in the problem of finding the a posteriory
probability density function of the nonlinear estimators.

The numerical estimation of parameters is typically a problem of optimization. The
estimation of parameters requires frequently the maximization or minimization of an
objective function. Typical objective functions are risk functions, robust loss functions,
posteriory density functions, likelihood functions and (weighted and unweighted) sums
of squares. In general no direct methods exist for estimation in nonlinear models. For
these cases the nonlinear problem is attacked iteratively: at each step the solution of a
linear problem, in terms of (the Fréchet) derivatives, is constructed.

It will be clear that a numerical parameter estimation or inversion procedure is incomplete
without an analysis of the uncertainties in the results. That is, it is not enough to compute
the nonlinear parameter estimates and state that they are the solution to the inverse
problem. Knowledge of the a posteriori probability density functions of the nonlinear
estimators is needed in order to infer the quality of the results obtained. For linear models
a rather complete theory of inference exists. Unfortunately the results which hold true
for linear models do not carry over to the nonlinear case. That is, although some exact
methods for deriving the distribution of nonlinear estimators exist, these methods are in
general very difficult to apply in practice.
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From the above it will be clear that the solution of the nonlinear inverse problem is not
as straightforward as it is for the linear case. It is therefore expedient to have ways of
assessing the amount of nonlinearity in nonlinear models and methods to prove whether a
linear(ized) model is a sufficient approximation. Within the context of nonlinear inversion
the objectives of the SSG 4.120 are therefore to examine how performance measures of
estimators vary when the actual model differs from the assumed model, to evaluate the
performance of numerical methods for computing the desired estimates and to devise,
test and evaluate methods which are robust with respect to certain departures from the
assumed model. This has led to the following research topics of the SSG:

1. Non-linear statistical inference:

Evaluation of the consequences of non-linearity for the linear inference procedures cus-
tomarily used (e.g. practical measures of non-linearity; distributional properties of non-
linear estimators and statistics). Further development of the differential geometric theory
of nonlinear inference.

2. Numerical methods for nonlinear geodetic optimization:

Methods for computing estimates in nonlinear models are usually iterative in nature. An
evaluation of the performance of the various iteration methods when applied to geodetic
models is needed (e.g., local and global convergence proofs; rates of convergence).

3. Perturbation analysis for linear tnference:

This includes, but goes beyond, the classical problem of hypothesis testing. The objective
here is to analyze and describe the sensitivity of linear inference procedures for pertur-
bations in the assumed linear(ized) model (e.g., influence of perturbations in functional
and stochastic model on the estimators, test statistics, variance components estimation,
reliability and precision measures).

4. Robust statistics: :

Study to what extent and under which circumstances methods of robust statistics can
compete with or complement the more traditional inference procedures in case of geodetic
adjustments.

2. Review of SSG-research

Although it is rather difficult to classify the results of the activity of the members of
the studygroup in definite categories, the main results will be presented according to
the following classification: numerical and analytical methods for nonlinear geodetic
optimization; nonlinear statistical inference; perturbation analysis for linear inference;
robust statistics.

In general nonlinear inversion problems have to be attacked iteratively. The best known
iterative techniques are: the Steepest-Ascent (Descent) method, the (Quasi-)Newton
methods, the Conjugate Direction methods and the Trust Region methods. From a the-
oretical as well as a practical point of view it is important to have available verifyable
local and global convergency theorems, practical estimates of the rates of convergence
and suitable termination criteria. In [Adamczewski and Vo Hung Dang, 1987], [Vo Hung
Dang, 1988] it was shown that the rate of convergence for the computation of geodetic
networks is favourably effected by an ordering of the parameters based on the topology
of the network. In [Blaha, 1987|, [Blaha and Bisette, 1989] the resolution of a nonlin-
ear parametric adjustment model is addressed through an isomorphic geometrical set-up
with tensor structure. The geometrical set-up leads to the solution of modified normal



equations which contains second order partial derivatives. This approach shortens the
convergency process as compared to standard methods. It would be interesting to com-
pare the method with the classical Newton process.

In [Grafarend et al., 1989][Grafarend and Schaffrin, 1989a,b] an analytical solution of the
nonlinear resection problem is given. Conditions for the uniqueness of the solution are
given using concepts from differential geometry.

The theory of the Symmetric Helmert Transformation as introduced in [Teunissen, 1985)
is discussed and extended in [Teunissen, 1988], [Krarup, 1988}, [Koch, 1989a,b] and [Wolf,
1989]. In [Teunissen, 1988] a computational efficient two-step procedure for ruled-type
manifolds is introduced. The method has also found its application in studies of the
electromagnetic field of the brain [J.C. de Munck, 1989]. In [Koch, 1989a,b] an alterna-
tive solution method of the 1D Symmetric Helmert transformation based on Bayesian
principles is presented. And in [Wolf, 1989] it is shown that the eigenvalue approach
of [Teunissen, 1985] is equivalent in the 1D-case to the approach based on a formula
of R. Schumann. A generalization of the Symmetric Helmert transformation to the N-
dimensional case is given in [Krarup, 1988). Based on differential geometric concepts this
study presents a detailed analysis of the properties of the stationary or critical points.

Generally there are three approaches that one can follow to estimate the probabilistic
properties of nonlinear estimates. The first approach relies on results from asymptotic
theory. The central idea of asymptotic theory is that when the number of observations is
large and errors of estimation corresponding small, simplifications become available that
are not available in general. The rigorous mathematical development involves limiting
distributional results and is closely related to the classical limit theorems of probability
theory. Unfortunately, since the theory is based on the assumption that the number of
observations increase indifinitely, the results obtained up to now cannot satisfy all the
requirements of application in practice.

An alternative way to estimate the distribution of nonlinear estimators would be to rely
on Monte Carlo methods. One replicates the series of experiments as many times as one
needs, each time with a new sample drawn from the parent distribution and so obtains
the relevant distributional properties by averaging over all replications. A drawback of
this technique is however that it may become computationally demanding for large scale
inverse problems.

A third approach that comes to mind to compute the distribution of nonlinear estimators
is based on the fundamental relations that define distribution functions. If the parent
density is given, then theoretically at least, one can find both the cumulative and den-
sity distribution of the nonlinear estimator. The practical problem with this method
is, however, that in general one cannot easily evaluate the complicated integrals and
inverses of the nonlinear maps involved. Instead of aiming at a complete description of
the distribution, one could restrict oneselves to some of the moments of the distribu-
tion. The complexity of these computations depends very much on the nature of the
parent distribution and the nonlinear maps involved. But in general they can become
quite complicated, especially in the multivariate case. If in a particular problem it is
impossible to apply the above mentioned analytical methods, the next one thing one can
try to do is to make use of approximations based on a suitable Taylor expansion. In
this way appropriate approximations to the first two moments and density of nonlinear
least-squares estimators were obtained in [Pazman, 1987; Jeudy, 1988; Teunissen, 1988a,
1988b).



An analytical expression for the first moment of the nonlinear least-squares estimators
of the parameters of the 2D symmetric Helmert transformation is given in [Teunissen,
1989a). Nonlinearity diagnostics for the nonlinear inversion of geodetic and geophysical
data based on concepts from differential goemtry were developed in [Teunissen, 1989b].
Quadratic approximations for geodetic adjustment models and the solution of the geode-
tic boundary value problem are developed in [Bihr, 1988], [Heck, 1988], [Heck, 1989).

The objective of perturbation studies in linear(ized) models is to analyze the influence
of departures from the underlying assumptions. In [Hahn, Van Mierlo, 1987] and [Van
Mierlo, Hahn, 1987] the consequences of changes in the weight matrix is analyzed in
detail. In [Borre, Lauritzen, 1989] the concept of conjugate curvature is introduced and
its relation to the principal and normal curvatures of [Krarup, 1982], [Teunissen, 1984] is
shown. The concept of conjugate curvatures enables one to give a geometric description
of the procedure of simultaneous estimation of components of both the functional and
stochastic model. In [Van Mierlo, 1989 teststatistics are proposed for the case that the
intersection of the nominal and the alternative models is not equal to the nominal models.

The objective of robust statistics is to find procedures of inference that are less sensitive
to hypothized perturbations in the assumed mathematical model. In [Schaffrin, 1989]
less sensitive tests are obtained by introducing a priori random characteristics on the
linear hypotheses. The implication of methods of robust estimation for photogrammetry
and deformation models are studied in [Kubik et al. 1987a,b] and [Caspary and Borutta,
1987]. In [Kampmann, 1988] an approximate testprocedure based on the properties of
the least absolute value estimator is derived. A deficiency of most robust procedures
is still the lack of a proper reliability description. An attempt to include reliability
indicators into robust estimation is made in [Borutta, 1988|. The robustification of
general prediction methods is treated in [Schaffrin, Grafarend, 1987|, [Schaffrin, 1989).

3. Outlook

From the previous brief review follows that a whole variety of problems have been studied
that in one way or the other relate to what one could call the " Theory of Geodetic
Inference”. Although the various topics which have been studied cover a very wide
spectrum and differ considerably in complexity, one important unifying point of view
seems to underly all the research reported. The general research trend is namely to focus
on departures from the assumptions on which the ”classical” mathematical models and
corresponding inference procedures are based, to formulate diagnostics that identify the
influence of the assumed departures and to devise procedures of inference that are either
most-sensitive or least-sensitive to these departures.

Up to now most of the research has been directed towards the more or less classical Gauss-
Markov type models. It seems expedient, however, in view of *dynamic” applications
such as for instance kinematic positioning, navigation and digital fotogrammetry, to
extend this field so as to include the rich and diverse univariate and multivariate state-
space filtering techniques as well.

This field also offers the possibility to strengthen the link with the more classical inference
procedures. Let us therefore in conclusion entertain the hope that this challenge will not
remain unanswered.
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