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© ABSTRACT

In this note the bias of the least-squares estimators of the parameters
of the Symmetric Helmert Transformation is derived. The approach taken makes

use of the concept of normal curvature of the manifold described by the non-
linear observation equations.



1. INTRODUCTION

The Helmert transformation furnishes the functional model for connecting
two or more pointfields. For one and two dimensions the model is linear and
simple analytical solutions for the least-squares estimators can be derived.
For dimensions higher than two the model becomes nonlinear. In these cases
iterative methods are needed for obtaining the least-squares solution. Based
on a geometrical analysis of the model of the Helmert transformation, a
numerically attractive solution method was developed in (Krarup, 1985).

In the classical Helmert transformation one pointfield is held fixed and
is not adjusted for. In the symmetric Helmert transformation (Teunissen, 1985)
however, both pointfields are adjusted for. Contrary to the classical Helmert
transformation, the model of the Symmetric Helmert transformation is nonlinear
for all dimensions. But for the one and two dimensional cases still relatively
simple analytical solutions are available. , ,

It can be shown that if both the pointfields need to be adjusted for, the
classical Helmert transformation systematically underestimates the scale when
compared to the scale estimator of the Symmetric Helmert transformation
(Teunissen, 1985). A beautiful geometric analysis of a class of problems
related to the Symmetric Helmert transformation was given in (Krarup, 1987).

In this note we will derive an approximation of the bias in the Symmetric
Helmert transformation. In section 2 we briefly review some of the theory of
bias due to nonlinearity. In section 3 we define the normal curvature and
show how it affects the bias in the least-squares residual vector. Finally

. in section 4 the results of the previous sections are applied to the

Symmetric Helmert transformation.

2. BIAS

Consider the nonlinear model
B 2
Ely} = A(x) , o, , (1)

where E{.} is the mathematical expectation, y is a random m-vector with
covariance matrix azQy, x is a p-vector of fixed but unknown parameters and
A(.) is a nonlinear map from RP into R™ with m » p. We will assume that the
the Jacobian of A(.) and Qy are both of full rank.



In order to appreciate the bias situation in the least-squares inversion
of (1), we will first discuss briefly the forward problem, i.e. the bias
situation if we go from x to y.

Forward problem: Let X be an estimator of x with covariance matrix JZQX
and a bias bi = E{X-x} of the-order'cz. With a Taylor expansion of A(.) follows
that the bias by = E{g-y} in ¥ = A(X) can be approximated as

by =9 A % trace (°£xAQx) 1. (2)

In this approximation terms of the order d3 and higher are neglected. The
second term on the right-hand side of (2) is the bias contribution due to non-
linearity. A useful upperbound on this term can be obtained with the Cauchy-

Schwarz inequality (x *aixA Q).(x)2 < (x* 82 A132 A x)( *Q. Qs x). From this in-

. . 2
equality follows for the eigenvalues that |u(d¢ %ax < Juf a A M maxmax (@)
and therefore that

% ltrace a A Q)1 < ?-0 plu 8 A )lmax trace(Qy) (3)

Due to the sparsity of the Hessian aiXAi it is usually not too difficult
to obtain a realistic estimate of its in absolute value maximum eigenvalue.

Least-squares inverse problem: If X is the least-squares estimator of x
under model (1), -b; = E{y-§} becomes the bias in the Teast-squares residual
vector, bé, and (2) can be written as

b, = 3 A by + by (4)

where we have used the abbreviation

by = —-% 02 trace(aixA QR)' (5)

The structure of (4) indicates that the biases in X and & are given by
respectively

by = (3,A) PBXA by ' (6)
and
_ p-
b, = PaxA by , (7)




where (3 A) is a left~inverse of BXA, P8 A is the orthogonal projector onto

the range space of 3 A and Pa p = I-Pyp X From (4), (6) and (7) follows that
X

I byugy = libgllg + 1 béngy. (8)

Hence this relatively easy computable scalar can be used as a first
indicator whether the bias due to nonlinearity in X and & is significant or not.

3. CURVATURE

In Gaussian surface theory the normal curvature is defined as the ratio of
the second fundamental form and the first fundamental form. The second
fundamental form for the map A(.) is given by x*(n*Q_ 132 (A)x where n is a unit

normal vector, i.e. n*Q 18 A = 0 and n*len = 1. This form is a generalization
of the classical second fundamenta] form. There are m-p of such forms, one for
. each normal direction. In analogy with the classical Gaussian surface theory

we define the normal curvature for model (1) as

T - (9)

The extreme values of this ratio are the principal curvatures. They follow from
the generalized eigenvalue problem

(10)

* - =
In Qy xx Hx |

If we denote the p principal curvatures for the normal direction n by

k1 k2 kp and Tet ny,n,,... LI be an orthonormal basis of the orthogonal
comp]ement of the range space of 3 A then the projector Pé g can be written
as PL = z nin: Q and the bias b- = Pa Aby can be expressed in terms of

the pr1nc1pa1 curvatures as

mp P
by=-50 = n T K | (11)
i=1 a=1 i

This result shows how the local geometry of the manifold A(.) determines the
bias in the least-squares residual vector é&.



4. THE SYMMETRIC HELMERT TRANSFORMATION

The nonlinear model of the two dimensional Symmetric Helmert transformation
reads

I2n 0 u , IZn
E{ } = 3 ag 3 (]‘2)
ARal I,ac t 0 I
n 2
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where A is scale, R is a two dimensional rotation matrix, "&" stands for the
Kronecker product and ¢ is a vector of ones. If R=I and t=0, we obtain the one
dimensional Symmetric Helmert transformation without translation:
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E{ } = Wi o iG ENEn (13)
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This model describes a (q+1) dimensional curved manifold embedded in a 2q
dimensional flat space.

With

where n is partitioned as n = (ningj*, the generalized eigenvalue problem (10)
for model (13) reads

TS P (1+A2)Iq Au

= 0. 14
nt 0 Au* ||un21 e

This shows that there are g-1 zero principal curvatures. The corresponding

principal directions are given by the columns of the (q+1)x(q-1) matrix

(né* O)*. Thus there are only two non-zero principal curvatures for each of the
q-1 mutually orthogonal normal directions. Moreover, since HEU = 0, it follows
that they are independent of the chosen normal direction and that they are given

by



&y

Ko=+ |l at ' (15)

Hence the manifold of (13) exhibits a saddle-type geometry with two
principal directions of non-zero but in absolute value equal curvatures for each

~of the g-1 normal directions.

If translation is included in (13) the non-zero principal curvatures
become

K =+ || E|[*1, where u = Ptu (16)

The same result is obtained for model (12). Since the non-zero principal
curvatures only differ in their sign, it follows from equation (15) that
bé=0. Hence we have obtained the important result that the least-squares
estimators of the coordinates in (12) are free from bias despite the non-
Tinearity of the observation equations. In order .to obtain the bias in the
transformation parameters, we first apply formula (5). For model (12) this
gives

07 2 0
[_A] ", (17)
_ARﬂIn

where to first orderin 02 the variance of A is given by

2

2 2 o

= (1+A7) — .
I

o3 (18)

Since by =0, the scalar bias measure | bilis follows form (8) and (17) as
X

2 1205\4_|_l_u_u_2
I billQi =7 ATy 5 (19)

g

In order to obtain the individual bias components of bi’ formula (6) has to be
applied 'in general. For our particular case, however, the bias vector bi can be
obtained in a simpler way. By noting that b_y of (17) lies in the range space of
the Jacobian of (12), we immediately can conclude that the biases in all para-

meters except scale vanishes. The bias in the least-squares estimator } follows

then simply as
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E(A-A) = 2 o5 2 |

rof

Gi (20)

In many practical applications of model (12) it is customary to test
whether A=1 or not. The test statistic used for this test is (i-l)/di. It is
usually assumed to have a standard normal distribution under the nulhypothesis
that A=1. The result (20) shows, however, that due to nonlinearity the mean of
the test statistic (i—l)/oi under the hypothesis that A=1, differs from zero by
the amount %-ci = o/||u|l. This effect is practically negligible if the a priori
precision is high enough (o small enough) and the curvature small enough
(|l u]l Targe enough). But the effect increases the smaller the network
of points becomes. In order to get some indications of how the bias
in scale depends on the number of network points and the distance between them,
we assume that the points are distributed over a square grid of squares with
side length d. With these assumptions equation (20) can be worked out to give

. 2 2
E{A-A} = 3 2. {.9 ] (21)
An(n-1) { d

This shows that for most practical applications the bias in scale can be
neglected. For o/d = 10-5, A=1and n = 4 we have namely bi = %310'10.

As a final remark it is interesting to note that the above results can
also be used to predict the local convergence behaviour of the Gauss-Newton
iteration method when applied to the Symmetric Helmert transformation. The

Tocal convergence factor (1cf.) of the Gauss-Newton method reads (Teunissen,
1985)

o = | kg |yl e I (22)

For model (12) this becomes

(0]

lcf. = I |l.

Ihall

A useful a priori estimate of the local rate of convergence is therefore

[og |

1
2

o(2n-4) .
Iu i

Tcf., =
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