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Abstract

This paper gives a survey of some results in nonlinear estimation theory which proved useful
when dealing with both the numerical and statistical treatment of nonlinear geodetic adjustment
problems. In the context of nonlinear optimization a number of well-known iterative algorithms
belonging to the class of iterative descent methods are presented. The basic principles of these
methods are discussed, necessary and sufficient conditions of convergence are given, and the
rates of convergence of these methods are derived. In the context of nonlinear least-squares we
present the Gauss-Newton method. In order to provide an intuitive understanding of the nature
of nonlinearity, we emphasize the local or differential geometry of least-squares and in particular
the role played by curvature.

Finally, in the context of densities of nonlinear estimators we discuss the impact of nonlin-
earity on the probabilistic properties of least-squares estimators. Special attention is given to
their first moments. Also some useful and relatively easy computable measures for diagnosing
the significance of nonlinearity are proposed.
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Introduction

r. e

Nonlinear optimization, nonlinear least-squares and densities of nonlinear estimators are a trilogy
of problems that are intimately related in the framework of nonlinear statistical inference. In
this paper it is attempted to relate and unify some relevant aspects of these three important
research areas. As such, the paper gives a survey of some (old and new) results in nonlinear
estimation theory which proved useful when dealing with both the numerical and statistical
treatment of nonlinear geodetic adjustment problems.

The numerical estimation of parameters is typically a problem of optimization. The estima-
tion of parameters requires-namely frequently the maximization or minimization of an objective
function. Typical objective functions are riskfunctions, robust loss functions, posterior density
functions, likelihood functions and (weighted or unweighted) sums of squares. Of these, the two
most common methods of estimation are maximum likelihood and least-squares. In maximum
likelihood, the estimates of the parameters are taken as those values that maximize the likeli-
hood function given the data. Thus if p,(y | z) is the density of the random data vector y (the
underscore indicates randomness), the optimization problem of maximum likelihood reads

max py(y | z) (1)

In general no direct methods exist for solving (1) when the parameter z enters to the third or
higher power in p,(y | ). For these cases one will therefore have to take recourse to compu-
tational techniques that are iterative in nature. That is, one starts with an initial guess zy of
the solution Z and then proceeds to generate according to some preassigned rule a sequence
z1,%2,Ts,... that hopefully converges to £. Various iterative techniques exist which can be
used to solve a nonlinear optimization problem like (1). In chapter I we present three of the
best known iterative techniques. They are: the Steepest-Ascent (Descent) method, the Newton
method and the Trust-Region method. The basic principles of these methods are discussed,
necessary and sufficient conditions of convergence are given, and the rates of convergence of
these methods are derived. ‘

~ In most geodetic applications it is customary to assume that the random m-vector y has a
multivariate normal (or Gaussian) distribution

pylv] ) = (20)™2 | @ [7V2 expl—3 ||y — A=) I}

with || . I>= (.)*Q;*(.) and A(.) : R* = R™,m > n. In this case the maximization problem (1)
can be turned into the minimization problem '

min ||y - A(z) |1 (2)

This is the least-squares problem..



The minimization problem (2) can be solved directly if the map A(.) is linear, i.e. if Alayz +
azz3) = a1A(Z1) + azA(z2) Vayi,a2 € R, 21,23 € R®. The corresponding linear least-squares
estimators are given by the well-known formulae

Il

Ppy €

= .3
= A"Pay | &|?=] Pty (:3)

18> 2>

where: P4 is the orthogonal projector that projects onto the range of A and along its orthogonal
complement; P{ = I — P4; and A~ is an (arbitrary) inverse of A. The estimators g,éand ]| &2
are unique, and the estimator  is unique if and only if the map A has full rank n.

If the map A(.) is nonlinear then generally no direct methods exist for solving (2). In this
case one has to fall back on iterative techniques. One can in principle solve (2) with one of the
iterative techniques that are presented in chapter I of the paper. These methods however do
not take advantage of the special structure of the objective function of (2). The Gauss-Newton
method on the other hand does take advantage of the sums of squares structure of the objective
function. The method is therefore especially suited for solving nonlinear least-squares problems.
The Gauss-Newton method is treated in chapter 2 of the paper. In this chapter we also introduce
the differential geometric concept of normal curvature. And amongst other things, it is shown
how the optimality conditions and the rate of convergence of the Gauss-Newton method can be
expressed in terms of the normal curvatures of the manifold A(z).

As to the distributional properties of the least-squares estimators, it is well-known that if
the hypothesis y ~ N(A(z),Q,) holds and map A(.) is linear and of full rank, that

§ ~ N(A(z),PaQy) ¢~ N(0,P;Qy) (.4)
i"‘N(x:A_PAQvA_.) ||§||2~ xz(m—n,O) '

Unfortunately these simple results do not carry over to the nonlinear case. Essential properties
which are used repeatedly in the development of the linear theory break down completely in the
nonlinear case. Take for instance the mathematical expectation operator E{.}. If # is a random
variable and F(.) is a nonlinear map, then E{F(§)} # F(E{8}), i.e. the mean of the image
differs generally from the image of the mean. Hence, we can hardly expect our least-squares or
maximum likelihood estimators to be unbiased in the nonlinear case.

For statistical inference purposes it is important to have means of computing the probability
distribution of nonlinear estimators. Unfortunately no direct and straightforward methods are
available. In practice one will therefore have to be satisfied with approximations. In chapter 8
of the paper we discuss some ways of developing such approximations. Special attention is given
to the first moments of nonlinear estimators and formulae for the biases of the least-squares
estimators are derived. It will be shown what role is played by curvature and also some easily
computable measures of nonlinearity are proposed.



Chapter 1

Nonlinear Optimization

v e

1.1 Introduction

In this chapter we will consider the problem of finding (local or global) solutions to the problem:

mzinF(x) , T€ER* , F:R*—> R (1.1)

The methods that will be discussed in this chapter for solving the minimization problem (1.1) are
all iterative descent algorithms. By iterative, we mean, that the algorithm generates a sequence
of points, each point being calculated on the basis of the points preceding it. An iterative
algorithm is initiated by specifying a starting point, the initial guess. By descent, we mean that
as each new point is generated by the algorithm the corresponding value of F(z) evaluated at
the most recent point decreases in function value. Ideally, the sequence of points generated by
the algorithm in this way converges in a finite or infinite number of steps to a solution of (1.1).
The methods discussed in this chapter all adhere to the following scheme:

[zip1 =z +tade , k=0,1,2,...] (1.2)

i Set k = 0. An initial guess is provided externally.

ii Direction generation: Determine a direction vector di in the direction of the proposed
step. g

iii Line search strategy: Determine a positive scalar t; such that F(zy41) < F(z).

iv Test wether the termination criterion is met. If so, accept zx,; as the solution of (1.1). If
not, increase k by one and return to step ii.

Generally one can say that the individual methods falling under (1.2) differ in their choice of
the directionvector dj and the scalar t;. The iterative techniques fall roughly into two classes:
direct search methods and gradient methods. Direct search methods are those which do not
require the explicit evaluation of any partial derivatives of the function F(z), but instead rely
solely on values of the objective function F(z), plus information gained from the earlier iterations.
Gradient methods on the other hand are those which select the direction vector dj using values of
the partial derivatives of the objective function F(z) with respect to the independent variables,
as well as values of F(z) itself, together with information gained from earlier iterations. The
required derivatives, which for some methods are of order higher than the first, can be obtained
either analytically or numerically using some finite difference scheme. This latter approach
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necessitates extra function evaluations close to the current point z;, and effectively reduces a
gradient method to one of direct search.

In this chapter we will restrict ourselves to gradient methods for which the required deriva-
tives can be obtained analytically. The descent methods that will be discussed are: the Steepest
Descent method, Newton’s method and the Trust Region method. But before discussing these
methods we first develop the conditions that must hold at a solution point of (1.1). These condi-
tions are derived in the next section and they are simple extensions of the well-known derivative
conditions for a function of a single variable that hold at a maximum or a minimum point.

1.2 Optimality conditions

In the investigation of the minimization problem (1.1) we distinguish two kinds of solution
points: local minimizers and global minimizers.

Definition: The vector £ € R" is said to be a global minimum of F(z) if F(£) < F(z),Vz €
R". The global minimum is unigue if F(z) < F(z),Vz € R".

Definition: The vector £ € R" is said to be a local minimum of F(z) if F(£) < F(z) for
all z near £. By “z near £” we mean that an e-ball, B(Z,¢), of the point # exists such that
z € B(Z,¢). The e-ball is defined as B(%,¢) = {z | || z - £ ||< ¢,z € R"}. The local minimum is
said to be isolated if F(£) < F(z),Vz € B(%,¢).

The problem of computing the minimum of F(z) can be facilitated by deriving certain
properties that must be satisfied by the minimizing vector . The following two theorems,
theorem 1 and 2, state necessary and sufficient conditions for # to be a minimum of F(z).

Theorem 1 (necessary conditions): }
Assume that F(z), 8. F(z) and 8%, F(z) are continuous Yz € R™. If £ is a (local or global)
minimum of F(z), then

a) 9.F(%)=0

(1.3)
b) oL F(2)20

proof: .
First we shall proof (1.3a). Consider the vector z = % + td where t is a scalar and d an
n-vector. Expansion of F(z) in a Taylorseries at Z gives

... F(z)=F(z)+t3.F(2)°d+ O(t) . (1.4)
The orderterm O(t) indicates the remainder in the Taylorseries. It has the property
t—0 ¢

Since £ is a local minimum of F(z) by assumption (a global minimum is ofcourse also a local
minimum), it follows that for sufficiently small ¢,

F(2) < F(z) = F(% + td) (1.6)
This, together with (1.4) gives after dividing by ¢,
3. F(2)'d+ A >0 fort>0

(1.7)
3. F(2)'d+ A <o fort<o



Taking the limit as t — 0 and using (1.5) shows that (1.3a) must be true.

Next we shall proof (1.3b). Expanding F(z) in a Taylorseries at £, but now retaining the
quadratic terms, gives with (1.3a),

F(z) = F() + %t’d‘a:,F(a‘:)d+ o(t?) (1.8)

where O(t?) has the property,
oft?) _

lim = =0 (1.9)
Equations (1.6) and (1.8) imply that
1. 2 A O(tz)
Ed 8,,F(z)d+ t2 20

Taking the limit as t — 0 and using (1.9) shows that
1
§.1'a§,F(a)az >0

Since d is completely arbitrary, this means by definition that 3%, F(%) is positive semi-definite.
This proofs (1.3b). O

Theorem 1 gives necessary conditions for £ to be a minimum of F(z). The stated conditions
are however not sufficient. This is easily illustrated by the following simple example. Consider
the function Fi(z) = z!. Clearly it has a (global) minimum at £ = 0, and 9:F1(0) = 0 and
2,F1(0) = 0 hold. Consider now the function Fy(z) = —z*. Then once again 9, F3(0) = 0 and
82,F2(0) = 0 hold. But now, however, £ =0is a (global) maximum of Fy(z).

The following theorem gives sufficient conditions for # to be a minimum of F(z).

Theorem 2 (sufficient conditions):
Assume that F(z), 8.F(z) and 82, F(z) are continuous Yz € R™. If

a) 8.F(#)=0

(1.10)
. b) 92, F(2)>0
then £ is a (local or global) minimum of F(z).
proof: _
Expansion of F(z), with z = £ 4 td, at £ gives with (1.10a),
2
F(z) = F(2) + [%d‘aﬁ,p(e)u %]t’ (1.11)

Since 82, F(£) is positive definite by assumption, the first term in the backet on the righthandside
of (1.11) is strictly positive. Hence, in view of (1.9), we can conclude that the bracketed term
is strictly positive for sufficiently small ¢t. Thus from (1.11) follows that F(z) > F(z) for all z
near Z, that is, for ¢t small. O

It should be noted that £ can be a minimum of F(z) and still violate the sufficiency conditions
of theorem 2 (for example F(z) = z*). It is also remarked, since finding the maximum of a
function F(z) is equivalent to finding the minimum of — F'(z), that the necessary and sufficient



conditions for a maximum simply follow from changing the inequality signs “>” in (1.3) and
“>" in (1.10) into “<” and “<” respectively. Those cases where 9:.F(%) = 0, and % is neither
& minimum nor a maximum correspond to inflection and saddle points of F(z). Thus we may
conclude that if we find all the solutions of 3,F(z) = 0, the so-called stationary- or critical
points of F(z), then we shall have found all the minima (local and global), maxima (local and
global), inflection and saddle points of F(z).

If F(z) is quadratic, then 8.F(z) is linear and the stationary points simply follow from
solving a system of linear equations. In het non-quadratic case, however, 3, F(z) is nonlinear
and a system of nonlinear equations, 8, F(z) = 0, has to be solved. Due to the nonlinearity of
the system 9. F(z) = 0, it is very seldom that one can find analytical expressions for its solutions
(there are exceptions!). In practice one will therefore have to recourse to methods which are
iterative in nature.

Once the stationary points of F(z) are found, one can check whether 32, F(z) > 0 holds in
order to show that the corresponding stationary point must be a local minimum. If 8, F(z) >0,
one first computes the vectors d that satisfy 8, F(2)d = 0 and then checks whether F(z) < F(%)
for all those z that lie on the ray that emanates from # with direction vector d. After the local
minima are found, the global minima follow from comparison of the function values at the local
minima.

Since we are interested in locating minima of the function F(z) it seems intuitively appealing
to restrict our attention to those iterative methods that impose the descent condition. In the
next section we will give & representation of the class of vectors that lie in a descent direction
of the objective function F(z).

1.3 Descent direction generation

The direction vector d; of

Ti41 = Tk + tpdy (1.12)
is said to be in a descent direction if a possitive scalar ¢, exists such that
F(zi + tpdi) < F(z3) (1.13)

- F(xy )= const.

Figure 1.1: Contours of F(z) and descent directions at zj.

If we apply Taylor’s expansion to F(zj + txdy) at z; we get
F(zy + tpdy) = F(zp) + tx3:F(zx) dy + O(tx)
This shows that if

3:F(zx)'ds < 0 | (1.14)
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then it is possible to chooge a positive scalar t; so that (1.13) holds. Direction vectors d, that
satisfy inequality (1.14) are thus vectors that lie in the direction of descent. The various descent
directions at z; of the function F(z) are shown in figure 1.1.

It follows form inequality (1.14) that the descent direction vectors can be represented as

lde = —Q(zx)3:F (1) ] (1.15)

where Q(zx) is an arbitrary but positive-definite matrix that depends on ;. In the following
sections we will see that each particular iterative descent method can be characterized by the
choice made for matrix Q(z). But before we discuss the different iterative descent methods we
will first establish sufficiency conditions that guarantee convergence of the descent methods to
a stationary point of F(z). This is done in the next section.

1.4 A convergence theorem
It follows from (1.12) and (1.15) that the descent methods take the form

'ﬂ,+1 =z — th(xk)azF(xk)] . (1.16)

The two variables in (1.16) are the positive scalar t; and the positive-definite matrix Q(z).
Different choices for t; and Q(z1) correspond with different descent algorithms.
If we define a vectorfunction ® : R™ — R™ as

(z) = z - t(z)Q(z) 3. F(z) (1.17)

equation (1.16) can be written in the compact form

| zk41 = ®(z1) ] (1.18)

Note that since t(z) is positive and Q(z) is positive-definite, the solutions of z = ®(z), the
socalled fized points of ®(z), are identical to the solutions of d:F(z) = 0, i.e. the stationary
points of F(z). This implies that if the sequence generated by (1.18) converges to a fixed point
of ®(z), the sequence generated by the descent method (1.16) will converge to a stationary point
of F(z). .

The iterationscheme (1.18) is known as the fized point iteration method. It is sometimes also
called the method of successive approximation and also Picard’s method. The geometry of the
fixed point iteration method is best illustrated for the univariate or scalar case. In figure 1.2
the three possible cases of no solution, a unique solution and a non-unique solution are shown.

Y
y‘ y_—_x Y‘ y:x A y=x

- y=®(X)
y = ®{x)
o
»)-( X
b) c)
no solution a unique solution a non-unique solution

Figure 1.2: Existence and uniqueness of z = ®(z).



Figure 1.3 shows how the sequence z,;; = ®(z;) , k =0,1,2,..., is constructed geometri-
cally. Both a convergent and a divergent case are shown.

" |

y=x y=x

Xz ——————— x2 B = e
Wbhol B o i e e

I [

| I I, o b

| ! |

| l I [

I : y=01 ‘ | y=o(x)

I L — I J -

X4 X3 Xg X Xy %o *2 X

a) b)
convergence divergence

Figure 1.3: The sequence 734y = ®(z4), k=0,1,2,...

The following theorem gives sufficient conditions for the fixed point method to convergence
to the unique solution of z = ®(z).

Theorem 3 (Fixed point iteration):
Let 2 be a set of R, C R".
Assume that

i®(z)en,Vzen
ii ®(z) is continuous Yz € N
iii || ®(z2) — ®(z1) [€c|lz2=21]|,0<ec< 1, V21,2, €N
Then:
1. A solution Z of z = ®(z) exists in
2. The solution Z is unique

3. The fixed point algorithm converges to Z, that is limy_,o, 2 = 2

proof:

Assumption i guarantees with (1.18) that if zo € 02, then z; = ®(z0) € 0 and so on. Thus
every member of the sequence zg,zy,23,... remains in the set .

We will now show that the sequence converges to a limit. With assumption iii and (1.18)
follows that || zx4+1 — =k ||=]| @(zx) — P(zx-1) ||< ¢ || zx — zk—1 ||. Therefore,

| Zk41 =z IS * [l 21 — 2o |



From this follows that

lzeep =k | = || Zetp = Thtp-1 + Taip1 = Trpp-z + -+ Zas1 — 21 |
< Nzrep = Teap-1 1+ 1l zetp-1 = zp2 |+ + [ 2ag1 — 22 ||
< [ck+p—l + cktr-2 4o ckl " Ty — o "
SNy N N
< [*ZRoc I 21— 2o |

k
< = llm-=ll

since (1-¢) 1=y fif0<c< 1.

Therefore limg_,co || Zk4+p — =& ||= O for any p. This implies that for every ¢ > O there exists
a positive integer N such that || . — z ||< € for all k,m > N. A sequence with such a property
is called a Cauchy sequence. Since a Cauchy sequence in R" is also a convergent sequence it
follows that limy_,, 2z = £ € .

To show that the limitpoint £ is indeed a solution of z = ®(z), note that £ = limy_o Zi41
= limg_, 0 ®(zx). By the continuity assumption of ®(z) we have limy_o, ®(zx) = ®(%) and thus
£ = ®(£). What remains to be shown is that £ is unique. Let £, and £; be two fixed points of
®(z) in Q. Then || £; — £, ||=|| ®(21) — ®(£2) |I< c || £1 — £2 || and thus 2 £y = £2. This concludes
the proof of theorem 3. O

Although theorem 3 gives sufficiency conditions for the guaranteed convergence of the se-
quence Tiy; = ®(z:),k = 0,1,2,3,..., to a unique fixed point, its uselulness in practical applica-
tions is unfortunately rather limited. This is due to the difficulty one has in practical applications
with verifying the sufficiency conditions. Especially the verification of the inequality condition
iii for all pairs of vectors in {1 is most difficult. This task becomes somewhat simpler if we may
assume that ®(z) has continuous partial derivatives and that 01 is convex. With the mean value
theorem follows than that

I 2(z2) = 2(=1) lI=ll 8:2(2) (22 — 21) <l 3:2(2) llll 22 — =4 |

with 2 = z; + t(z2 — 21),0 < t < 1. This result implies that we may check condition iii of the
theorem by verifying whether
¢ = max | :2(z) ||< 1 (1.19)

With this result we are now.also able to formulate more tractable convergency conditions for
the class of descent methods (1.16). By taking the partial derivatives of (1.17) we get

3:%(z) =1~ z": 3:9a(2)3.F(z) — t(2)Q(z)32, F(z) (1.20)
a=1

where ga(z),a@ = 1,2,...,n, are the columnvectors of the positive-definite matrix t(z)Q(z).
Hence,

19:2(2) 1]l I - (=)Q()3%, F(z) || + 3 || Oxgalz) il 9aF(2) | (1.21)
a=1

10



This shows that convergence of the descent methods is guaranteed if

I 7 - t(=)Q()3}. Fl=) lI< 1 (1.22)

and if the second term on the right hand side of (1.21) can be made sufficiently small. Since
9:F(2) = 0 and 9. F(z) is continuous, then by the very definition of continuity for each € > 0
there exists a § > 0 such that if || z ~ £ ||< §, then || 3. F(z) — 3. F(2) ||=|| 8.F(z) ||< €. This
implies that the second term on the right hand side of (1.21) can be made sufficiently small for a
sufficiently small nelghborhood of 2. Thus convergence of the descent methods is guaranteed if
(1.22) holds and if the initial guess is sufficiently close to the solution £. The practical problem
with the above proof of guaranteed convergence is ofcourse still that one never knows beforehand
whether the initial guess is indeed sufficiently close to #. Nevertheless the above derivation shows
clearly what the cause for a possible lack of convergence can be. And it also shows, see (1.22),

how convergence can be enforced by a suitable choice for the scalar t(z).

1.5 The Steepest Descent Method

The steepest descent method is one of the oldest iterative descent methods for solving a min-
imization problem. The method goes back to Cauchy (1847). The steepest descent method is
characterized by the following simple choice for the positive-definite matrix Q(z) of (1.16):

Qzx) =1 (1.23)
The steepest descent method takes therefore the form

|zk41 = 74 — 43, F ()] (1.24)

The choice (1.24) is motivated by the fact that the vector dy = ~3, F(z}) minimizes

3z F(z:) dy
(didi)?

Thus within a linear approximation, the direction vector dy = —3 = F(zx) points in the direction
of the steepest descent of the function F(z) at z.

One of the advantages of the steepest descent methods is its great simplicity. No partial
derivatives of F(z) of the order higher than the first are needed and no matrices need to be
inverted. A drawback of the method is however that its performance is dependent on the more
or less arbitrary choice of the variables z used to define the minimization problem. This can be
seen as follows.

Suppose that R is an invertible n X n matrix. We can represent points in R™ either by the
standard vector z or by Z where RZ = z. The problem of finding z to minimize F(z) is equivalent
to that of finding Z to minimize G(£) = F(Rz). Thus using steepest descent, the direction
vector in case of minimizing G(z) will be dy = —R*3,F(R%;) which in the original variables
is dp = —RR*0,F(zx). Thus, we see that if RR* # I the change of variables changes the
direction of a search. Hence, a new choice of variables may substantlally alter the performance
characteristics of the steepest descent method.

Another drawback of the steepest descent method is that it has the tendency to zig-zag,
when it is combined with an ezact line search strategy and the contours of the objective function

11



are elongated. An exact line search strategy is a strategy in which the positive scalar ¢, is chosen
80 as to minimize F(z; + txdy). If ti is a minimizer of F(zy + tpd:) then

dF . *
0= —-(te) = 3: F(zx + teds)"di = 8, F(z141) d

This shows that if an exact line search is used, the successive directions of search, dy and dj4y,
are orthogonal to each other. Hence the steepest descent method will obviously zig-zag when
the contours of F(z) are very elongated. (see figure 1.4) The zig-zagging is absent ofcourse when
the contours of F(z) are circular. In fact, the steepest descent method with an exact line search
will locate the minimum of F(z) in one step if the contours of F(z) are circles (or hyperspheres).

Figure 1.4: Zig-zagging of the steepest descent method.

An important performance measure of an iteration method is its rate of convergence. The
rate of convergence of an iterative technique is related to the way the errormagnitude at the
(k + 1)th step, || zg4+1 — £ ||, is related to the errormagnitude in the previous step. The rate
of convergence shows therefore whether convergence of an iteration method is rapid enough to
make the whole scheme practical.

In order to derive the rate of convergence for the steepest descent method we expand (1.24)
into a Taylorseries at the solution Z. This gives

zeer — &= [I - 402, F()](zx — £) + O(l| z2 — £ ) (1.25)

If 2 is a local minimizer of F(z) then the matrix 82,F(%) is positive semi-definite and its
eigenvalues may be ordered so that

0<A <A< <An
By taking the norm of (1.25) we therefore get
I zesr = 2l|< maz{| 1= tidr |, [ 1-tada [} | ze - 2 || +O(l| 22 - 2 1) (1.26)

This shows that the stecpest descent method has a linear rate of convergence for points suffi-
ciently close to the solution. Thus for points sufficiently close to the solution the errormagnitude
gets reduced by a factor maz{| 1 — t;A\; |, | 1 — tx A, |} at each iterationstep. The closer this
factor is to 1 the slower the rate of convergence; the closer the factor is to O the faster the rate
of convergence. Lo '

If the positive scalar t; is taken to be equal to one in each iterationstep (this is the sim-
plest line search strategy), the rate of convergence of the steepest descent method becomes
approximately

| zre1—2l[Smaz{|1-As|, [1-An ]} ||z - 2|l (1.27)
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This shows that the errormagnitude gets reduced if the extreme eigenvalues of 32, F(z) satisfy
i 0<AAn<?2 ' (1.28)

Hence, see also (1.22), local convergence cannot be guaranteed if one or more eigenvalues of the
positive semi-definite matrix 7, F(£) lie outside the open interval (0,2).

The rate of convergence of (1.27) can be improved and local convergence can be guaranteed,
however, if the positive scalar t} is chosen so as to minimize maz{| 1 - t; ), I [1=-tda|}. It
follows from figure 1.5 that the corresponding optimal choice for ty is

ty = 2/(/\1 + A,,) (129)
With this choice for ty it follows from (1.26) that instead of (1.27) we have
- . ~ An - Al] o ’
—-z|I< |22 - .
hoeen =211 |25 Han -2 (1.30)

Note that if the matrix 87, F(£) is positive definite then the factor (A, — A)/(An + Ap) is
always less than one and local convergence is guaranteed. This factor is close to one if the
conditionnumber, An/Aj, of the matrix 82_F(%) is large, i.e. if the contours of F(z) are very
elongated near the solution %.

A

1-tA,l

1 2 1
An AtAL, Ay

Figure 1.5: Optimal choice for t is ¢t = 2/(Ay 4 A,).

1.6 Newton’s Method
Newton’s method is characterized by the following choice for the positive-definite matrix £, Q(zx)
of (1.16): ‘

teQ(zx) = (97, F ()] (1.31)

Newton’s method takes therefore the form

Tpy1 = Tp — [aﬁ,F(z,,)]-‘a,F(zk) (1.32)

13



We will give two motivations for the choice (1.31). The first one goes back to the basic idea on
the basis of which Newton’s method was originally introduced. Newton’s method was originally
conceived as an iterative technique for solving a system of nonlinear equations. The basic idea of
the method is best explained for a function G(z) with one variable z. Let the nonlinear equation
which needs to be solved be

G(z)=0 | (1.33)
The graph of this function is plotted in figure 1.6.

YA

G(x)-

| / / M1 Xk i

Figure 1.6: Newton’s method: 92 (z;) = G(z4)/(z — za+1).

At a given point z; the graph of the function G(z) is approximated by its tangent, and an
approximate solution to equation (1.33) is taken to be the point z3+; where the tangent crosses
the z-axis. The process is then repeated from this new point. This procedure defines a sequence
of points according to the recurrence relation

Trp1 = 7k — [d:G (1)) G (21) (1.34)

If we replace G(z) in (1.33) by d,F(z), the recurrence relation for determining a stationary
point of F(z) becomes

Trt1 = Tk — |d2, F(z)] 1. F(z) (1.35)

In order to generalize this result to the multivariate case, note that in the above procedure the
original nonlinear equation, G(z) = 0 or d;F(z) = 0, is linearized about the point z; and then
solved for zx43. If we apply this procedure to the system of nonlinear equations 9. F(z) = 0,
linearization gives

0 =8, F(zx) + 82, F(zx)(zr41 — z2) (1.36)

from which z;4, follows as (1.32).

Since Newton’s method is based on a linearization of 8, F(z), one can interpret the method as
one that computes the minimum of a quadratic approzimation of F(z) at each iteration step. This
shows the distinct difference with the steepest descent method. The steepest descent method
is namely based on a linear approzimation of F(z) at each iteration step. As a consequence, if
the function F(z) is quadratic, Newton’s method will locate the minimum in one iterationstep,
whereas the steepest descent method needs in general an infinite number of iteration steps.

14



The second motivation for the choice (1.31) is based on inequality (1.22). Note that with
(1.31) inequality (1.22) is trivially fulfilled, which implies that Newton’s method has a guaranteed
convergence for points sufficiently close to the solution. Thus, contrary to the steepest descent
method no line search is needed to enforce local convergence.

In order to derive the rate of convergence for Newton’s method we expand (1.32) into a
Taylorseries at the solution . This gives

A l aye ~ - ~ o A
zht = & = ~ (e - £)°(0.10;, F(2)) 'O F(&))(zx — £) + O(l| =4 — 2 ||?)

or with |92, F(£)] 102, F(£) = ~0,[02, F(2)] 102, F(2),

she1 = = o(on — 8)° [0, F(3)] 102, F(2)] (ss — 5) + Ol 2 - £ |I) (L37)

This shows that Newton’s method has a quadratic rate of convergence.

Although the information requirements associated with the evaluation, storage and inversion
of the matrix 82, F(z) as required by Newton’s method are rather heavy, the method has proved,
due to its guaranteed local convergence and quadratic rate of convergence, to be extremely
effective in dealing with general minimization problems. Difficulties with Newton’s method
occur however when the matrix 82, F(z) is non-invertible or when it fails to be positive definite.
These difficulties can be overcome by using a so-called trust region method. This method, which

can be considered as a regularized version of Newton’s method, will be discussed in the next
section,

1.7 The Trust Region Method

The trust region method was introduced by Levenberg (1944), reinvented by Marquardt (1963)
and further developed by Goldfeld, Quandt and Trotter (1966). The method is characterized
by the following choice for the positive definite matrix txQ(zx) of (1.16):

t:Q(zx) = [02, F(zx) + ar R]™ | (1.38)

where ay is a non-negative scalar and R is a positive definite matrix. The trust region method
takes therefore the form

Tip1(ar) = 75 [a:,F(xk) + akR]“a,F(xk) . (1.39)

This formula already shows some of the basic ideas underlying the trust region method. Since
matrix R is positive definite by assumption, a sufficiently large a; ensures the positiveness
of (1.38). Thus by adjusting oy, a possible lack of positive definiteness of 32, F(zx) can be
circumvented and a descent direction can be generated. Furthermore note that for R = I, the
trust region method can be interpreted as a compromise between Newton’s method and the
method of steepest descent. For o) = 0, we get

zRy1 = o = (02, F(24)] '3 F(z1) (1.40)
which is Newton’s method, and for large o, we have approximately

3% = x4 — a5 '8, F (z2) (1.41)
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which is the steepest descent method with a;! playing the role of the line search scalar t;. Thus
the direction of search of the trust region method interpolates between the Newton direction and
the steepest descent direction (see figure 1.7). Since Newton’s method is based on a quadratic
approximation of F(z) and the method of steepest descent is based on a linear approximation,
it seems that with the trust region method one can, by adjusting a;, control the approximation
used for F(z).

Xk

o F(x) = F(x,)

Figure 1.7: dy = Newton direction, dsp = Steepest descent direction, drp = Trust region
direction.

e A

In order to get a better understanding of this phenomenon, let us study the different ap-
proximations involved. We start from the following Taylor series expansion of F(z):

F(z) = a(z) + O(|| z — zx ||?) (1.42)
with )
a(z) = F(zi) + 3 F(zx)'(z — =) + E(z - zk)'B:zF(xk)(z — z) (1.43)

As we know Newton’s method is based on the approximation a(z) of F(z). The Newton
solution zﬁ_l follows then from minimizing (provided this is possible) the quadratic function
a(z). Thus a(z},,) < a(z)Vz € R™ and a(z},,) < a(zs) = F(zs) if 2\, # z&. From this and
F(zl, ) = a(zf})) + O(} =, — =& ||?) follows that the objective function gets reduced, i.e.
F(zf, 1) < F(=z), if O()| 2] — z& ||?) is small enough. Thus descent of the objective function
occurs when a(z}, ) can still be considered an adequate approzimation of F(z},,).

Problems may occur however when this approximation is not adequate, that is, when O(||
z, 1 — z& ||?) is too large. This may happen if matrix [82, F(zs)]~! of (1.40) is “large”, i.e. when
the matrix 82, F(z}) is poorly conditioned and thus the contours of a(z) are very elongated.
If the approximation of F(z) by a(z) is inadequate one can improve the approximation by
restricting the region for z. In the steepest descent method this is achieved by replacing £ — z;
in (1.42) and (1.43) by t,d;, by taking dj in the direction of steepest descent, —9.F, and then
by adjusting ty so that || 234 | — 2 ||=|| txdx || is sufficiently small and F(z}d,) = F(zx+trdi) <
F(zy) holds. This idea of a line search along the direction vector d; to restrict the region of z
by validity of the Taylor approximation can in principle also be applied to Newton’s method.
Instead of (1.40) one gets then

zh1 = Tk — te[03, F(24)] 18 F(2s) (1.44)

By taking t; sufficiently small one can then again ensure that F(zf,,) < F(z), provided that
3% . F(z}) is positive-definite. The problem with this modification of Newton’s method is however
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that it cannot deal with those cases where 821, F(z1) lacks positive definiteness or is singular.
The basis idea of the trust region method is now to replace the one dimensional steepest descent-
like restriction along a fixed ‘direction di by an n-dimensional restricted region for z. That is,
in the trust region method again the quadratic approximation (1.43) is used, but now with the
additional restriction that z should lie within an ellipsoidal region for which a(z) is trusted to
be an adequate approximation of F(z) (see figure 1.8).

ux—xkllR =r

~a(x) = F{x)

- F(x) =Flxy)

Figure 1.8: The trust region: || z — z, ||g= [(z — z;)' R(z — zk)]g <r.

If we define the quadratic form
A(z) = a(2) + sen(z - ) R(z - )
it follows that if 82, F(zy) 4+ ax R is positive definite then
A(zp41(ar)) < A(z) Vz € R®
This implies that ]

a(zer1(ar)) < a(z) Vz € {z ||| 2 - 24 |R<|) zrya(cr) - 2k ||}

Thus zp41(ay)) of (1.39) minimizes a(z) over the ellipsoid | z — zx lR<|| zit1(cr) — z& ||

The “radius” r(ax) =|| zes1(ar) — zx || is a decreasing function of a;. In order to show
this, we consider the problem

82, F(zr)ei = \iRe; , i = 1,...,n . (1.45)
The eigenvectors ¢; , 1 =1,..., n, form a basis of R" and they can be chosen so that
efRej=16; , i,5=1,...,n (1.46)
Suppose that . |
0:F(zk) =) ciRe; £ 0

i=1
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Then with (1.45),

n

zip1(on) = zp = — |02, F(z2) + ax R) ™19, F(zs) = - ; Y :ak e
and thus with (1.46)
n NS
r(ax) =l zes1(on) — ze |r= 2 (,\,- :ak) ] (1.47)

This shows the monotone decreasing property of r(ay) if A; + ax > 0, i.e. if 32, F(zx) + ax R is
positive definite. The trust region is therefore an expanding ellipsoid if a gets smaller, and a
contracting ellipsoid if a; gets larger.

The trust region method operates now as follows. At the kth-iteration the point zx41(o)
of (1.39) is computed for a certain ax > 0. Then the actual reduction F(zr41(ar)) — F(zi)
is compared with the predicted reduction a(zi41(ax)) — a(zi) = a(zrs1(ar)) — F(zi). I the
prediction is poor, the parameter o} is increased in order to contract the trust region, and the
computations are repeated; otherwise xi41(ay) is accepted as the new iteration point.
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Chapter 2

Nonlinear least squares

2.1 Introduction

This chapter is devoted to nonlinear least-squares problems, i.e. minimization problems in which
the objective function is a weighted sum of squared terms

F(e) =5 lly - AG) | B¢ %)

where ||. [|I>= (.)'Q;!(.); Qy is positive definite; y is an m-dimensional data vector, and A(.) is
a nonlinear vectorfunction or map from R" into R™. The factor % in (2.1) is merely introduced
for convenience.

For varying values of z, A(z) traces locally an n-dimensional surface or manifold embedded in
R™. If the metric of R™ is described by the positive definite matrix Q,;!, the scalar || y — A(z) ||
equals the distance from point y to the point A(z) on the manifold. Hence, the problem of
minimizing F(z) corresponds to the problem of finding that point on the manifold, say § = A(z),

which has least distance to y. This geometry of the nonlinear least-squares problem is sketched
in figure 2.1.

Y

Figure 2.1: Geometry of nonlinear least-squares.

The minimizer of (2.1) can in principle be located by one of the iterative descent methods
of the previous chapter. Since

8.F(z) = ~9,A(z)'Qy (v - A(z)) (2.2)
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the steepest-descent method takes the form

Zee1 = 7p + 13z A(22) ' Qy Ny — A(2)) (2.3)

And since

3z F(z) = 0:A(2)°Q; 8- A(2) ~ (v - A(=))'Q; 8%, A(2)

Newton’s method takes the form

Zeer = 2i + [024(20) Q7 192 A(xs) ~ (v = A(24))'Q; ' 92 A(2)) 13 A(24)' @ My — A(zx))
(2.4)
Although the steepest-descent method and Newton’s method are certainly iterative methods
that can locate the minimizer of (2.1), they do not take advantage of the special structure of the
objective function (2.1). A method which does take advantage of the “sum of squares” structure
of the objective function is the Gauss-Newton method. This method is therefore especially suited
for solving nonlinear least-squares problems. In this chapter the Gauss-Newton method will be
presented and its characteristics explored.

2.2 The Gauss-Newton Method

The Gauss-Newton method belongs to the same class of iterative descent methods as the
steepest-descent method, Newton’s method and the trust-region method. The method is char-
acterized by the following choice for the positive-definite matrix Q(z;) of (1.16)

Q(zx) = [9:A(z1)' Q' 9: A=)} (2.5)
With (2.2) follows therefore that the Gauss-Newton method takes the form

Tee1 = Tk + te[0: A(22)°Q; 92 Aza)] 7102 Az1)°Q; My — Alza)) (2.6)

Note that the Newton direction reduces to the Gauss-Newton direction if
(v — A(z))'Q, 182, A(z) is neglected in (2.4). But the particular choice (2.5) is perhaps best
motivated if we draw a parallel with linear least-squares problems. A least-squares problem is
said to be linear if the map A(z) is linear. If A(z) is linear, the minimizer of F(z) follows from
solving a system of linear equations. Thus the nonlinearity of ,F(z) is due to the nonlinearity
of A(z). The idea is therefore to approximate F(z) by a function which is obtained by replacing
A(z) in || y— A(z) || by its linearized version A(zx)+ 8 A(zk)(x — z1). Hence, instead of using a
Taylor-expansion of F(z) =|| y— A(z) || with first or second order terms as is done in case of the
steepest descent method or Newton’s method, one approximates F(z) through a linearization
within the norm. The resulting approximation

|y — A(zx) — - A(z)de ||

is then minimized as function of di. This gives the solution d} = —Q(zx)8:F(zx). Thus the
Gauss-Newton direction dj can be seen as the solution of a linear(ized) least-squares problem.
The geometry of the Gauss-Newton method is therefore also one of orthogonal projection. That
is, the vector 8;A(zx)dy, which lies in the tangentspace of the manifold A(z) at A(z}), is the
orthogonal projection of the residual vector y — A(z)) onto this tangentspace. (see figure 2.2)
This geometric interpretation of the Gauss-Newton method already makes intuitively clear that
the geometry of the manifold A(z) must play an important role in the local behaviour of the

20



[ 4

method. The role of the geometry of the manifold will be made precise in the sections following.
In the next sections we start with the geometry of the optimality conditions.

Figure 2.2: Orthogonal projection onto tangentspace of A(z) at A(z;).

2.3 Geometry of Optimality Conditions
3

According to theorem 2 of the previous chapter a point £ is a (local or global) minimum of the
objective function F(z) if s

a) 8.F(%)=0

b) 8L F(2)>0

When applied to the objective function F(z) = Hly-A@) 2= 3 Il e(z) ||? these necessary
and sufficient conditions become

a). 9 F(£) = —-a,A(:i:)'Q;le(:i:) =0 - 2.7)
B 8LF(2) = Q(2) - e(3)' Q5 10%,A(2) > 0 '

Both these conditions can be given an interesting geometric interpretation (Teunissen 1984,
1985). The geometric interpretation of (2.7a) is rather simple. Equation (2.7a) states namely
that the residual vector e(z) should be orthogonal to the tangentspace of manifold A(z) at the
solution £. The interpretation of (2.7b) is somewhat more complicated. In order to interpret
(2.7b) geometrically we first introduce the concept of normal curvature.

In Gaussian surface theory the normal curvature is defined as the ratio of the second funda-
mental form and the first fundamental form. The second fundamental form for the map A(z)
is given by v*(n*Q; 192, A(z))v, where v is a tangentvector and n is a unit normal vector, i.e.
n‘Q;lazA(:c) = 0 and n‘Q;ln = 1. The first fundamental form for the map A(z) is given by
v*Q(z)"!v. Hence, the normal curvature is defined as

v'(n*Q; 102, A(z))v

kn(v) = o0()-Tv (2.8)
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The extreme values of this ratio are the principal normal curvatures. They follow as the eigen-
values of the generalized eigenvalue problem

R

|n*Q; 0%, A(z) - 2Q(z) ! |= 0

Since in the classical Gaussian surface theory A(z) is a map from R? into R3, the dimension
of the rangespace of 3; A(z), R(9:A(z)), is two and the dimension of its orthogonal complement,
R(3:A(z))*, is one. Thus in the classical case one has just one second fundamental form and two
principal normal curvatures. In our case however, A(z) is a map from R" into R™. Thercfore
dim R(3:A(z)) = n and dimR(3:A(z))t = m — n. This implies that in our case the number of
principal normal curvatures equals n.(m — n). We will denote the n-number of principal normal
curvatures for the normal direction n by

kn < kA <o <KD (2.9)

It should be noted that the normal curvature is invariant under a change of variables in A(z).
This can be seen as follows. Let z(Z) be a one-to-one map from R" to R". Then

01,A(Z) = 0,2°3% A(z(%))02z + 3:A(2(%))02,z
Q(Z)™! = 9:2°Q(z(2)) 9.z
v = Oi2z0
Substitution into o oo1a2
kn(f)) — v (n-Q; ?22‘4—(5))0
'Q(z)"1v

shows then, since n'Q;19,A(z(z)) = 0, that k,(¥) = kn(v). This invariance of the normal
curvature under a change of variables implies that the curvature kn(v) is an intrinsic property

of the manifold A(z) embedded in R™.
In order to relate the normal curvature to condition (2.7b), note that (2.7b) is equivalent to

v'(e(£)'Q; 192, A(8))v
v'Q(z) v

Hence, if we introduce the unit normal vector

<1 VveR" (2.10)

¢(2)
Il e(2) i

we may write (2.10) with the help of (2.8) also as

n=

ka(v) || e(2) |I<1 YveR" (2.11)

This important result shows that condition (2.7b) is governed by two distinct quantities,
namely the curvature of the manifold and the amount of inconsistency of the observation vector.
We can now rephrase the necessary and sufficient conditions of (2.7) in geometric terms as

a) e(2) L R(3:A(2))
(2.12)
b) kille(2)ll<1

Note that both these conditions are invariant under a change of variables.
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As an exemplification of (2.12), assume that A(z) is a circle embedded in R? with curvature
k. Figure 2.3 shows for this case four possible situations that may occur. In all four cases the
point Z is a stationary point and satisfies condition (2.12a). In figure 2.3a, A(£) is a minimizer
because of negative curvature. In figure 3b, A(%) is 2 minimizer since the curvature, although
positive, is still small enough relative to || é ||. In figure 2.3c, A(Z) is a nonunique minimizer.
And in figure 2.3d, A(£) is a maximizer instead of a minimizer.

Y
@m : iA(i) @A(ﬂ @A(i)
a) b) ) d)

c
Figure 2.3: a) k negative, b) k positive but k || € ||< 1, c) k positive and k || & ||=1,
d) k positive and k || € ||> 1. : .

2.4 Local Convergence of the Gauss-Newton Method

In order to derive the rate of convergence of the Gauss-Newton method we expand (2.6) into a
Taylorseries at the solution £. With 3;A(%)*'Qy 'e(2) = 0, this gives

sbr1 - & = [(1- ) I+ 6Q(E)[e(2) Q7 0L A@) ek - ) + Ol me— 2])  (2.13)

This shows that the Gauss-Newton method has a linear rate of convergence for points sufficiently
close to the solution . If we take the eigenvectors v; , 1+ = 1,...,n, of the generalized eigenvalue
problem

A*Qy 102, A(2)v = KaQ(z) v,

as base vectors of the tangentspace of the manifold A(z) at £, and reparametrize 7343 — £ and
I} — I as
n . n .
Th41 — = Z up v and T — £ = zu;v;
i=1 i=1

we can write (2.13) in terms of the principal normal curvatures as
thyr = [(1 = te) + tiekp | e(2) [l]uk + O(ll zx — 2 ) (2.14)

This expression shows that the local convergence of the Gauss-Newton method is invariant
against a change of variables. Hence, the rate of convergence of the Gauss-Newton method
cannot be speed up or slowed down by a particular choice of parametrization. If the positive
scalar t) in (2.14) is taken to be equal to one, the rate of convergence becomes approximately

| zkes — 2 ||< [maz{| k3 || k5 |} 1| e(2) ) ] 2 — £ | (2-15)
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The parameter norm in this expression is with respect to the induced metric Q(2)~1. Ex-
pression (2.15) shows that the errormagnitude gets reduced if

maz{| k) |,] K [} Il e(3) J|< 1 (2.16)

i.e. if the observation point y lies within a hypersphere with centre A(z) and a radius equal
to the inverse of the in absolute value largest curvature. If this is the case then by virtue of
(1.22) local convergence of the Gauss-Newton method is guaranteed. Note however that local
convergence is not necessarily ensured by the fact that A(Z) is a local minimum of || y — A(z) ||.
This follows if we compare inequality (2.16) with (2.12b). In figure 2.3a for instance, A(Z) is a
minimizer, but || e(£) || may still be too large for convergence to occur.
As an exemplification of (2.15), assume that A(z) represents a unit circle, that Q, = I and
y = (1.5,0.0)*. The least squares solution is then given by Z = 0 and the local convergence
factor by v '
ka || e(2) ||= 0.5 ' (2.17)

The results of the Gauss-Newton iteration are given in table 2.1. They clearly show that the
errormagnitude gets reduced by the factor (2.17) in each iteration step. Also note the oscillatory
character of the iteration. Oscillation or overshoot generally occurs if the curvatures are negative
(confer (2.14) for tx = 1). Undershoot on the other hand occurs if the curvatures are positive.

| iterationstep k || Al(z) = cos:i | A¥(z)=sinz| =z |

1 0.96235 -0.27180 -0.27526
2 0.99124 0.13205 0.13244
3 0.99785 -0.06560 -0.06564
4 0.99946 0.03274 0.03275
5 0.99987 -0.01637 -0.01637
6 0.99997 0.00818 0.00818

Table 2.1: Gauss-Newton iteration for orthogonal projection onto a unitcircle.

If inequality (2.16) is not satisfied, one can enforce local convergence by a suitable choice for
the positive scalar ¢ of (2.14). It follows (compare with our discussion of the steepest descent
method) that the optimal choice for t; is

R ot S EOY R I (2.18)

With this coice for t; it follows from (2.14) that instead of (2.15) we have

. Il e(2) |l (k3 — k3)
Tp+1 — T ||< z
e I [2— | e(£) Il (k3 + k3

) lze — 2] (2.19)

In this case local convergence is guaranteed if (2.12b) holds. Equation (2.18) shows that the
simplest choice ¢t = 1 is close to optimal if either || e(£) || is small enough or the average of
the extreme curvatures is small enough. Thus for points sufficiently close to the solution, the
simplest line search strategy can be considered adequate if the manifold is moderately curved
at £ and/or the observation point is close enough to the manifold.
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So far it was assumed that we were dealing with a curved manifold with inconsisitent data.
But what happens with the local convergence behaviour of the Gauss-Newton method if either
the manifold is flat (zero-curvature) or the data is consistent (zero-residual vector)? In order
to answer this question we first note that for a flat manifold, the orthogonal projector

Po.4 = 0:A(2)[0:4(z)'Q, ' 9:A(2)] 19, A(2)°'Q; !
is constant and independent of z, and |
AZ) =9+ Poaly-9) Y€ A(z)
With this follows that

Q(zk)0:A(zx)'Qy (v — Azx)) = Q(22)3:A(24)' Q' Po,a(y — A(z))
= Q(zk)3:A(zr)' Q' (A(2) - A(=))
This result shows that for both the cases of a flat manifold and consistent data, the obser-

vation vector y in (2.6) may be replaced by A(%). From a Taylor series expansion at  of (2.6)
with y replaced by A(£) follows then with ¢, = 1 and the identity

3:Q(z)Q(z) ™" + Q(z)82, A(2)Q; 3. A(z) + Q(z)d:A(z)'Q; 182, A(z) = 0
that

et - 2= 70240} (51 - £)'0L A m - D+ Ol -2 1)|  (2)

This shows that the rate of convergence of the Gauss-Newton method is quadratic in case of flat
manifolds and/or consistent data. If we take the norm of (2.20) we get

-~ 1 AYS - ~
ke = 2 ll= 5 || Po,alze — £)° 07, A(2)(zx - £) ||

This shows that the convergence factor is determined by the tangential components of 3%, A(z).
Compare this with for instance (2.13), where the convergence factor depends on the normal
component of 32, A().

As an exemplification of (2.20), assume that A(z) represents a straight line, that Al(z) =
ezp(10z), A*(z) = ezp(10z), Q, = I and y = (0,2¢)*. The least-squares solution is then given
by £ = 0.1 and the convergence factor by

SQ(4)3: A(2)'Q; "%, A(2) = 5

The results of the Gauss-Newton iteration are given in table 2.2. They clearly show the quadratic
rate of convergence. Also note that e.g. (z4 — ) = 5(z3 — £)?.

| iterationstep k [| AT(z) = ezp(10z) | A%(z) = ezp(10z) | ) |
1 5.57494 5.57494 | 0.17183
2 3.33967 3.33967 | 0.12059
3 2.77267 2.77267 | 0.10198
4 2.71881 2.71881 | 0.10002
5 2.71828 2.71828 | 0.10000

Table 2.2: Gauss-Newton iteration for orthogonal projection onto a straight line with a
nonlinear parametrization.
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2.5 A Convergence Criterion

Every iteration method needs one or more termination criteria in order to be able to test whether
the iteration should be continued or not. Apart from the computertime to termination and/or
the number of iterations, the most important termination criterion is the one which measures
the success in obtaining an optimal solution. Since iterative descent methods try to locate a
stationary point of the objective function F(z), convergence can be declared if the gradient of
F(z), evaluated at the current iteration point z, falls below a preset tolerance level. A test for
convergence is therefore

| 9=F(zx) |I< €
For our least-squares problem this becomes
| 0:A(ze)"Q; Te(zi) |I< € (2.21)

In order to make the norm of the gradient invariant to a change of variables and thus insensitive
to scale changes we chooce to take the norm in (2.21) with respect to the induced metric Q(zx)" L.
This gives for the Gauss-Newton method the convergency test

" Thyl — T "< € (222)

Note that since 8. A(zy)(zr41 — i) = Pa, A(z;) the convergency test can also be written as

Il Pa, a(zy)e(zs) |I< € (2.23)

where the norm is with respect to the metric Q;l.

In order to apply the convergency test we need to chooce a value for the tolerance level
€. On what should we base our choice for €? It seems natural to base the choice for € on the
quality of the observation vector y. Since z; is the ezact least-squares solution of the perturbed
minimization problem

mzin | lv = Pa,a(zi)e(zi)} — A(z) ||

T e

(see figure 2.4), it follows that the tolerance level ¢ of (2.23) should be chosen such that a
perturbation of y with Py, A(z;)€(zr) is considered insignificant.

N

R(0xAlx,))

Figure 2.4: Perturbaton of y with Py, a(z)e(zr).
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Once convergence is déclared it is of interest to know the errormagnitude of the computed
quantities zx, A(zx) and || e(z) |l

In order to determine the relation between the above convergency indicator and the error-
magnitude of z;, we expand Py_4(z,)e(z+) in a Taylor series at £. This gives

Ps a(zy)e(21) = 3:A(2)[Q(2)92, A(2)Q; Ye(2) — I)(z2 — 2) + O(l| zx - £ |))

From this follows, if £ is a local minimum of || y — A(z) || and thus k3 || e(2) |l< 1 (see
(2.12b)),that

-k feMlze-20 ) o p < [l-Rp e =2
s0(lze-2l) [ SHPeaencE)lis 101002, - 5))

Hence, we have the approximate interval

Hzeer =z || o 1< NZets =z ||
iy SNk TS S— 2.24
A R e A ] (224
In an analogous way we can derive the approximate intervals
Lret =2l o agey) - ags) s Lotes 2 (2.25)
1-kplléll T 1=kl
and
| 241 = 2 |2 2 iy 2 Nz — 2 |2
e <l e(z) ||IF - || e(2) ||P< 2.26
B H . @IS T g (229

And similarly we find for the errormagnitude of the individual parameters, the upperbound

lz: —za '< 0o ” Tk+1 — Tk "

< < 2.27
-k el (227)

with oza the square root of the ath-diagonal element of Q(%).

All the above inequalities show how the errormagnitudes of the computed quantities are
related to the convergency indicator || zp4+1 — zi ||. In particular note that || z — £ || can be
large if k3 || & || is close to one. This happens if y is close to the centre of curvature of k}, in
which case the objective function || e(z) || is flat near .
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Chapter 3

On Measures of Nonlinearity and
Biases in Nonlinear Least-squares

estimators

3.1 Imntroduction

Almost all functional relations in our geodetic models are nonlinear. Hence, one might ques-
tion whether the use of the ideas, concepts and results from the theory of linear estimation is
justifiable in all cases. Of course, one may argue that probably most nonlinear models are only
moderately nonlinear and thus permit the use of a linear(ized) model. This is true. Never-
theless, we need to have ways of assessing the amount of nonlinearity in nonlinear models and
methods to prove whether a linear(ized) model is a sufficient approximation. We therefore need
to know the impact of nonlinearity on the distributional properties of nonlinear estimators. We
will briefly discuss in this section some general methods of deriving the distributions of nonlinear
estimators. Most of these exact methods are however not applicable in practice.

Let z be a random variable and F(.) a nonlinear function from R to R. Our objective is to find
the distribution of F(z). One way to estimate the distribution of F(z) would be to use computer
simulation (Monte Carlo methods). Cne replicates the series of experiments as many times as one
pleases, each time with a new sample z drawn from the parent distribution pz(z) and so obtains
the relevant distributional properties of F(z) by averaging over all replications. Although this
approach could give us valuable insight into the effect of nonlinearity for a particular problem,
the method does not give us a general formula on the basis of which a qualitative analysis can
be carried out.

An alternative way to estimate the properties of nonlinear estimators is to rely on the results
from asymptotic theory. The central idea of asymptotic theory is that -when the number m of
observations is large and errars of estimation corresponding small, simplifications become avail-
able that are not available in general. The rigorous mathematical development involves limiting
distributional results holding as m — oo and is closely related to the classical limit theorems of
probability theory. In recent years many researchers have concentrated on developing an asymp-
totic theory for nonlinear least-squares estimation. In (Jennrich, 1969) a first complete account
was given of the asymptotic properties of nonlinear least-squares estimators. And in (Schmidt,
1982) it was shown how the asymptotic theory can be utilized to formulate asymptotic exact
test statistics. See also the book (Bierens, 1984). Unfortunately, since the theory is based on
the assumption that m — oo, the results abtained up to now cannot satisfy all the requirements
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of applications in practice.

A third approach to estimate the distribution of F(z) is based on the fundamental relations
that define distribution functions. If the density p,(z) of z is given, then theoretically at least,
we can find the distribution of F(z). This follows since the cumulative distribution P,(y) of
y = F(z) satisfies -

By(s) = Prob(y < v) = Prob(F(@) S o) = [ py(a)de (1)
- - {zIF(z)<v}
for fixed y. Since (3.1) describes the probability of an event in terms of z, such a probability
can theoretically be determined by integrating the density of z over the region corresponding to
the event. The practical problem with this method is however that in general one cannot easily
evaluate the desired probability for each y.

Instead of using the cumulative distribution one can also use the density function. Under
some restrictions on F(.) equation (3.1) can namely be worked out to give the density p,(y) of
y = F(z) in terms of the density p;(z) of z: -

PE(F-I(!I))
| sz(F_l(y)) I

The difficulty with this method is however that one needs the inverse of the nonlinear function

F(.).
Finally one can try to derive some of the moments of the distribution of F(z), for instance
its mean and variance:

py(y) = (3.2)

BF@) = [~ F@r(ds i Vor(F@) = [ [Fe) - E(F@)pelcddz (3.3

The complexity of these computations depends very much on the nature of the functions F(.)
and p;(.). But in general they can become quite complicated, especially in the multivariate case.

If in a particular problem it is impossible to apply the above given exact methods, the
next one thing one can try to do is to make use of approximations. This can be done by
using a suitable Taylor expansion. In this way and based on (3.2), (Pazman 1987) obtained
an approximation to the density of nonlinear least-squares estimators. In a similar way and
based on (3.3), (Teunissen 1984,1985,1988) obtained approximate expressions for the mean and
covariance matrix of nonlinear least-squares estimators. In this chapter we will review in some
detail some of the results of (Teunissen 1984,1985). We will restrict ourselves however to the
first moments of the nonlinear least-squares estimators. We also propose some relatively easy
computable measures of nonlinearity. But before we discuss the nonlinear least-squares problem,
we will first derive an approximation to the mean of an arbitrary nonlinear estimator. This is
done in the next session.

3.2 The Bias of Nonlinear Estimators

Let z be a random n-vector and F(.) be a nonlinear map from R" into R™. We define the
random m-vector y as

y = F(z) ' (3.4)

Our objective is to find an approximate expression for the first moment of the random m-vector
y- We will assume that the random n-vector z is an estimator of z. An estimator z of z is said
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to be unbiased if E{z} = z. Otherwise the estimator is said to be biased. We will denote the
bias in g by

by = E{z} ~ = (3.5)
Furthermore we denote the covariance matrix of z by 02Q;, where o? is the variancefactor of
unit weight. Thus

'Q: = E{(z - E{z})(z - E{z))"} (3.6)
The bias in the estimator y of y = F(z) is _denoted by
by = E{y} — y = E{y} - F(z) (3.7)

If we assume that map F(.) is sufficiently smooth we can derive an approximation to the
bias in y by expanding (3.4) into a Taylorseries at z. This gives

y=Flz) = F(s) + &.F(z)(a — 2) + 5(a~ 2)'OLF()a-2) 4+ (38)
If we take the expectation and use (3.7) we get
b, = E{y} — F(z) = 3.F(z)E{z — z} + -;—E{(; - z)'3} F(z)(z~ z)} +--- (3.9)

The second term on the righthand side of (3.9) is an m-vector of expected values of quadratic
forms. The expected value of the quadratic form z°82, Fi(z)z is given by

E{z'3},F'(2)z} = o’trace[d}, F'(z)Q:) + E{z}* 3}, F(z) E{z) (3.10)
Hence, with the help of (3.5) and (3.10) it follows from (3.9) that the bias in y is given by

b, = 3, F(z)bs + %aztracc[a:,F(::)Q,] + %b;aizi‘(:)b, Foee (3.11)

This important formula shows how the bias in y depends on
i the btas b; in z
ii the precision 02Q; of
iii the nonlinearity of the map F(.)

It is remarked, that the covariance matrix of y = F(z) can be derived in a way analogous to our
derivation of the bias (Teunissen 1988).

In order to see formula (3.11) at work for the case that b, = 0 we consnder the following
example. Consider the function y = Icosa, where { stands for distance and qa for azimuth. We
assume that [ and a are uncorrelated random variables with mean [ and «, and variance ¢7,z and
o2 respectively. A Taylor expansion of y = lcosa about | and a gives

= lcosa + (cosa Isina) [ i:: ] +-;- [ i:i] [—sma :ls;:::[] [OI,:L]

From this follows that

: 2
.1 —sina g O _ 1,
E{y — lcosa} = trace{[ —sina  —lcosa ] [ 0 o ]} = 2o‘,,lcosoz
Thus the bias in y due to nonlinearity increases with increasing distance and decreases with
increasing precision.

In section 3.5 formula (3.11) will be applied to derive the bias in the least-squares residual
vector.
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3.3 Three simple Measures of Nonlinearity of the Observation
Equations

Before we continue our discussion of biases in nonlinear estimators and in particular the biases
in least-squares estimators, let us first consider the cause of these biases. The biases in nonlinear
least-squares estimators are caused by the nonlinearity of the observation equations. In order
to diagnose the significance of nonlinearity we propose in this section three simple measures of
nonlinearity of the observation equations.

Consider the model

E{y} = A=) , E{ly- E{y)(y - BE{y)} = ’Q, (3.12)

where A(.) is a nonlinear map from R"™ into R™. Then in theory the well-known results from
linear inference are not applicable anymore. Nevertheless, in most practical applications one still
to a large extent relies on the results from the theory of linear inference. That is, one usually
assumes that it is permitted to replace the nonlinear model (3.12) by its linearized version

E{oy} = 0:A(z)Az , E{(Ay- E{Ay})(Ay - E{Ay})'} = 0*Q, (3.13)

Statistical inference is then usually based on this linear model. In order to find out whether it
is justified to replace the nonlinear model (3.12) by the linear model (3.13), we need to have
means for diagnosing the approximations involved. Since the second order remainder

Ry(z) = %Az‘a:zA(:c)Az (3.14)

is neglected in (3.13), a bound on this remainder may be used as a measure of nonlinearity.
The following bound is based on an evaluation of the individual elements of the Hessian
matrices of the observation equations '

; ¢t . Y] i t=1,...,m
i < = 2 2 s < o » ’ .
B grllazlt , i (oaE s, (She™ ] ()

The evaluation of the scalars ¢! , i = 1,...,m, is in general relatively easy. A disadvantage of
the above upperbound is that it can become somewhat pessimistic for large n, i.e. in case of
many parameters. -

An alternative bound for the remainder Ry(z) may be based on the extreme eigenvalues of
the Hessian matrix 82, 4'(z):

1. S 1. .
5/‘3..»: | Az |I’< Rj(z) < EI\:naz laz|® , i=1,...,m (3.16)

The computation of the extreme eigenvalues is not too difficult if the matrix 8%, A'(z) is sparce,
i.e. if only a few parameters are involved in the observation equations. This is usually the case
in geodetic applications. Take for instance the distance-observation equation /;; = (a:?j + y‘?j)l/2
where {;; is the distance between two points § and j, and z;; and y;; are the corresponding
cartesian coordinate differences. The Hessian matrix reads then

2 2

Yis “TiiVis Y Tij Yi5

2 2

8% 0. = L | TTsYi oz TijYii T
af’y T 13 —y? e 2 —ii s
l,-j Yij ZijYiy Yy Tij Yij

2 2
Tij Yij T TTGY% TG
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The extreme eigenvalues of this matrix are easy to compute. They are
Amin =0 and Apgp = 1/l
Thus, for the second order remainder of the distance equation the following bounds hold:
0< Ry < (Ag) + Ayl)/ 204 (3.17)

Some numerical values of this interval are given in table 3.1.

[Azij, Ay | iy | Ry |
100 m 1km| <20. m
50 m 1km| <25m
R 10 m l1km | <0.1m
5m 1km| <.03m

Table 3.1: Bounds on the second order remainder R of lij; = (z?j + y,?j)llz.

Finally a third way to measure the nonlinearity of the observation equations is to take a
(weighted or unweighted) average of the remainder (3.14). Assume therefore that Az is a random
n-vector with zero-mean and covariance matrixo?Q,. The mean of Ry(z) = 1Az*82,A(z)Az
follows then as

E{Ri(z)} = %a’zmce[ag,A"(z)Q,], i=1,...,m (3.18)

Note (compare also with (3. 11)) that E{R%(z)} describes the bias in y if y were computed as
y = A(z). The measure (3.18) is very easy to compute if we take the identity matrix for Q. In
the following sections we will see that (3.18) can also be used as an upperbound on the biases
of the least-squares estimators.
3.4 The Bias of Least-Squares Parameters
In this section we will derive an approximation to the bias
by = E{z} -z (3.19)
of the least-squares estimator £ of the unknown parameter vector z of the nonlinear model
E{y} = A(z) , E{(y- Alx))(y- A=)} =o%Q, (3.20)
The method of derivation is taken from (Teunissen 1985). We will assume that the least-squares
estimator Z can be written as a smooth enough map of the random m-vector y. Thus Z = #(y).
We also assume that z = £(E{y}). If we Taylorize the map £(.) at the mean E{y} of y, we get
an expansion in ¢ = y — E{y}:
t==z+ dyze+ —e ‘9% e+ - (3.21)
Since E{g‘afmé‘:g} = 02trace[63y§:Qy], it follows upon taking the expectation of (3.21) that

L1 .
by = Eoztrace[azva:Q,] (3.22)
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The problem is now to find the second order partial derivatives of the map £(.). These
derivatives are found in the following way. We start from the orthogonality condition e(%) L
R(8;A(%)), or

0=03;A(2)'Q; e(z) (3.23)

A Taylor expansion of the righthand side of (3.23) at z gives the following expansion in Az =
z— 2z

0 = 8aA(z)'Qy'e+[82,A4(2)Q; e — 3aA(z) Q; 195 A(z)) AP
+3183,,4(z)Q; e ~ 293 ,A(z)Q; 19, A(z) - 9. A(2)'Q, 193, A(z)]AZP ALY + - -
(3.24)
where use is made of Einstein’s summation convention. We now substitute our first expansion
in ¢, (3.21), into the above expansion in Az = £ ~ z. The result is a new expansion in e:

[0aA(2)'Qy ! — 8.A(2)°Q; 135 A(2)d,25)e+
€'[Q; 1025 A(2)9,2® — 132A(2)" Q104 A() 8?2, 2P - 38,2782y A(2)Q; 19, A(z)9, 27+
30,870, A(2)* Q193 A(2)3, 2] + - -

0

I+l

(3.25)
This expansion is identical to zero for all e. Hence we may collect terms of the same order and
set them to zero. For the first order term this gives:

Oyt = 9:4(2)'Q, 9. A(z)] 3. A(2)'Q; " = Q(z)3:4(z)'Q;* (3.26)

Note that when the map A(.) is linear, substitution of (3.26) into (3.21) gives indeed the linear
least-squares estimator of z.
From the second order term of (3.25) follows that

19,87 = Q;'Q(z)™d%,A(2)Q(2)P 35 A(z)'Q; '+
—Q(z)"035A(2)Q; ' Ps, A=) Q)P 35 A(z)* Q; 1+ (3.27)
~1Q(2)73,4(2)" Q7 1(Q; 95 A(2)Q(2)°292 , A(z)Q(2)Pe 0. A(=) ' Q; )

Although this expansion looks rather complicated, fortunately it simplifies considerably when
substituted into (3.22). When we substitute (3.27) into (3.22) the first two terms of (3.27) cancel
and we finally get the expression sought

b: = Q(z)3:A(z)'Q,'b, , with
(3.28)
by, = —jo’trace(d?, A(z)Q(z))

This important and rather simple expression for the bias in the least-squares estimator %
has some interesting properties. First note that the m-vector by of (3.28) closely resembles the
third measure of nonlinearity as proposed in the previous section, see equation (3.18). Secondly,
note that the bias by in the least-squares estimator can be computed from the m-vector b,,
just like in the linear least-squares case the estimator % is computed from y. Hence, with an
available standard least-squares software package the evaluation of the bias bs becomes rather
straightforward. Finally we remark that b; can be given a simple geometric interpretation. As
shown in (Teunissen 1984, 1985), b, equals the weighted trace of the Christoffel symbols of the
second kind and is therefore a measure of the “turning and twisting” of the coordinate lines in

the manifold A(z).
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3.5 The Bias of the Least-Squares Residual Vector

The bias in the least-squares residual vector ¢ is defined as
b = E{2) = E{y - A(2)} (3.29)

Note that b; = —by. If we let map A(.) play the role of map F(.) of section 2, it follows with
(3.11) that

o wae

by = —bs = 3, A(z)bs + -;-aztrace[ag,A(x)Q,] + -;—b;a:,A(x)bg 4o (3.30)

Since bs is of the order o? (see (3.28)), the first two terms on the righthand side of (3.30) are
of the order o2 and the third term is of the order o*. Substitution of (3.28) into (3.30) gives
therefore up to the order o?,

by = —by = 6,A(x)Q(1:)a,A(:c)'Q;l[—-;—aztrace[azzA(:r)Q(z)]] + %aztrace[azzA(:c)Qg]

And since Q3 = Q(z) within the same approximation, the following expression for the bias in &
is obtained

by = PéL,A(z)bV , with
(3.31)
by = -—1o%trace[d? A(z)Q(z))

Again note that it is rather straightforward to evaluate the bias b; with a standard least-squares
software package.

The bias vector b; can be given an interesting geometric interpretation in terms of the
normal curvatures of manifold A(z). This can be seen as follows. Recall that the principal
normal curvatures k';,j,i =1,...,n, are the eigcnvalues of the generalized eigenvalue problem

InjQy 181 A(z) - AQ(z) =0
From this follows that

trace[n;-Q;la:zA(:r)Q(z)] = Z k:',’, (3.32)
i=1
If we let n;,7 = 1,...,m — n, be an orthonormal basis of the orthogonal complement of the

rangespace of d;A(z), we can write the projector PéL’A(:) as

m-n
P p(z) = Y nyniQ;! (3.33)
j=1

From (3.32) and (3.33) follows then that

P{;L,A(z)trace[azz/i(:c)Q(z)] = Z nj Zkf‘j

=1 =1
and thus with (3.31) that

2 .
o n;

j=1 1

m-n n
by = —

K, (3.34)

DO | -

1

This result shows how the local geometry of the manifold A(z) determines the bias in the least-
squares residual vector &. Equation (3.34) also shows that the bias b; is invartant under a change
of variables.



3.6 On Scalar Measures of Biases

Apart from our results (3.28) and (3.31) for the biases in the parameter vector and residual
vector, it is also useful to have global scalar measures of biases available which summarize
the bias present in the nonlinear model. In order to descern the significance of the biases it
was proposed in (Teunissen and Knickmeyer 1988) to weight the biases in the parameters and
residuals with the inverses of a’Q(x) and 02Q, respectively. The proposed global bias-measures

read therefore I ” 2 (=) 1
B Nellh = o=y, (3:35)

Substitution of (3.28) and (3.31) into (3.35) gives

o) b2 llyey = I Po,azby I3,
(

(3.36)
) Noellly, = Il Pihabsll,

This result shows that the bias in the parameters is determined by the tangential component
of the Hessian of A(z), whereas the bias in the residuals is determined by the normal component
of the Hessian of A(z). Compare this with our discussion in chapter two, section four on the
local rate of convergence of the Gauss-Newton method.

Since PéLzA(z) = I — Pp, A(z) is an orthogonal projector, it follows from (3.36) and the
Pythagorean theorem that

5y 11§, =11 bz gz + Il b2 113, (3.37)

This result shows that the scalar bias-measures of (3.36) are bounded from above by || &, ”20,
Thus

I b2 o)<l by s, and |l 5 13, <Il 5, 113, (3.38)

Hence the relatively easy computable scalar || b, ||Q can be used as a first indicator for deciding
whether the bias due to nonlinearity in Z and & is sxgmﬁcant or not. In a somewhat similar way

we find with the help of the Cauchy Schwarz inequality for the mdlvxdual bias components the
upperbounds '

I by IS Uia'" b "Q(z)s Osa " by "Q’ , a=1...,n (3.39)
and :
| 82 1< s || be llg, < 0ai [ by llo, » i=1,...,m (3.40)
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