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PERFORMANCE ANALYSIS OF KALMAN FILTERS

Abstract

Methods for the analysis of the performance of Kalman filters are considered in the
paper. The methods are all based on the innovation sequence which has well defined
statistical properties if the filter is optimal. Local and global teststatistics are presented and
discussed. A global slippage teststatistic is introduced.This test, which has batch type
properties, is given in a recursive form.

1. Introduction

With the advent of powerful microcomputers sophisticated algorithms for kinematic
positioning are used more frequently. It is common practice 1o process data from different
sensors simultaneously in a so-called integrated navigation system to obtain a best
estimate of position. The algorithm most often used in these integrated navigation
systems is the well known Kalman filter. Some typical examples of the application of
Kalman filters in navigation systems is given in [1],[2],[3],[4], and [5].

In this paper we restrict ourselves to the performance analysis of Kalman filters. To
obtain useful (positioning) results using an integrated navigation system it is important
that the performance of the underlying filter is at an optimum. Methods for the detection
of departures from optimality are all based on the so-called innovation sequence. The
innovation sequence of an optimal filter has precisely defined characteristics which can be
compared with the output of an actually implemented Kalman filter. Under normal
conditions the innovation sequence is a zero mean Gaussian white noise sequence with
known covariance. Independence can be tested with the so-called run test or reverse
arrangements test, or with tests based on the autocorrelation function. These tests are all
non parametric or distribution free. Tests for the covariance are based on the Wishart
distribution. See e.g. [6], [7], and [8].

In this paper we focus on slippage tests, which basically test the zero mean of the
innovation sequence. We present the local overall model test and the one-dimensional
local slippage test. These tests are very easily implemented and we belief that every
software package should at least have these two types of tests included. We also present
the global overall model test statistic which is a simple weighted mean of the local overall
model teststatistic. Finally we introduce a new powerful teststatistic, which is called the
one-dimensional global slippage teststatistic. It is a teststatistic given in recursive form
which has batch type properties.

The contents of the paper is as follows. The Kalman filter and the assumptions
underlying its model are briefly described in the next section. In section 3 the innovation
sequence is introduced and its characteristics are outlined. The local and global
teststatistics are derived in sections 4 and 5 respectively. Section 6 contains some
conclusions. Two appendices are attached to the paper. Appendix A contains some



necessary theory on adjustment and hypothesis testing. Appendix B gives a simple
derivation of the Kalman filter using the principles of least squares.

2. The Linear Kalman Filter

In this section we present and briefly discuss the mathematical model and recursive
relations of the linear discrete time Kalman filter. For a more extensive discussion the
reader is referred to the literature, see e.g. [9] , [10]. The mathematical model which
forms the basis of the Kalman filter is

(1a) xx = Pk k-1Xk-1 + Gk

(1b) yk

Equation (la) represents the dynamic model and equation (1b) represents the
measurement model. The dynamic model is a linear vector difference equation. The
independent variable t, which is often time, can assume the values tg<t]<... <tN,
where the t; are not necessarily equidistant. The state of the system at ty is given by the n-
dimensional vector xkx. The underscore indicates that the state vector xy is a vector
random variable.

In many applications (1a) is derived from the linearization or linear perturbation equations
relating to a dynamic system, so that the nxn matrix @y .| may be assumed to be a
known state transition matrix with the following properties:

Agxkx + &k

Dy =1 forallk
Pk 1Pm = Pk,m -

The initial state x() is considered to be a vector random variable with a Gaussian
distribution and the known statistics

E(xp} = xp
E{(xp-xp)x0-x0)*) = Poio

The operator E{.} denotes the mathematical expectation and (.)* denotes transpose.
The n-dimensional vector random variable gy represents the dynamic system noise. It is

assumed to have a Gaussian dismribution with the known statistics

E{qx} = 0 forallk
El(gkQ*) = Qkdxi»

where 8y is the Kronecker delta, i.e. 8 =1 for k=1 and 8y}=0 otherwise.

The measurement model (1b) states that at each time ty there are mgy measurements
collected in the mg-dimensional observation vector yy available. The vector of
observations is linearly related to the state through the known myxn designmatrix Ay and
is corrupted by additive measurement noise gk.

The vector random measurement noise ey is assumed to have a Gaussian distribution
with the known statistics



E(ex) = 0 forallk
E(exe1*} = Rydyl.

The above defined covariance matrices Pgjg, Qk, and Ry are all assumed to be positive
definite and thus invertible.

Finally it is assumed that the random sequences Qg and i are mutually uncorrelated and
also uncorrelated with the initial state:

E{qxe1*} = 0 forallk,l
E{qkx0*} = 0 forallk
E{exxp*) = 0 forallk

The mathematical model described above provides the basis for all succeeding
discussion.

Depending on the application one has in mind, one might wish to obtain an estimate of
the state at a certain time k which depends on all observations taken up to and including
time k+l. If 1<0 the process is called prediction. The state estimate depends then only
on the observations taken prior to the desired time of estimation. If 1=0 the process is
called filtering. In this case the state estimate depends on all the observations taken prior
to and at time k. Finally if 1>0 the process is called smoothing. The state estimate
depends then on observations taken prior 1o, on, and after time k. (see also fig. 1). It will
be clear that under normal conditions smoothed estimates are more precise and reliable
than filtered estimates. Similarly filtered estimates are more precise and reliable than
predicted estimates.
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Fig. 1. Relation between prediction, filtering, and smoothing of the state at time k

Since we have real time applications of the estimation problem in mind, we shall restrict
ourselves in the following to recursive prediction and filtering. The problem we stand for
is to determine an estimate of the state at time k that is a linear combination of an estimate
of the state at time k-1 and the observations at time k. Furthermore the estimate must be
“best” in a certain sense. Kalman [11] was the first to solve this problem for the
continuous time model using the minimum mean square error criterion. When Kalman's



method of derivation is applied to the discrete time model the so-called linear discrete time
Kalman filter is obtained. It basically consists of two parts: the time update which gives
the predicted state, and the measurement update which gives the filtered state.

The time update of the state and its covariance matrix are given as

(22) Xy = Dy XK1k

*

(2b) Pypr = Pp Pk @i + A >

and the measurement updates of the state and its covariance matrix are given as

(3a) ;kik = ;klk-l + Ky - Ak;kik-l)
(3b) Pmk = (I- KkAk)Pklk-l

where

L ] L] -l
4) Ky = Py A (A Py A+ Ry

is the so-called Kalman gain matrix.

Equation (2a) gives the best estimate of the state at time k in the minimum mean square
error sense using all observations prior to time k, whereas equation (3a) gives the best
estimate of the state using both Rjk-1 and yk.

Although Kalman used the minimum mean square error principle to derive his equations,
it can be shown that if the model is linear and all vector random variables are Gaussian
the methods of maximum likelihood, maximum a posteriori and least squares lead to
identical results. Since surveyors and hydrographers are probably the most familiar with
the principle of least squares, a simple derivatuon of the above Kalman filter equations
based on this principle is given in appendix B.

3. The Innovation Sequence

As was pointed out in the previous section the recursive Kalman filter produces optimal
estimates of the state vector with well defined statistical properties. These estimates are
only optimal, however, as long as the given assumptions underlying the mathematical
model hold. Misspecifications in the dynamic model and/or the measurement model will
invalidate the results of estimation and thus also any conclusion based on them. It is
therefore of crucial importance to have ways to verify the validity of the assumed
mathematical model.

An important role in the process of model testing is played by the so-called innovation
sequence. The innovation sequence is defined as the difference between the actual
system output and the predicted output based on the predicted state. Thus the innovation
sequence is given by

(5) ¥k = ¥k - AkXkk-1 » k=1.2, ...

It is called the innovation sequence since it represents the new information brought in by
the latest observation vector. This can be seen from the measurement update equation



(3a), which shows that the filtered state is a linear combination of the predicted state and
the innovation.

Under normal conditions the innovation is “small” and corresponds to random
fluctuations in the output since all the systematic trends are eliminated by the model. If,
however, the model is misspecified the innovation is "large" and contains systematic
trends because the model no longer represents the physical system adequately.

Under normal conditions the innovation sequence has well defined statistical properties.
It can be shown, see e.g. [12], that if the model is valid, the innovation sequence is a
zero mean Gaussian white noise sequence with known covariance:

(6a) E{vx} = 0 forallk
(6b) E{vgvi*} = Quikdki .,

where
(7) Quk = Rk + AgPkik-1Ak*

is the covariance matrix of the innovation y.

These properties can be used to test the innovation sequence for zero mean, whiteness
and a given covariance. A sequence is called white if it consists of a sequence of
uncorrelated random variables.

In the following we will restrict ourselves to misspecifications in the mean of the
innovation sequence. That is, we will only consider slippage tests. The necessary
teststatistics are all functions of the innovations and are optimized to detect a particular
misspecification in the assumed mathematical model.

4. Local Slippage Tests

In this section we present some methods of hypothesis testing as applied to the linear
discrete time Kalman filter. For a brief review of the theory of hypothesis testing the
reader is referred to appendix A.

We consider the local overall model (LOM) test and the one-dimensional local
slippage (LS) test. By local we mean that the tests when performed at time k only
depend on the predicted state at time k and the observations at time k. Observations taken
after time k have no effect on these tests. The influence of observations taken prior to
time k is only felt indirectly via the predicted state.

The purpose of the LOM test is to detect misspecifications in the mathematical model
occurring at time k. Since misspecifications in the model which have occurred prior to
time k do affect the predicted state, the LOM test could detect them. The LOM test is
however not optimal for these past misspecifications. This case will be considered in the
next section.

The teststatistic of the LOM test is given as

* -]
!kaVk
(3) Ik ™ —mf— »
k

where my 1s the number of observations taken at time k.
The decision that a misspecification in the model has occurred at ime k is made once

Tk 2 x2q(mg,0) ,



where xza(mk,O) is the upper a probability point of the Chi-squared distribution

x2(my,0) with my degrees of freedom.

After a misspecification has been detected with the above test, one can try to diagnose the
type of misspecification. This is done with the one dimensional LS test. The
corresponding teststatistic is given as

The choice of the ¢c-vector depends on the type of misspecification one wants to test. With
(9) one can try to detect a possible slippage in the mean of the predicted state, or in the
mean of the measurement noise, or in both. For instance, if one suspects sensor failures
or outlying observations one can follow the datasnooping approach by choosing my

c-vectors of the form

a0 ¢ = (...,0, 1,0,......1)* for i=1,...,my .
mgx1 1 @G-1)4,3G-1) my

The observation for which the w-teststatistic is a maximum can then be considered as the
most likely outlying observation.

The detectability of the misspecifications is very much governed by the structure of the
inverse of the covariance matrix of the vector of innovations. For instance, sensor
failures are better detectable the larger the diagonal elements of ka'l are. One is better
able to discriminate between different sensor failures the smaller the off-diagonal
elements of Qyg-1 are. When designing a Kalman filter one should in case of

datasnooping thus aim at a diagonal dominant matrix Qyj-1.

5. Global Slippage Tests in Recursive Form

In the preceding section we considered local slippage tests. There it was shown that the
teststatistic Ty and wy can be computed once the innovation vector g and its covariance

matrix Qyk are available. The local tests can therefore be executed in real time parallel

with the computations of the Kalman filter update equations. This has the advantage that
corrective action can be taken in real time.

A disadvantage is, however, that the tests discussed above are local and therefore may
not be able to detect global unmodelled trends. In particular if the local redundancy my is

small or if the matrix Qyk~! is not diagonal dominant enough, various misspecifications
may pass unnoticed. '

One possible remedy is of course to keep all the collected data stored in the computer's
memory. With a batch type of algorithm one can then process all the data for the detection
and localization of model misspecifications. It will be clear, since smoothing is involved,
that the resulting tests are more powerful than the local tests discussed above. There are
however two disadvantages to such an approach. Firstly the property of recursiveness is
lost due to the batch type of processing. Secondly no real time corrective action can be
taken once a misspecification is detected. This, however, may not be as serious as it
sounds. In practice a delay may be acceptable if it is small enough. That is, in practice it
may be more important to detect a misspecification with a possible delay than not to detect



it all! In any case, the delay is the price one has to pay for the inclusion of smoothing.
With these remarks in mind it thus seems worthwhile to look for teststatistics in recursive

form which have batch type properties.
First we consider the global overall model (GOM) test. The GOM teststatistic is

given as

ke k
E!i Qvyi dmT;

i=1 i=1
(1) T¥= « = -

k Tk '
Zmi Zmi
i=1 i=l

It is the weighted mean of the LOM teststatistics T; and is therefore very easily
implemented in a computer program. One way to derive the GOM teststatistic is to
consider a set up of batch type for the Kalman filter. Equation (11) follows, however,
immediately once one recognizes that the LOM teststatistics are mutually independent
because of the Gaussian white noise property of the innovation sequence.

The decision that a misspecification has occurred is made once

K 2 &
T' 2 X, (O m;0),
i=1

where %24 (Z;m;,0) is the upper a probability point of the Chi-squared distribution
%2(Z;m;,0) with Z;m; degrees of freedom (i=1,..,k). If the GOM test comes 1o rejection

misspecifications at times 1<1<k may have occurred.

The type of misspecification that has occurred is diagnosed by the one dimensional
global slippage (GS) test. Let us restrict ourselves to the case of a sensor failure that
h?s occurred at ime 1. Thus we consider a slippage in the mean of the observation vector
of the form:

(122) E(y/H,) = E{yyHo} + ¢,V
where

k 0 for k<l

a2) ¢ = { c.fork>1"

and the c¢j-vector is of the form as given in equation (10) with my constant for all k, (i.e.
mk=m). Note that with (12) at each time k the number of alternative hypotheses

considered is k times m.

The computation of the GS teststatistic is more complicated than that of the GOM
teststatistic. Unlike the computation of the GOM teststatistic one cannot compute the GS
teststatistic as the sum or weighted mean of the LS teststatistics wy. This is because the

misspecification ckl‘iV of (12) not only influences the innovation directly via the
observation vector, but also indirectly via the predicted state. We therefore need to know
how ckl‘i affects the innovation sequence.



The propagation of ckl'i on the innovation sequence follows from the time and
measurement update equations of the Kalman filter

—k
Ci = CLI = Ak Xkl xh1=0f0rkSl

(13) { x
Xpet1 = Pt Kigrd -

These are recursive equations which show how a sensor failure starting at time |
influences the innovations at time k=1. With (13) we are now able to write down the GS
teststatistic as

Note that for k=1 the teststatistic wk| ; i reduces to that of the LS teststatistic because
k| ,-ckl j=Cj- As with the LS teststatistic the denominator of (14) is a measure of
detcctabxhty It should be large enough to have a proper detectability probability. In a
similar way one can compute the scalars which measure the discriminability between the
different alternative hypotheses.

In principle one has to compute the GS teststatistic for 1=1,2, ... , k and the different c-
vectors considered. This is shown in fig. 2a. The failing sensor i and the failure time | are

determined by the maximum of the k times m values of Ekl i

Although the computations necessary to obtain the “’kl,i are still somewhat involved,
they are much less than when done in a batch mode. This is mainly due to the recursive
form of (13) which parallels the Kalman update equations. One can reduce the number of
computations by introducing a moving window of length N and constraining 1 to
k-N+1<I<k. In this way the teststatistic .W.kl,i need not be computed for 1<k-N+1. This is
shown in fig. 2b. A further reduction is achieved by constraining 1 to k-N+1< 1 <k-M.
This is shown in fig. 2c. The paramcters N and M have to be chosen in such a way that
the information used in the wk] j's is both not too little and not computationally
excessive. The choice of the parameters N and M is thus primarily determined by the
measures of detectability and discriminability. But they also depend on the time dclay in
detection one is willing to accept.

The above teststatistic (14) has been derived for the alternative hypotheses considered in
(12). In a similar way the recursive teststatistic for e.g. outlying observations or
slippages in the mean of the state vector can be derived. Also the cases where V is known
or where the common variancefactor of the covariance matrices is unknown can be
derived analogously.
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Fig. 2. The teststatics Ek]‘i with (a) no window; (b) a moving window with N=3, M=0;
and (¢) a moving window with N=3, M=1.

6. Conclusions

In this paper methods for the performance analysis of Kalman filters are discussed. We
focussed our attention on methods for the detection of misspecifications in the means of
observation vectors and state vectors. All teststatistics are functions of the innovations.

A distinction is made between local and global teststatistics. The local LOM and LS tests
presented in section 4 can be implemented very easily. We recommend these tests to be
available in every software product incorporating a Kalman filter.

In section 5 it is shown that the global GOM teststatistic is simply a weighted mean of the
LOM teststatistics. As such it is very useful for detecting unmodelled global trends.

A possible misspecification detected with the GOM test can be diagnosed using the GS
teststatistic. In spite of the fact that the GS has batch type properties, it can be computed
in a recursive form, thereby facilitating its use for filter applications, if one is willing to
accept a small time delay. Its implementation should be considered especially in those
situations where detectability with the local slippage tests is poor due to a lack of local
redundancy.

Furthermore we stressed the importance of the measures of detectability and
discriminability for the design of a Kalman filter.
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Appendix A: Linear Least Squares and Slippage Tests

In this appendix a brief review is given of some adjustment and testing theory. For a
more in depth discussion of these topics the reader is referred to [13], [14], and [15].

Linear Least Squares

Consider the linear model of observation equations

(Al) E{y} = A x , cov(y} = UzQy
mx1 mxn nx] mxm

where y is the m-dimensional random vector of observational variates; E{.} denotes
mathematical expectation; A is the designmatrix of order mxn; x is the n-dimensional

vector of unknown parameters; cov({y} is the covariance matrix of y and 02 is the
variance factor of unit weight. The underscore in y indicates the random character of the
observational variates. It will be assurned that y has a Gaussian distribution, i.e. y is

normally distributed with mean Ax and covariance matrix ony. The matrices A and Qy
are assumed to be of full rank, and m is assumed to be larger than n.

Application of the least squares criterium

minimize (y-Ax)*Qy1(y-Ax)
X

gives the linear least squares estimators of the parameters x and mean E{y} respectively
X =(A'Q/AAQy
(A2) { = ey y
y = Ax
The covariance matrices of X and ¥ follow from applying the error propagation law to
(A2). This gives:

2 . . )

Q; =0 (A'Q;A)"
@3y | : .
Q = 0 AQA

It can be shown that the linear least squares estimators of (A2) are optimal in the sense
that they are maximum likelihood estimators as well as minimum variance linear unbiased
estimators, provided the Gaussian assumption and model (A1) hold.

In the context of model validation an important role is played by the least squares residual
vector €. This random vector is defined as:

Ad) e=y-y= 0-AQAQ)¥

11



Its covariance matrix reads
(AS) Q: - Qy 'Q; .
Slippage Tests

The objective of hypothesis testing is to decide, on the basis of an observed sample of y,
whether model (A1) is correct. Model (A1) will be called our null hypothesis Hq. It will

be clear that our null hypothesis may be violated in many different ways: y may not be
normally distributed, y may not have a mean Ax, y may not have a covariance matrix

02Qy, etc. Here we will restrict ourselves to misspecifications in the mean Ax. That s,

we w111 concentrate on whether the mean of y can be represented as Ax or not. More
specifically we will assume that the misspecifications, if present, are of an additive
nature. Thus we will oppose the null hypothesis

2
Ho: E{y} = A x , cov{y} = 0 Qy
mx ] mxn nx1 mxm

to one or more relaxed alternative hypotl}csis Hj of the type

2
Hy: By = (A ©) ||, coviy) =00,

mx1 mxn mxp (n+p)xl mxm

where V is a p-dimensional vector of explanatory variables taking care of the postulated
misspecifications in Hy.

The Overall Model Test T

If the mxp matrix C of the alternative hypothesis H, is chosen such that the matrix (A:C)
is square and invertible, then p=m-n and no particular rcsmcuons are imposed on the
mean of y under H,. The function of the least squares residuals € which in this case can
be used as a teststatistic for deciding whether Hyy should be accepted or not is given as

Qy
73 : -
¢ (m-n)

s 3
18]

(A6) T =

The random variable T has a so-called Chi-squared distribution xz(m-n.l) with m-n
degrees of freedom and noncentrality parameter A, where

2 0.,
(A7) A =0 V CQ,QN;cV .

The decision rule whether to accept or reject Hg becomes then

12



2
reject Ho if T 2 X ,(m-n,0)
(A8)
accept Hq otherwise.

This test is called the overall model test since no restrictions are placed on the mean of
y under Hy. The Chi-squared distribution can be found in standard textbooks on

probability theory. xza(m-n,O) is the upper a probability point of the Chi-squared

distribution xz(m-n.O). a is the probability of rejecting H( when in fact it is true. It is
called the level of significance and is given by

a = Prob ( x2(m-n,0) 2 x2g(m-n,0) )

By fixing & one can compute xza(m-n,O) and execute test (A8). The test is then said to

have size .

The one-dimensional Slippage Test w; V unknown

If the number of columns of the mxp matrix C is chosen to be equal to one, then p=1 and
the matrix C becomes a vector. This vector is denoted by c. In this case the number of
restrictions placed on the mean of y under H, is one less than the number of restrictions

placed on the mean of y under Hg. The corresponding teststatistic is given by
Qe

) R ¢
olc QyQXRQy0)

The random variable w has a normal distribution N(+A1/2,1), with a variance of one and
a mean of +A12 | where the sign is that of V and

2 %
(A10) A = 0 Vc'Q;'QQ;cV .

Note that since c is a vector, V is a scalar. The decision rule to accept or reject Hy on the
basis of the formulated aliernative hypothesis becomes then

l'f.'._]CCl HO if ]&'i 2N mu(O,l)
(A11) :
accept Hq otherwise .

So far the null hypothesis Hg has been opposed to one alternative hypothesis H,. In
order, however, to specify the alternative hypothesis, one has to specify the vector c. But
this can be a difficult task indeed, since it is generally not known beforehand what
misspecifications, if any, will be present in Hg. Hence, in practice choices have to be
made. Let us therefore assume that a set of one-dimensional misspecifications has been
defined. Furthermore it will be assumed that if a misspecification occurs, it is one of the
set defined.

13



The problem we face is then to decide whether a misspecification of Hg has occurred and

if so which one. The search for possible misspecifications can then be done as follows.

First decide on the basis of the overall model test whether a misspecification occurred at
all. If so, then look for the most likely alternative hypothesis in the predefined set. The
most likely alternative hypothesis is the one for which lwl takes a maximum value. Once
the possible misspecification in Hg has been identified, corrective action can be taken. In

order to be able to further identify the source of the misspecification in Hy it can be useful

to compute the linear least squares estimator of V under the accepted alternative
hypothesis. This estimator is computed as

ow
(c . le Q;leC) 172

An important example of the search for possible misspecifications in Hg is given by the
search for outlying observations. In this case the predefined set of alternative hypothesis
consists of m (the number of observations) alternative hypotheses, each of which models
an outlier in one observation at a time. For the i th observation the ¢ vector then takes the
simple form

(A13) ¢ = (0....,0, 1,0,......... 1)*
mx 1 G-DiG1D) m

(A12) ¥V =

This very successful technique for the search of outlying observations is known as
datasnooping (see [13], [14], [15]).

Above it was assumed that the variance factor of unit weight 02 is known. If it is
unknown, teststatistics similar to (A9) can be derived. The overall model test, however,
then fails to exist. For more details see [14], [15], [16], and [17].

The one-dimensional slippage test Aw; V known

Although the possibility that one is able to formulate an alternative hypothesis with V
known very rarely occurs in geodetic applications, there are some exceptions. One such
exception is given by the problem of lane slip identification in offshore positioning. If V
1s known a more powerful test than (A11) can be derived. The corresponding test for
deciding between H and H; reads

reject Hy if Aw <0

(Al4)
{ accept H, otherwise

where the teststatistic Aw is given as

V ¢ Q,QQ; 2y -cV)

(A15) Aw = =
(V ¢ 'Q,QQ;cV)
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Measures for the detectability of alternative hypotheses

In the field of hypothesis testing two important questions are: 1. How well can we detect
a particular alternative hypothesis? and 2. How well can we discriminate between

different alternative hypotheses?
If the c-vectors of all alternative hypotheses are normalized to the same value, one can

take as a measure of detectability the scalar

2
o]

Al6) rg= —0
¢'Q,QW; ¢

The larger rv2 is, the less detectable the con'cspondmg alternative hypothesis.
Note that rv equals the variance of V in (A12). This gives an interpretation to the
measure of detectability in terms of the estimability of V under Hy. In particular if the

o) )
variance of V is infinite the corresponding altemnative hypothesis is not detectable.
As a measure of discriminability between two alternative hypothesis Haj and Hyj one

can take
¢iQ;' Qe _
v ¢;Q, QN < Ve 1QQNy <

(Al?) sij =

Note that sjj equals the correlation coefficient between the estimators E, and _Y_ It also
equals the correlation coefficient between the teststatistics w; and wj. The largcr Sij is, the
less one is able to discriminate between Haj and Hy; .

For an in depth treatment of the necessary theory, which comes under the general heading
of reliability theory, the reader is referred to the referenced literature.

Appendix B: The Linear Kalman Filter; A Possible Derivation

There exist various derivations of the linear Kalman filter. These derivations are based on
principles like least squares, minimum mean square error, maximum likelihood, and
maximum a posteriori. In general the use of different principles leads to different
estimators. However, in case of linear systems where the probability density functions
are assumed to be Gaussian all the above mentioned estimation methods yield the same
estimator. Thus, the framework used to discuss such systems reduces to one of personal
preference. Since the principle of least squares is probably the one which surveyors and
hydrographers are the most familiar with, our derivation of the linear Kalman filter is
based on this principle.

The linear model of observation equations from which the linear Kalman filter can be
derived is given as
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xk k-1 I 0 Py O 0

(Bl)E{ } =0 1 [xx““]; 0 Q 0
0o A |' " 0 0 Ry

Note that this model is of the same form as the linear model of observation equations

(A1) given in appendix A.
The Gaussian random vector Xy.|[k-1, With covariance matrix Py.1(k-1. is our estimator

of the state xk_1 at time k-1. It summarizes all the information available at time k-1 about

state Xk.1-
The Gaussian random vector di, with covariance matrix Qy, is our estimator of the

difference between the state xi and the propagated state @y .1xk-1- Would we know the
dynamic model perfectly, we would set both the mean E{dy } and covariance matrix Qg
equal to zero. Due to all sorts of random disturbances, however, one is in practice usually
not able to model the dynamics of the system completely. This is why the difference
between the state and propagated state is modelled as a random vector.

The Gaussian random vector yk, with covariance matrix Ry, is an estimator of the

observational variates at time k. Its mean is related to the state xy through the design
matrix Ay.

In ordcr 1o estimate we need sample values. In practice we have only samples available
for Xx.1k-1 and yk. The sample of X _ik-1 is given by the best estimate of x| at time

k-1 and the sample of y is given by the observations. There is, however, no sample
available for di. Since the difference between the state and propagated state is considered
to be small, the random vector dy is treated as a pseudo observational variate for which
the sample value can be taken equal to zero.

Prediction

Let us first consider the least squares estimation of the state without the use of the
observations yx. Model (B1) reduces then to

I 0 P 0
Xk k-1 Xy ke
(B2) E{[ ]} | o [xkl];[ kollkl o ]
Dir 1 k k
Note that there is no redundancy since the model contains 2n equations with 2n
unknowns. Thus the available estimate Xj.1|k.1 of xk.1 cannot be impréved upon. Due

. to the lack of redundancy in (B2) the least squares estimator of xi, which we shall denote
by XkIk-1, simply follows from inverting the designmatrix of (B2). Thus

(B3) Xy = (Dk_k.lgk-llk-l+.d.k

Application of the error propagation law gives for the covariance matrix of Xkjk-1:

(B4) Py = Py PPt
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Since the sample value of di is taken equal to zero it follows from (B3) that the least
squares estimate of xi based on model (B2) is given by

(B5) Xy = Py . Xi-11k-1

Equations (B4) and (B5) constitute the well known time update equation of the linear
Kalman filter. They are given as equations (2a) and (2b) in section 2.

Filtering

Let us now consider the least squares estimation of the state with the observations yg
included. In this case model (B1) applies. Since there is redundancy (the redundancy
equals the dimension of the vector of observations) the available estimate Xk. | k-1 of
Xk-] can now be improved. This improvement is, however, part of smoothing (i.e. one
uses the observations of time k to estimate the state at time k-1) and is not considered in
the Kalman filter. We therefore eliminate the state xg._1 from model (B1). This gives

d’k,k.]gk-llk-r"dk } _ [ 1 ] D PPt QA 0

(B6) E i
{ Ak . 0 Rk

Lk

With (B3) and (B4) this can also be written as

Xuik. 1 Pk.y O
(B7) E{[xl;“]} =[Ak]xk;|: o R ]
k

Straightforward application of the least squares algorithm gives for the least squares
estimator of x, denoted by X |k:

~ 1 v . 1 A~ .
(B8) Xxpix = (Pyk1 + AR AY (P iXxik-1 + AxRx )

Application of the error propagation law gives for the covariance matrix of Xjik:

B9) Pyy = Phi+ ARy A

Equations (B8) and (B9) constitute the so-called measurement update equations of
the linear Kalman filter. An alternative form of the measurement update equations can be
obtained by invoking the following matrix inversion lemma:

@10) «'+BD'B)' = c-cB'D +BCB")y'BC,

where C and D are symmetric matrices. The identity (B10) is easily verified by
multiplying the right hand side of (B10) with [C-1+B*D-1B]. Application of the matrix
inversion lemma (B10) to (B8) and (B9) gives after some arrangements for the filtered
state
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~ —~ . L | ~
(B11) Xy = Xyi1 + Pk AR AP 1A k- Adxik-1) »

and for its covariance matrix

. * 1
(B12) Py = Py~ Py 1 AR +A P 1AY AP -

The measurement update equations (B11) and (B12) are the ones which are ussually
presented in the literature. They are given as equations (3a) and (3b) in section 2.

The local teststatistics for the Kalman filter which are presented in section 4 can be
derived by applying the results of appendix A to model (B6). In a similar way the global
teststatistics for the Kalman filter presented in section 5 can be derived from applying the
results of appendix A to the batch mode form of model (B1).
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