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AN EXACT MON-LINEAR LEAST-SQUARES SOLUTION.

Abstract

In this paper a particular class of non-linear least-squares problems for
which it is possible to take advantage of the special structure of the non-
linear model, is discussed. The non-linear models are of the ruled-type
(Teunissen, 1985a). The proposed solution strategy for this class of problems
is applied to the 1 and 2D non-linear Symmetric Helmert transformation.

Exact non-linear least-squares solutions are derived.

1. Introduction

The aim of the present paper is to derive an exact non-linear least-squares
solution for the 1 and 2D Symmetric Helmert transformation.

In section two we discuss a particular class of non-linear least-squares pro-
blems for which it is possible to take advantage of the special structure of
the non-Tinear model. The non-linear models are manifoids of the ruled-type
(see Teunissen, 1985a). We show that for this class of non-linear least-squa-
res piroblems a two-step procedure can be devised. The first step consists of
a linear least-squares problem, while the second step consists of a non-line-
ar least-squares problem of a reduced dimension. In general the second step
has to be solved through the use of linearization and iteration techniques,
such as Gauss' method or variations thereof. A theorem is given which justi-
fies the proposed twb-step procedure.

In section three we first consider the l1inear 1D Helmert transformation. we
show that the product of the scale estimator l and the scale estimator AH

of the inverse 1D Helmert transformat1on does not satisfy h AH = 1. This is
unsatisfactory and a consequence of the fact that the 11near Helmert trans-



formation does not treat the two coordinate sets on an equal basis. We there-
fore introduce our 1D Symmetric Helmert transformation. The corresponding mo-
del is non-linear, but a member of the class of mcdels considered in section 1.
The proposed two-step procedure is therefore applied and it is shown that the
second step reduces to an eigenvalue problem which can be solved in an analy-
tical way.

In section four we generalize the stochastic model of the classical linear 2D
Helmert transformation to rotational-invariant covariance matrices. The linear

least-squares solution is given.

In section five we introduce our new non-linear 2D Symmetric Helmert transfor-
mation. A rotational-invariant covariance structure is assumed. The non-linear
least-squares solution is derived with the proposed two-step procedure. We
show that the product of the scale estimators iSH and i, of the Symmetric
Helmert transformation and its inverse satisfies XSH‘iéH = 1. We also show
that in general one systematically underestimates the scale when using the
classical Helmert transformation.

The appendix contains a proof of an expression for the derivative of an ortho-
gonal projector. This result is useful in itsself for perturbation analysis
and is needed when one wants to apply Gauss' iteration method to the second
step of the proposed two-step procedure.

2.A particular class of Non-Lingar Least-Squares Problems

We will study a method that takes advantage of a special structure of an op-
timization problem, which is expressed so that the optimization with respect
to some of the variables is easier than with respect to the others. Consider
the unconstrained minimization problem

{2.1) min. f(w)
w e R

Suppose we can partition w into

(2.2) w=(Y),uer™, veRrR"2, n, +n, =n,
v 1+ N,




in such a way that the subproblem

(2.3) min. f(u,v)
u € RM '

is easy to solve for every v in the domain of consideration. Let u(v) denote
one solution of (2.3) and formulate the problem

(2.4) min.  f(u(v),v) .
v € R

We can now replace the original n dimensional minimization problem (2.1) by a
n, dimensional one (2.4), where each evaluation of the object function needs
the solution of a n1 dimensional minimization problem (2.3).

In principle every partition of the variables is possible. But to be c¢f ad-
vantage practically, (2.3) must be simpler to solve than the corresponding
problem with respect to v.

[f we restrict ourselves to least-squares problems, the above two-step proce-

dure becomes particularly advantageous when some of the variables occur line-
arly. In this case (2.3) is simply a linear least-squares problem.

Example: Orthogonal projection onto a ruled surface (see Teunissen, 1985a)

A ruled surface is a surface which has the property that through every point
of the surface there passes a straight line which 1ies entirely in the sur-
face. Thus the surface is covered by straight lines, called rulings which

form a family depending on one parameter.

In order to find a parametrization of a ruled surface choose on the surface

a curve transversal to the rulings. Let this curve be given by c(v), v € R.

At any point of this curve take a vector t of the ruling which passes through
this point. This vector obviously depends on v. Thus we have t(v). Now we can
write the equation of the surface as

(2.5} a(u,v) = c(u) + ut(v), u,v €R, a,c,t€ gL

The parameter v indicates the ruling on the surface and the parameter u shows
the position on the ruling.



Now let us assume that we have to solve for the following non-linear least-
squares problem:

(2.6) min. [ly-a(u,v)11% ,
U,V
2 X -
with the norm [[.11° = (.) Qy (e &

Since the ruled surface is flat in the directions of the rulings, whilst cur-
ved in the directions transversal to it, it becomes advantageous to perform
the adjustment in two steps. In the first step one would then solve for a
linear least-squares adjustment problem, and in the second step for a non-1li-
near adjustment problem ¢f a reduced dimension. That is, one first solves for

(2.7) min. |l (y-c(v)) - t(v)ull2 )
u

which gives
* R -1 * =
(2.8)  u(v) = (£ QG W WG v-e(v)
Then in the second step one solves for the non-linear problem

(2.9) min. 1ly-(c(v) + t(v)u(v))I1* .
v

As a generalization of the foregoing example, we are interested in solving
the non-linear model

(2.10) E{y} = A(z)x , Cov.{y} = Qy ,
in a least-squares sense; where y is the m dimensional vector of observatio-
nal variates, E{.} stands for the mathematical expectation, A(z) is a mxn,
matrix, Qy is the mxm positive definite covariance matrix of y, and x and z
are respectively the n;- and n, dimensional vectors of unknown parameters.

We will assume that matrix A(z) has constant full rank for all z of interest.



le can write (2.10) in index notation as
(2.10") Ely'} = A;(z)xa, Cov.{y'} =

We will assume that the mn, functions A;(z) are continucusly differentiable.
We define

a) f(x,z) g [ ly- A(z)xtl2
(2.11)  {b) fi(z) & IIPL I
A
c) x(z) SA (Z)y y
where [1.11° = (.)*Q;l(.). P (z) is the orthogonal projector projecting onto
the rangespace of A(z), Pi( z) = A( ) is the orthogonal projector projecting

onto the orthogonal complement of the rangespace of A(z) and A™{z) is the
least-squares inverse of A(z).

Since x(z) is the solution of min. f(x,z) we have that
A

a) fi(z) = f(x(z),z) = min. f(x,2) VY z

(2.12) #
b) fi(z) = f(x,2) ¥ %2 .

A

From (2.11) also follows that

,

a) axf(x,z)

-2(y-A(2)x)"Q; 'A(2)

(2.13)  {b) 9,f(x,2) -2(y-A(z)x)*n"lazA(z)x

]

¢) 3,fi(z) P*(z)y) 0} '3,Pp(z)Y -

3

In the appendix it is proved that
(2.14) 3,Paz) = (I-Pa(z))3A(A"(2) + [Q) (I-PA(Z))BZA(Z)A‘(Z)OyJ*

Since

-1
a) P*(Z)O Pj(z P*

(2.15) i
b) A (z)Pi(z)



substitution of (2.14) into (2.13c) gives
(2.16) 3.f1(z) = -2y Q leY, 3 A(z)AT(2)y
: z y A(z)°z '

We are now ready to proof the following theorem, which gives a justification
for the discussed two-step procedure.

Theoren

(i). If x and z are such that

(2.17) a) azfl(i) =0, b) x=A(2)y ,

then

(2.18) a) fi(z) = f(x,2), b) 2 f(x,2) =0, c) azf(i,i) =0.
(ii). If x and Z are such that

(2.19) a) fi(z) Sfi(z) vz, b) x=A(2)y,

then

(2.20) £(X,2) S f(x,z) V x,z.

(iif). If x and z are such that

(2.21) f£(X,2) g fix,z) Ve

then

(2.22) a) f1(z) = f(x,z), b) f1(z) £ f1(z) v z.

proof of (i):

(2.18a) follows from (2.11c), (2.17b) and (2.12a).

(2.18b) follows from (2.17b), (2.13a), (2.15a) and the fact that Pt(Z)A(z) = 0.
(2.18c) follows from (2.17a), (2.17b), (2.13b), (2.15a) and (2.16).

Thus if z is a stationary point of fi(z) and x is defined by (2.17b) then
(x,z) forms a stationary point of f(x,z).




proof of (ii):

We will give the proof by contradiction. Assume that a x and z exist such

that f(X,z) < f(X,2). With (2.12b) this gives: f1(Z) = f(X,Z) < f(x,z). With
(2.19b), (2.11c) and (2.12a) this gives: f1(Z) = f(X,z) < f(x,z) = f(x(2),2) =
f1(z). But this contradicts our assumption that f,(Z) 5 f(z) v z. Hence no

X and z exist such that f(X,z) < f(X,z).

Thus if z is a global minimum of f;(z) and x is defined by (2.19b) then

(x,z) is a global minimum of f(x,z).

proof of (iii):

First we will proof (2.22a).

From (2.12b) follows that fi(z) S f(x,z). Now let X
and (2.12a) follows then that f,(z) = f(X,z) ¥ f(X,
minimum of f(x,z) we must have equality, i.e. f,(z)
We will proof (2.22b) by contradiction.

Assume that a z exists such that fi(Z) < fi(z). Now let X = A™(Z)y. With

(2.11c) and (2.12a) this gives: f1(Z) = f(x(Z),Z) = f(X,z) < f1(z). According
to (2.22a) we have f,(z) = f(X,2) and thus f,(Z) = f(x(Z),Z) = f(X,Z) < f1(2)

= f(x,2z). But this contradicts our assumption that f(X,z) = f(x,z) ¥ x,z.

Hence no z exists such that f,(z) < f1(2).

Thus if (x,z) is a global minimum of f(x,z) then z is a global minimum of f)(z).
This concludes the proof of the theorem.

A"(z)y. With (2.11c)
z). Since (x,z) is a global
= f(X,2) = f(X,2).

From (ii) and (iii) of the Theorem follows that if the global minimum (x,z) of
f(x,z) is unique, then also the global minimum of f;(z) is unique and is given
by z. Conversely, if the global minimum z of fi(z) unique then the global mi-
nimum of f(x,z) is unique and is given by (x,z). The uniqueness of the x-com-
ponent follows from the uniqueness of the least-squares inverse A (z), since
A(z) is assumed to be of constant full rank.

When orne applies the above described two-step procedure one still has to sol-
ve for the non-linear problem gin. l!Pi(z)yllz. This can be done by Gauss' ite-
ration method or variations thereof. In this paper we will not discuss the
application of the Gauss'iteration method to the above problem, but see e.g.
(Teunissen, 1984, 1985a and b) for more details. Instead we will use the des-
cribed two-step procedure to solve for the 1 and 2 dimensional non-linear
Symmetric Helmert transformation in an analytical way.

First we consider the 1D Helmert transformation and its non-linear symmetrical
generalization.



3. The 1D Helmert transformation

We define the model of the 1D Helmert transformation as
(3.1) El{x;} = Agrt , d=l, wo.n

where X; are the observed ccordinates, u; are the fixed given coordinates,
and X and t are respectively the unknown scale and translation parameters.

With
13.2) X8 (eeosXiaoe) 5 U= {ioallyize) -80d &= (Lovead) ,

we can write (3.1) in vector form as

{3.3) E{x} = (u e)(l).
t

We assume the covariance matrix of X to be the unit matrix I. We also assume

of course that u is not parallel to e. Similar assumptions are made for the

other models to be discussed. Model (3.3) is linear and very easy to solve.

The least-squares estimators of scale and translation read:

a) i = u*x
e
(3.4) il
b) t = Xo=A s
where A %
e iyt
e TR A ¥
(3.5)
X =Xx-X&, U =u-ue

Geometrically the least-squares adjustment of model (3.3) amounts to adjusting
the parameters A and t such that the sum of the squared vertical distances of
the sample points (Xi’ui) to the Tine x = \u+t is minimized (see fig.l).

When we change the role of x and u in model (3.3) we get the model

(3.6) E{u} = (x e)(g:),



% =

xeduet

tan g=A

- fig. 1 -

with the solution

a) ' = éié
(3:7) Lo A
b) t' = U mA'X

Geometrically this amounts to a minimization of the sum of the squared horizon-
tal distances (see fig.2).

t tan ¢'=A
- fig. 2 -

Since in both models (3.3) and (3.6) x and u are treated in an a-symmetric way
(that is x stochastic and u fixed, or vise versa), it follows that (see (3.4a)
and (3.7a)):

(3.8) AN # 1.
This is unsatisfactory, especially if one considers that in general both x and

u are observational variates with inherent observational errors. A more satis-
factory model would therefore be



<31 &

(3.9) E{x} = AE{u}+t ,

where both x and u are considered to be stochastic, each with the unit matrix
as covariance matrix.
Introducing the coordinate unknowns u', we can write (3.9) as:

ECHRE S

This model will be called the 1D Symmetric Helmert transformation. Note that
this model is non-linear because of the product Au'. Our problem is now to
solve for model (3.10) in a least-squares sense. We define

(3.11)  f(u',t,A) 2 11{31 [“ e][“']nz,

*
where [1.11% = £«) {.).
In order to solve

(3.12) min. Flu",t:));
'tk

we proceed in two steps. First we fix A and solve for

(3.13) min. f(u',t,Xx)
TR -

This is a linear least-squares problem. Its solution is denoted by u'(A),t(A).
In the second step we solve for

(3.14) min. f3(A) = min.fu'(A),t(A),A)
A A

Once we have found the solution A of this non-linear least-squares problem, the
complete solution of (3.12) is given by

u' = u'(})
(3.15) t = t(})
A= A

Geometrically the least-squares problem (3.11) amounts to adjusting the parame-



- 12 -

ters such that the sum of the squared smallest distances of the sample points
(xi,ui) to the line x = Au+t is minimized (see fig.3).

x=dusi

L i
[

tan ¢=1

- fig. 3 -

Step 1: (A fixed)

For a fixed A we find from (3.11) and (3.13) that

-1

u'(x) [(1+A2)]  Je AX+U
(3.16) -
* #® *
L t(A) [ Xe e e e X
’(1+x2)'1[l+hzn'1ee*] -n" e ][ax+u
i - e n-1(1+l2) e x
or
u'(x) = (1+k2)'1[ki+ﬁl+u 2
(3.17) G
t(x) = XAl
Step 2:

Substitution of (3.17) into (3.11) gives
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x] [A102)  Rsa)ex e

(3.18) fy(X) |12

LU (1+k2)'1[xi+ﬁl+uce

F(1422) "L [R-a0)
112

- (1432) "} (R-AT]
or

(3.19)  f1(A) = (1432) L1 %-2a) 12

In order to find A we need to minimize (3.19). Using the reparametrization
(3.20) A= tan¢ 3

we can write (3.19) as

*

K_oka -¥o
cos@] [x X =X u}[cos¢}
-% =K
sing] [-u x u ujlsing

(3.21) f1(tang) = [

The minimization problem

(3.22) min. f,(tan¢),
¢

now reduces to an eigenvalue problem:

e W ke

X X =Xu 1 0

s kTR ‘ =0
-uX uu 0 1

The two eigenvalues of (3.23) read

(3.23)

o (KR i) (5l ) 2- (R0 - (07%) )1
1,2 2

(3.24) u

Hence the smallest eigenvalue reads



o J§ =

- k. ¥l XL I . -%o
(3.25) poo= fx x+u u)-[(x x+u*u)2—4(x Xu ufjgfx)zjli
min > ;
From the two equations-
-Ka - -
(% x—umin) =X U cos¢ 0
(3.26) P |-
-u X (u u'”min) sing 0
we find that
% 2% u
2 3 XU min
£ 3.27) A= tang = —= =
" umm‘in L

From (3.17), (3.25) and (3.27) follows therefore that the final least-squares
solution of the non-linear 1D Symmetric Helmert transformation is given by:

it = uet(1432) 7 (R4

xc-}\uC

§ o (KRR )40 (X R0 1) 244 (T %) 202
-

2x u

(3.28) t

Note that the smallest eigenvalue Mo of (3.25)-1is not unique if

n

- - -
XX=uUuUu and x u =20,

If this is the case the matrix of (3.21) reduces to a scaled unit matrix and
the solution X becomes indeterminable. We shall disregard this exceptional
case. Also note that if

¥
xu=20,

%o -% o * *

then p . = U U if X x> U U and Mnin = XX if GG > X X. From (3.26) follows
then that cos¢ = 0 or sing = 0. We shall also disregard this exceptional case.
Let us denote the scale estimator of the Helmert transformation (3.3) by iH ’
of the Helmert transformation (3.6) by ié , of the Symmetric Helmert transfor-
mation (3.9) by XSH and of the Symmetric Helmert transformation when interchan-

ging the role of x and u by iéH . From (3.4a),(3.7a),(3.25) and (3.27) follows



o I8 -

then that
-%_ -k
5 u X : U X
Ay » Ay T
uu X X
(3.29) e x % e e VTS
= _UX X X" Unin i e R W UHnig
SH = =%- R ¥ SH = =% - X
U U=pesn u X X X=Uoin u X
This shows that
(3.30) Ay-Ag # 1, but As-Agy = ¥s

From (3.29) also follows that

-k
s 8 u u
(3.31) kSH '} AH'T—"—'
U U Hain
This shows that one, when using the Helmert transformation, in general syste-
matically underestimates the scale parameter X. The two scale estimates are

identical if and only if P ™ 0. With (3.25) this gives the condition:

S e =

(3.32) X Xu u-(u x)% = 0,

or if a is defined to be the angle between the two vectors X and u, the con-
dition:

(3.33) sina = 0, o = ¥(x,u)

4. The 2D Helmert transformation with a rotational invariant covariance

structure

The linear model of the 2D Helmert transformation reads

Xs cos@ sine}[ui} tx .
(4.1) E{ s } =) <5lng Goed v, + ty Y e M

where (xi,yi) are the observed cartesian coordinates, (ui,vi) are the fixed gi-
ven coordinates and l,e,tx and ty are respectively the four unknown scale,
orientation and translation parameters.



We can write (4.1) in a more convenient form by making use of the Kronecker
product &, for which the following four properties hold (see e.g. Rao,1973):

(AsB)* = A'gB" (AeB)” = A @B~ using any inverse

(42) A1A2581Bz= (Alﬁsl}(AzﬂBz) H

(A+B)aC = ArC+BrC

Take therefore the definitions:

A = * A x % X

X = (...xi...) ; ¥ 4 (...yi...) e TRk YT

(4.3) uf () v v, wd V)
A [ cose sind A & *
s 2 k[_sine cose]’ e (U....), tdit, ),

and write (4.1) as

(4.4) E{z} = (Sel_ Izne)(w)
{5

We assume the covariance matrix of z to be rotational invariant, i.e.

(4.5) Cov.{z} = I.eQ, ,

where Qz is an arbitrary nxn positive definite matrix. The least-squares solu-
tion of the Tinear model (4.4)-(4.5) of the 2D Helmert transformation with a
rotational invariant covariance structure was given in (Teunissen, 1986) and

reads:
=¥ a]le =% L] -k oale . oo]l=
. [Lu Qzlx+v Qzly]2+[v Qilx-u Qzlylzlé
A = s, e sy 8
[u Qz u+v Qz v]
e ST [ S
. Fr Qzlx-u Qzly
(4.6) 18 = tan "p—y——g—r—
u QZ X+V QZ Y
t, = xc-icoseuc-ksinevc
LtY = yc-XCost +As1neuc 5

where the weighted centred coordinates are defined by
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o= B ol z 4 pl =8 ;A pl
X SPX; y= Pey » US Ptu s (¢ @ Pev
L. | L * _1° K
@7 a8 QX LY pe QG s
; X Mg 2rsi ' Fe B gy Mo P opr— ; ¥ Srply
C Qz e ¢ 8 QZ 2 ¥ e Qz e © e Qz e
LA+ ¥l -1 *-1
LPe = In e(e Qz e) e QZ

Note that if Qz = In , solution (4.6) reduces to that of the well-known clas-
sical Helmert transformation (Helmert, 1893).

5. The 2D Symmetric Helmert transformation

We define the non-linear model of the 2D Symmetric Helmert transformation
with a rotational invariant covariance structure as:

z} [SaIn Izae][w'J I.8Q, 0 ]
(5.1) By} = by Ollw L] 0 Eag )

We will assume that

(5.2) Q, = GZQW , g € R,

Our problem is to solve far model (5.1) in a least-squares sense.

We define
" z SuIn I,pe|{w' ,
n
where
2 J[1:80;" 0
(5.4) 2= {.)) 4 1,80°1|(+)
W
In order to solve
(5.5) min. f(w',t,A,0) ,

W', t,4,9

we again proceed in two steps. First we fix A and 8, and solve for



(5.6) min. f(w',t,x,8) .
w',t

This is a linear least-squares problem. Its solution is denoted by w'(X,9),
t(x,8). In the second step we solve for

(5.7) min. f1(X,0) = min. f(w'(X,0),t(X,08),X,06) .
k,ﬁ 7\)8 '

Once we have found the solution A and 6 of this non-linear least-squares pro-
blem, the complete solution of (5.5) is given by

’

W' = w()i,0)

t = t(4,9)
(5.8) {. -

A =)

6 =8

Step 1: (X and @ fixed)

For X and 6 fixed we find from (5.2),(5.3),(5.4) and (5.6) that

(5 [WI(k’e)] {(k2+02)IZ'Q;1 5*'0518]‘1[5*5021 Uzlznoél}{zJ
.9) i

o 5 o
t(A,8) Sﬂe*Qzl e*QzleIz I,me QZ1 0 W

=

[(Az+cz)-1[IzaQZ+(A/a)z(e*Q;ie)-llzﬂee*] -82(e*lee)'ls*ue}[S*“Q;l 0212’051}{2}
-Bz(e*Qzle)'ISue* (k2+02)52(e*Q;16)-1Iz Izﬂe*Q;1 0 W

or

w'(X,8)

(Az+oz)_1[S*EIn)E+02ﬁ]+wcae

zc-ch )

(5.10) {
t(),8)

where the weighted centred coordinates are defined as

z Be g (IznPe)z , W.Be g (IznPe)w

(5.11) 1

ne>

7 - 4 A Rl (=] ¥~
zwz-z88 , WRwwae, P ¥ e(e Q, e) “e qQ,
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Step 2

Substitution of (5.10) into (5.3) gives

[ 2 Sal  I.me][w'(,8)
(5.12) f (x,8) = || w]-[ L 0 ][ t(x,e)l'lz
n

. gz(x2+gz)-1[2-(SaIn)ﬁ] ] .
I
- (A+02)7Is"al_[Z-(Sal )]

or

(5.13)  f1(A,8) = o%(A2+02) " 11Z-(Sal )Wll? ,
where

(5.14) .11 = (.)*Iznogl(-) :

In order to find A and 8 we need to minimize (5.13). Using the reparametriza-
tion

(5.15) A= cgtan¢g ,
we can write (5.13) as

*
singcos6| [a O b|[sindcosd

(5.16) fi(otan¢,8) = |singsin@| |0 a c||singsing| ,
cos¢ b c d]|cosé
where
a = o2 (WQ;IV'Q; W), d = XQ sy

(5.17)

- -k

-o(7'Q;'%-1"0;'9)

o
n

il e w® wl
-o(u Q7 x+v Q,7y) , ¢
The minimization problem

(5.18) min. f,(ctan¢,8) ,



again reduces to an eigenvalue problem:

a-p 0 b
(5.19) 0 a-p ¢ | =0
b ¢ d-u

The three eigenvalues of (5.19) read:

a
(5.20) {ul . (atd)£[ (a+d)?+4(b2+c2-ad)]?
' 2

Hence, the smallest eigenvalue reads:

(5.21) 0, = (a+d)-[ (a+d)2+4(b2+c?)]?

min
2

From the three equations

a-p s 0 b sindcosd 0
(5.22) 0 a-Poin € sin?cose =10) ,
b c d'”min cosd 10
we find that
AC0S8 = otandcosb = EE%E—-
(5.23) i
oAk 2.¢.% _ =0C
Asin@ = otangsing = ———
Mmin

From (5.10), (5.17), (5.21) and (5.23) follows therefore that the final
least-squares solution of the non-linear 2D Symmetric Helmert transformation
(5.1)=-(5.2) is given by:




- B -

) v Y A ol
W' = wcae+(02+lz) 1[(S aIn)z+02w] :

i ) _ _[cos sind
t=Z'SWC,-S=;\ ]

sind cos

- -~ - I
AC0SO = . - f“ <Z'Wf e Ao T
2wl 2= 1 zZI124+0(0? Wl 12-1121 12)%+40? (<2 ,w>24<Z 0" '>2)]
(5.24) D
Asing = 20%<z, W' '> k

G2 1R 12=11Z11 2+ (0% 1101 12-11Z112)2+40? (<2 o2 4<z W' '52) ]2
with the inner product

T T R A

and W' = | Y] .
-u

Note that this solution reduces to that of (4.6) if o®» ». Also note that the
smallest eigenvalue Hmin of (5.21) is not unique if

[1zI1% = [[W[I2, <Z,w> =0 and <Z,W''> =0
If this is the case the matrix of (5.16) reduces to a scaled unit matrix and
the solution for X and 6 becomes indeterminable. We shall disregard this excep-
tional case.
Furthermore if
<zw> =0 and <z,w''> =0,
then p .= o®lIwH? if o®1IWLI% < 11212 and y_. = 112112 if 112112 < o* 11wl
From (5.22) follows then that 6 is indeterminable and cosé = 0 or sind = O.
We shall also disregard this exceptional case.

Let A be a scale parameter, i.e. positive. From (5.22) follows then that

Zidvhe A
. (b%+c*)s" . d Mein

5.25 Ao = tand E
( ) a-y .o (b2+c2)é




Let us denote the scale estimators of the Helmert transformation (4.4) by iH’

of the corresponding transformation when interchanging the role of z and w by

ig, of the Symmetric Helmert transformation (5.1) by XSH and of the correspon-
ding transformation when interchanging the role of z and w by iéH' From (4.6),
(5.17) and (5.25) follows then when ¢ = 1 that:

(5, = (b2+c?)? . (b2+c2}%
a H d
(5.26) <«
212 -, 2,213 -
s (b%+c?) ) d Mmin Sl (b*+c*) g i T,
("SH ~ : TP B SR TR %
a0 (b*+c?) d Moin (b%+c?)

This shows that also for the 2D transformation:

(5.27)  Ag.A, # 1, but A 1

e
SH'ASH =

From (5.26) also follows that:

(5.28) i

Hence, we see again that in general the classical Helmert transformation syste-
matically underestimates the scale.
The two scale estimates are identical if

(5.29)  b2+c?-ad = 0

That is, when z is parallel to w or to w''.

6. Concluding remarks

In this paper we discussed a paricular class of non-linear least-squares pro-
blems for which a useful two-step procedure can be devised. Exact least-squa-
res solutions are given for the 1 and 2D Helmert transformation and their non-
linear symmetrical generalizations. For the two dimensional case a rotational-
invariant covariance structure was assumed. Solutions of the linearized versions
and teststatistics were already given in (Teunissen, 1984). Our exact non-line-
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ar least-squares solutions make the computation of approximate values, line-
arization and iteration superfluous.

Although we had to make some simplifying assumptions in the covariance struc-
ture of the observational variates, it is felt that these assumptions are suf-
ficiently general for many practical applications. When digitizing maps, the
covariance matrix of the digitized coordinates can often even be simplified

to a scaled unit matrix. The assumption of the rotational invariant covarian-

ce structure is also in many cases sufficient for geodetic networks. For instan-
ce, the Baarda-Alberda substitute matrix (see e.g. Brouwer et al., 1982 or Teu-
nissen, 1984a):

X; 5o Y 2
X d? dz-d%j d? : a parameter
X; dz—d%j d2 0 d?j: a covariance function
2 2_42
7 d*  d2-d2,
0 2_42 2
’ d<-d<. d
Y ij

is an example of a rotational-invariant covariance matrix. It describes the
precision of many geodetic networks to a sufficient degree and can therefore
be used in our formulae.

In a forthcoming contribution we will derive some local and global distribu-
tional properties of our non-linear least-squares estimators. The approach
will be based on the geometric theory of non-linear adjustment (Teunissen,
1984, 1985a,b).

For a discussion of the 3D Helmert transformation we refer to (Sansd, 1973),
(Kochle, 1982) and (Krarup, 1985) and for the 3D Helmert transformation with
its symmetrical generalization to (Teunissen, 1985)
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APPENDIX
Proof of:
(A1) 3,Pagz) = (1-Pa(z)) 3 AN (2) + [Q;I(I-PA(Z))azA(z)A'(z)Qy]*

The orthogonal projector PA(z) and least-squares inverse A (z) are given by

~1

a) Paz) = AN (@A (2)S;
(A2)

b) A(z) = N H2R (@)
where
(A3) N(z) = A (2)Q 'A(z)
From

aZ(N'l(z)N(z)) =3,l=0= azN'l(z)N(z) + N'l(z)azn(z)

follows that

(A4) 2 N1 (z) = -N"H(z2)a N(2)N" (2)

z

From

* o1
3,M(2) = 3,(K (2)Q; A (2))

follows that

(A5) 2, N(z) BzA*(z)Q;lA(z) + A*(z)o;lazA(z)
From (A2) follows that

(A6) 2,Pacz) - QZA(Z)N'l(z}A*(z)Q;l - A(z)azn'l(z)A*(z)q;l

| * -1
+ AN (2)2,A7(2)0



With (A4) and (A5) this gives:

3ZPA(Z) = BZA(Z)N'l(Z)A*(z)Q;,1 + A(z)[—N'l(z}(aZA*(z)Q;lA(z}
-1

¥

+

A (2)0, B AN )N (2)0) ! + AINH2)3,47 (2)0

[1-A2)N (2)A7(2)0; 13 AN 2)A ()0,

-+

AN (2)3 4" (2) 1103 AN (2)87 (2)205

or with (A2):

(A7) 3Paz) = (1Pagz) )2, M)A (2) + QyA'*(z)azA*(z)(I-PA(Z))*Q;I

which is identical to (Al).



