manuscripta geodaetica (1986) 11:214—225

' manuscripta
geodaetica

© Springer-Verlag 1986

Adjusting and testing with the models of the affine and similarity

transformation

Peter J. G. Teunissen

Department of Geodesy, Delft University of Technology, Thijsseweg 11, NL-2629 JA Delft, The Netherlands

Received March 3, 1986; Accepted May 30, 1986

Abstract

In this paper inversion-free formulae are derived for
the adjustment and testing of the models of the
Affine and Similarity transformation. For the Affine
transformation we assume the covariance matrices of
the plane coordinates in the two coordinate systems
to be block diagonal with equal 2x2 blocks. The co-
ordinate covariance structure for the Similarity
transformation is assumed to be rotational invariant
and thus allows the use of substitute matrices of the
type as developed by e.g. Baarda and Alberda.

It is felt that our results are general enough for
many applications, such as the transformation of
digitized maps-and the connection of geodetic networks
using rotational invariant substitute covariance
matrices. As a very special case our formulae include
the well-known results which hold true for the

classical Helmert transformationm.
I. Introduction

The aim of the present paper is to derive inversion-
free formulae which are needed for the adjustment and
testing of the models of the Affine and Similarity
transformation. By "inversion-free" we mean that the
normal equations are explicitly solved for. A well-
known example of a linear adjustment problem where
inversion-free formulae are derivable, is given by
the classical Helmert transformation (see Helmert,
1893). Our results are, however, more general since
we do not start from such stringent requirements on
the properties of the céordinate covariance matrices
used, as is the case with the Helmert transformation.

For the Affine transformation we assume the co—

ordinate covariance structure to be such that the
resulting covariance matrices of the plane coordinates
in the two coordinate systems are block diagonal with
equal 2 x 2 blocks. Our formulae for the least-
squares adjustment of the Affine transformation and
hypothesis testing seem to be particularly applicable
to the problem of transforming digitized maps.

For the Similarity transformation we assume a more
complicated coordinate covariance structure, namely
one that is rotational invariant. Our results there-
fore allow the use of criterion or substitute

matrices of the type as developed by e.g. Baarda and
Alberda.

In order to make the present'paper selfcontained we
start in the next section with a brief review of the
theory of adjustment, testing and reliability. In this
we take geometric stand point, thus allowing to. derive
the various results in a compaét and intuitively
easily understandable way. In section III we discuss
the model of the Affine transformation. With the
application of transforming digitized maps in mind,

we have included here some results assuming that the
points are distributed over a grid of rectangles. '
Section IV deals with the model of the Similarity
transformation. The final section V contains some
concluding remarks in which we also briefly touch
upon the nature of the non-linearity present in the
non-linear functional models of the Affine and

Similarity transformation.

II. Some Adjustment theory
II.1. Linear Least—-Squares Adjustment (LLSA)

Let us start by introducing the linear mathematical

model‘M]:



)] M E{y}= ax , Cov.{y}=02Qy,
mx! mxn nxl mxin

where y is the m dimensional vector of observational

variates; E{.} stands for the mathematical expectation

operator; A is the design matrix of order mzn; x is
the n-dimensional vector of unknown parameters; Cov.{y}
is the covariance matrix of y and 02 is the variance
factor of unit weight, which we assume to be known.

The LLS-solution of model Ml reads

PN t
[y] A Qy PAy
2)

~ t-1,.,-1 t -1 -

lxl (A Qy A) A Qy y = A PAy s

1

A(Atq;]A)_ —1y call

where A may be any arbitrary inverse of A. We use the
lower index "1" in (2) to indicate that the solution

refers to model Ml'
Note that since PA'PA =
a projector. In fact, with the metric of the

PA (idem potence) holds, PA is

A
as an orthogonal projector, projecting onto the range

observation space given by Q;l, one can interpret P

space of A, i.e. R(A), and élong the orthogonal
complement of R(A), i.e. R(A)l (see figure 1).

rR(A)?:

Figure 1 R(A)

For the orthogonal projector projecting onto R(A)l
. . Lo, L_ -
we will use the notation PA’ i.e. PA =1 PA.
Let us now relax model M, by introducing more ex- _
planatory variables Vb' We will call this relaxed

model, model MZ:

(3 Mz By} = ( ACy;)[x
. Vb

mx! mxn mxb Kn+b)x1 mxm

~., Cov.{yl}= GZQy.

The LLS-solution for y of this model is

4) 5y = P(AéCB)y'

Since the subspace R(AECb) is identical to the direct
sum of the two mutually orthogonal subspaces R(PébA)
and R(G), we have R(AIG) = R(PébA) e R(C,). That is,
the two subspaces R(PébA) and R(Cb) are each others
orthogonal complement in R(A%Cb) (see figure 2).
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Instead of (4) we can therefore write

(5) ?2 = (PPL A + Pcb) y.

%

In order to find the LLS-solution for the parameters,

note that we can write the consistent set of equations

¥, = Ax+CbVb
1
as (P L +P )y = P, Ax+(P, Ax+C. V. ),
Pg,A7C, 0, %" P MG T

which due to the orthogonality can be split into
L .

= Ax =P, Ax+C V. .

PPJ. Y P Cb and P be Cb Cb b

Hence, the LLS-solution of model Mz can be written as

§2=(PP1A+P )y,
ot %

@t o P +

2 G %

™ G Po, 07 AR = G - %))

(p

(6) 1= L,y = ANy,
P- A
%

where (.)  denotes the least-squares inverse of the
corresponding matrix. For a definition of the least-
squares inverse and a further geometric elaboration of
the linear inverse mapping problem, see (Teunissen,
1984a or 1985b). In the sequel all inverses will be
least-squares inverses where the appropriate me;rié
will be clear from the context.

Note that by switching the r8le of the two subspaces
R(A) and R(Cb) in the above orthogonalization
procedure an alternative representation of the LLS~

solution can be found.

II.2. Testing Hypotheses

The results of estimation depend on the assumptions
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underlying the applied mathematical model, e.g. Ml' Mis
specification in, for instance, the covariance matrix
= Ax will in-

validate the results of estimation and thus also any

02Qy or in the functional model E{y}

conclusion based on them. It is therefore of
importance to have a way to verify the validity of the
assumed working hypothesis M], which we call the null
hypothesis.

In order to trace possible misspecifications in the
mathematical model we can try to test the null
hypothesis against one, or possibly more, altermative
hypotheses. For this we need a decision rule that,
based on the observation vector which we from now on
shall assume to be a sample vector of a continuous

m dimensional random vector having a multivariate
normal distribution with mean E{y} and covariance
matrix cZQy, decides whether to accept or reject the
assumptions underlying the mathematical model. In
principle it is possible to find a set-up which aims
at finding misspecifications in all the assumed
distributional properties of the random vector y. In
the following we will restrict ourselves, however, to
the case where only misspecifications in the mean E{y}
are considered.

We know that the null hypothesis M1 is violated if
E{y} ¢ R(A). It seems therefore reasonable to oppose
the null hypothesis to a more relaxed alternative
hypothesis, e.g. MZ' In order to have a way to

discriminate between the possible validity of M or

1
M2, we first recall the geometric interpretation of

the method of least-squares (see figure 3).

Figure 3.

From this geometric interpretation follows that the
properties of the triangle spanned by the two vectors
y - ?1 and y - ?2 seem to be decisive for the
acceptance or rejection of M1 and MZ' For instance,
it seems reasonable to consider Ml valid if the
observation point y is close enough to the subspace
R(A). Hence,if ||.]]%= ()¢

squared with respect to the metrlc Qy , one can

_1( ) denotes the norm

consider M] valid if lly—y || is small enough. On

the other hand a misspecification in M1 as formulated

by M2 can considered to be present if §, is too far

apart from ?]. Hence, one can consider M} invalidated
by M2 if ||§1—§2||2 is too large.

In order to obtain an objective and workable decision
rule on the basis of which one can decide to accept
or reject M, we should specify what is meant by
"small enough” and "too large". This is possible in a
statistical meaningful way once we know the
distributional properties of the above mentioned two
indicators.

It is well known (see e.g. Rao, 1973) that under M]:

|2~ szz(m,c_zxtAtQ;le) and
) , ]
119,117 ~ o @, 0 2"a") a0

2
Frcm this and the fact that: ]Iy—ylll has a x -
2
d15tr1but1on independent of ||y]|| follows that
under Ml'

o |2 2_ 1o 2. 2.2
@ ly-5, 117 = [Iy117 - 115,117 ~ o™x"@-n,0).

In a similar way we find that under MX:
~ 112 2 ~ 112 2.2
@ ly=5,117 =liyl]” = 115,117 ~ o°x" @n-b,0).

And since Ilyl—?2|l has a xz—dlstrlbutlon independent
of ||y—y2|| it also follows with (8) and (9) that
under Ml'

10) 119,-9,11 = 1135, 11%11y=5, 11>+ o’ o).
Note that if R(Cb) is chosen to be complementary to
R(A), b equals m-n, ?2 reduces to y and the distance
of (10) reduces to that of (8). Hence, the decision
rule which makes use of ||y—§l||2 can be considered
an (m-n) dimensional overall model test. Also note
that instead of (10), one can make use of tanza,
sinza or coszﬁ (see figure 3). However, since we
assume the variance factor of unit weight 02 to be
known a priori, we will restrict ourselves to the
simpler test statistics of (8) and (10).

With (8) the decision rule to reject the null

hypothesis M] becomes :

- 112
155,11
M, invalid if T = ——— =
1 mn 2
o (m-n)
lepl12 X @mn,0)g
an| = > wen
¢° (m-n) mn




where L, is a chosen level of significance of the
(m-n) dimensional overall model test. If this test
comes to reject M, one can try to trace the mis-
specification in M] by testing M] against an
alternative hypothesis, sgyAMz. For this decision rule
we use the distance squared of (10). The decision

rule reads then:

if T

Mllnvalldated by_Mz, =

) Hrpicbynz > xzaa,c)cxti

: uzb _ czb b

a 2
(]2) ”yl_Y2”

In many practical applications one dimensional tests
(b=1) are used, e.g. for single blunder detection.
Since R(Cb) is thern a one‘dimensional subspace, i.e.
R(Cl)’ the test statistic T, of (12) reduces to a
simple form. To see this, note that §]—§2 lies in the

- subspace R(AECI) énd is orthogonal to R(A). Hence,
] 6 o —pl
(13) 9,79, aPACL for some a € R.

Furthermore, since y—?z is orthogonal to the subspace
' R(A:C ) in which PACI lies, and PACI is orthogonal
to the subspace R(A) in which y1 lies, we also have

" - L 1 -
(14) 'y ¥, L PAC1 and P,C 1 ¥,-

Hence, it follows from (13), (14) and ?l - ?2 =
Cy) + G+ (-9,) that
L o _a
[lg,9,017 = AT
172 . B
iy l12
(15) N 2

. <P C ,y> - <CI’PAy>

1 2 2
e, 1% [1eye, ]

where <ese> = (. Qy (. ) denotes the innerproduct with
respect to the metric Qy . From (15) and (12) follows

then that in. the one dlmen51onal case

M] invalidated by M2 (b=1) if

(16)

' ,y

le,1 =1 ‘A|>/—zz——
| leye, | o

II.3. Reliability

When one considers the problem of testing the null

‘as
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hypothesis against one or more alternative
hypotheses, it is of interest to know how well

possible misspecifications in M, as specified by ¥,

are checked by the applied test;. This concerns the
concept of reliability. Let us first consider the one
dimensional tests. We know that under Ml the quadratie
form ||P y|| has a central xz—distribution with

b=1 degreés]of freedom, i.e. azx (1,0). Under M (b=1)

‘however, this quadratic form has a non-central X -

distribution, namely ozxz(l,ll), with the non~
centrality parameter

an A =0 2 |y 9, |2

Al

By fixing the level.of significance &y and power B] of
the one dimensional test, we can compute the non- :

centrality parameter A,. We write this symbolically as

1

(18) i, = A(u],B],l)-

From (17) and (18) follows then that we can compute

1

- the absolute value of the scalar V, from

-2 2
A(a]»Bl’I) =0 IIPPXC]Cbell

(19)

Thus a misspecification of |V1| in M, in the direction

1
of vector Cl will dislocate the quadratic form

G_ZIIPPLC]YIIZ.bY the amount of A.. And the power

associated with this dislocation ;s ﬁl. Hence, small
values of ]V1| are more favourable than large values.
In order to make a connection between the one
dimensional test (16) and the overall model test (11)
peSSible, Baarda proposed (see e.g. Baarda, 1968;
Brouwer et al. 1982 or Teunissen, 1984b) to choose

the non-centrality parameter Am—n and power Bm—n of
the overall model test equal to Al and Bl
respectively, i.e.

B where

A = Al’ Bm—n

[T
]

Ae B

m-n
m-n m-n’ mn’ )s

Al = A(u],sl,l).

From Al = l(a

implicitly the appropriate level of significance

,Bl,m n) one can then compute

um n for the overall model test.
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Baarda's procedure of comparing the statistical para-
.meters q, § and A has the favourable consequence that
the same value (19) also follows for the overall
model test if M, is misspecified in the direction C,-
This follows from the fact that ||P c]vlll2

IIPP V ]l As to the b dimensional tests, we can
now start from the kgown values Am—n and Bm—u' By

setting

@n

T A(ab’sb’b)’ Apn = A B

2T s
we can compute the appropriate level of significance
o for the b dimensional test. And analogously to
(19) we can compute from

2 1 t-1 1 2
(22) ”PPicbcbe” = (2,6, %) Q (B C,7,) = o“A,.
the ellipsoidal region on which misspecifications of
M, must lie in order to dislocate the quadratic form
0-2||Ppicby||2 by the amount of Ab' We can bring (22)
into a form which more closely resembles (19), if we

make use of the eigenvalues My and normalized eigen-—

vectors d¥, k=1,...,b of the matrix

(chb)to; (PyC,)+

(22") 1), = ody

As with the one dimensional test also here the choice
of the statistical parameters has been such that the
same ellipsoidal region as described hy (22) or (22')
follows for the overall model test if M is mis-
specified by the subspace R(Cb) This follows from .

the fact that ||pt AR 'llPPACbeVbII
the choice of the statistical parameters is such that

In fact

even the same value (19) follows for the b dimensional
test if ¥, is misspecified in the direction C]€R(Cb).
This is a consequence of the fact that]]PP Cp C ]!iz=
||PPAC101V]” if ClER(C).

Now that we have discussed most of the important
aspects of adjustment and testing we can start to
- apply the above derived results to the models of the

Affine and Similarity transformatiom.

IIY. The model of the Affine transformation
III.1. Adjustment

The functional model of the 2-dimensiénal Affine

x; a b ty .
(23) (yi]} - slo [ ] + movgy) + [ty], i1, 0m,

where (xi,yi) and (ui,vi) are the observed cartesian
coordinates of point i in respectively the first and
second coordinate system; n = number of points
involved and a, b, c, d, t and ty are the six
transformation parameters of the Affinetransformation.
We can write (23) in a more convenient form by making
use of the Kronecker product m, for which the

following four properties hold (see e.g. Rao, 1973):

(AnB)t = AtnBt; (ABB) = A mB usinganyinverse

(24) {AA,mBB,

(A+B)®C =

= (A;mB))(A,mB,);
AmC + BmC.

Take therefore the definitions

)t;z=(xtyt)t

(25) u=(..ui..)t;v=(..vi..)t,w-(utvt)t en=(1...,U

x=(..xi..)t;y=(..yi..

ab

t, t
d]; T—(abtxcdty) H t—(txty)

A—(uve ); B—[
and write (23) as

' = =
(23') E{z} (IZIE{A})T (BnIn)E{w} + (Iznen)t.
We assume that the covariance matrices of the
observed coordinates are given by

(26) Cov.{z} = anIn, Cov.{w}

= anIn’
and that there is no correlation between coordinates
in different coordinate systems. Since model (23') is
non-linear we shall need to linearize it in order to
apply linear estimation technigues. Linearization of
(23') gives then:

a) E{Ar}%

1E{Az—(B°uIn)Aw} = (IznAo)AT

27 Ml:
) E) Cov.{Ar} =

(@,+3°Q 871, .

where we have made use of the properties in (24) of
the Kronecker product. In what follows we shall make
a frequent use of these four properties. The upper
index "o" in (27) indicates that approximate values
are taken for the entries of the corresponding
matrices.

By partitioning the matrix A% as A° = (uovoien) and
using the orthogonalization technique of section II

we find from (27) that



(28) (a3 46 AE A" = X _ La@® v ar.
’ Ime ~2
2" "n
With Pt -1 B‘.L h . . s g
it Ime, = o®Pe > where the tilde sign indicates
that the corresponding projector is defined with
respect to the ordinary cartesian metric, and the

following definition of centered coordinates:
(29) ° = ?:.u°, V0 = ?: v°,
n N n .
equation -(28) becomes
= (1,80° ¥ ar =

ot-o -ot—o* ~ot
u -u v ||uw

= (IZI o . {)ar.
: -ot=0 =—ot-o]||-ot
v .vJlv

‘Hence, with Ar = (Apt Aqt)t we have

-ot ,~0-ot ‘—o—ot, ..
v (vu =uv )

sa = -ot ~o~ot = o=—ot,~0 gp
(30y v {vu =u v )u
_=ot ,~o-ot =--e.-ot
AR = E (vu =u v )

“ot —o-ot - -ot,—o 2P
u (vu ~u v )v

The-solution for AE and Ad follows from (30) by re-
placing p by q, a by c and b by d. Note the
remarkable resﬁlt that these least—squares estimates
are independent of the chosen coordinate covariance
matrices in (26).

'The LLS-solution for. the translational increments
follows from (27) as

At = (L,me ) Thr-(Im(u®v®)) (43 a6 42 aD)*]

1t

- (Iz;f.(e;en‘)' en);Arf(xzn(u°v°))(Aa sbaead)§.

Hence,

1 T o= . Opa_ O,
(307)) At ap, u _Ad-v Ab

Tﬁe solution for AEy follows from (39') by replacing
p by q, aby c and b by d. The subindex "¢" in (30")
indicates the centre 6f the point set, i.e.

Axc = (ezen)_]eﬁAx.

In order to derive the LLS-solution of the coordinate
increments in the two coordin#te systems, we apply
the following well-known formula (see e.g. Teunissen,
1985b) :

(31)  Aw = Aw + Cov.{Aw,Ar} Cov.{Ar} ) (Ar-ar).
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With

Cov.{Aw,Ar} = -QWB°tn1n, £r =P Ar,

o
IZEA

and (27.b) it follows then that
- ot [ ot. -1 _1
(32) Aw = Aw+(QwB nIn)KQ;+B QB )-In] PIZIAoAr.

Since Pizle = 12n$i° we can write (32) finally as

1

(33) | Mo =t (1, 0)[Q 7% (Q,*B°Q B 'aI_lar

In a similar way one can derive that

(33782 = 8z~ (1a¥}o)00, (Q+8%Q 8% 'ar lar .

The computation of the estimates in (33) and (33') .

becomes straightforward once we have an explicit

&~

' h

2x2 matrix (QZ+B°QwB°t) is namely a matter of routine.
o,

To find an explicit expression for P 0> mote that

n
expression for the projector P The inversion of the

1 _ - _ I T
¥A° = In ¥A° In %en g(uovo).
Hence, with"
%’ . _ (;oaot_l-lo_‘-rot) (‘—,oaot,_‘:o;ot)t
(uvo) -ot ,~0—0ot —o-ot, =0 ’
v (vu -uv Ju

we find that

t -o—~ot —o-ot, ,~o-ot -o~ot,t
ee. (vu =uv JYvu —uv )

1
(3% ¥A° = In - -ot —o-ot -o-ot,-0
n v (vu -uv )u

IIT.2, Testing and Reliability

In this section we will derive the overall model, the
b dimensional- and the one dimensional test with the
corresponding realibility measures, in terms of the

. L
easily computable projector Pro-

. For the overall model test (l11) we need to compute

in the notation of section II:
1 2 t -1 t-1,.-1,t~1
= A(A A A .
Hegyll® = yoo "ata™o '8 "aq, 'y

With (27) the corresponding form for the Affine

transformation reads then
L 2 t o ot =1 ant
leryll 1= (Ar-02) [(Q+B°QB" )l T (r-af) .

Hence, with Ar-A% = (Izn¥Z°)Ar the overall model test

becomes
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' M, invalid if
2
x (2n-6,0)a
>
M - 6 2 - 6

(35) Araqmox )nP o)Ar 216

For the b dimensional test (12) we need to compute in

the notation of section II:

Hepie v112
Fa

(2,0 "G ' T (eye) " e 17 e By

(36)

Now let us assume that one point, say point i, has
been misspecified in the first coordinate system.
To test this assumption we have to take

t

37n Ct:= Izncg, with C; = (0...1 0...) .

b I .th
B NN

With this choice we have
Lo sto-l o _ot.- v

(PACb) Qy y: [(Qz+B QWB ) c P o]Ar

(38) 1

[(rjcb)td;(Picb)]" i=(c; Phoc) ' (@, +8% B%%).

From (12), (36) and (38) follows then that

Ml is invalidated by a misspecification in point

i of the first coordinate system if

t txL |t o ot,. -1 t ol
Ar" (T,mc; ?Ao) (Q,*8%,B°") " (T me; ¥,0)ar

(39) A >
C A° C
2(2,0
X E ] uz
2

In a similar way one can find the test which tests
whether M] is invalidated by a misspecification in
point i of the second coordinate system. In this case
one should take Cb :=B nct. It will be clear, however,
that then exactly the same result (39) follows. The
with test (39) corresponding reliability ellipsoid
follows readily form (22) and (38) as

; Y
(Qz+B°QvB°t) lV2 -2 .

t %l

t
(40) v, - .
i “A%%

An alternative way to represent this ellipsoid is

d - ’

w,), =
2k ki/ .t o
dk(Qz+B QwB dkc PAoc

(40")
with dk (cos o, sin ak)

For the one dimensional test (16) we need to

compute in the notation of section II:

U |
Cl) Qy y

T tam1 ol :
(PAC]) Qy (PACI)

<C PAy>
HPA,II

Now let us assume that one point, say point i, has

(41)

been misspecified in the first coordinate system in

a particular direction. That is,we choose

(42) Ct:= dtlc;, with dt = (cosa sina)

1
We then find that

(P:C])tQ;ly:= ra®(q,+s°q 3°%) luct ¥rolar

1 t -1,.1
(ByC) 7, (B, C,

Hence, with (16) and (41) the one dimensional test

(43) n
L at o, ot,-1, tV
Yl:=d (Qz+B ng ) d.ci P 0%

becomes

M1 is invalidated by a misspecificationm in
point i of the first coordinate system in

the direction dt = (cosa sina)

(44) -1
I(d (Q,+B QwB ) uc O)Ar

2
VX (l ;O)al

Jat (q,+8°q 3°%) “la ct oCs

The with this test corresponding reliability measure

reads

@s) | |v,| =M/ a
R PATCIRS Qw3°57‘dc YoCs

Compare this with (40'). The scalar c. ¥A° ioccuring in
(40"), (44) and (45) is readily computed from (34) as

=0—0-0ot—-0 0, 2- ot o

2 —ot—0 1“ 3 +(v Y%

(u.) v v 2u
ST N |
46) | ¥ oc; =15

—~ot —0— Ot -O-Ot
v (vu -u )u

I11.3. A special case

In some applications the distribution of points is
such that the results we obtained in the preceding
sections can still be simplified a bit further. For
instance, when digitizing maps the grid of squares or
rectangles on the map is used to calibrate the
digitizer and/or to check certain affine properties
of the map involved (see e.g. Bisselink, 1975). Let
us thefefore assume that the points in the second

coordinate system are distributed over a grid of



rectangles with sides Sy and s, 38 shown in figure 4.

(I-1)k+1 k1l

8
gs
v
VT k+1

u

Figure 4 12z T k

We assume to have n=kl number of points and that the
numbering is as shown in figure 4. Since the
orthogonal projector %:0 of (34) occurs in all -
important formulae of the preceding sectioms, let us
investigate how the expression for this projector
simplifies when assuming the "grid of rectangles"-
distributien. ‘

From figure 4 it is easily verified that

u=e1nuﬁ u£=u1+(i-1)su; i=1,...k; e{=(l,;..,1)
(47)

v=v'neé v£=v1+(i—l)sv; i=1,...1; e£=(1,...,])

Hence,

vl - =N A - -
u=P -u=e nP u'=e.mu'; v=P_ v=P v'me =v'nek;
1 e 1 e, & k |

uu =e etnﬁ'ﬁ’t- Wi=v'v tae eF
—*1%1 3 “k%k

(48)

From this follows then that

Cutam1ntae sA 1) vk v = sk iy,
. 12 "u 12%v
(49) ’
—.t—
: uv =20,
where we have made use of the fact that
B 1 n 2 1
(50) X i = =n(n+l) and X -i” = -n(n+1) (2n+l).
i=1 2 i=1 6

With (48), (49) and (50) we can now simplify the

. 1
expression for,?Ao to

%ié = IlaIk?§61n%ek-¥e1n§ao,—?;o,n%

where: =01 =k
orgot -
?—o'= 1§ u 2u s uoy=§éku0v
sk -1)

er ?

| [ S

o ort
Brorm v, 01 vor= (.. e Gi-hasn) ).
Sv](l —l)

l........1........1

- .
=(.sls (& i(k+1))],nf

(5D

N
Note that the projector PZO is independent of the
chosen 31de lengths S, and s, In order to compute

the scalar c. PAQC' of (46), we assume that point i
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has been identified as the point (r,s) in figure 4.
Then

(52) ¢, = c.mc, with 1 = (s=-1)p+r.
With (51) this gives
tyr
€i7a0% =
t t Y y n y _
csucr(IlnIk ¥e1nPek_Pe1-$G°'_P;°'BPek)csncr =
1 - E]f' + e )—-—(c Foore),
or
L -5 @7 (-5 Ger1)f
(53)| e,P,,c. = 1 - ——-(l+ 121 + ]
1 A0 2 2
a°-n &™-1)

" IV. The model of the Similarity transformation

Iv.1. Adjustment

The non-linear functional model of the 2-dimensional

Similarity transformation reads

(54) E{z} = E{S}T = (BnIn)E{w}+(Iznen)t.

uveno

v-u
o] en

and B=|?2 b .
-h a

We assume the coordinate covariance matrices to be

t
where S =[ ], T=¢(ab T, ty)

rotational invariant, i.e.

(55) Cov.{z} = Ianz and Cov.{w} = Ianw.

Note that the Q-matrices of the preceding section IIL
are of order 2, whereas in this section they are of
order n.

Linearization of (54) gives with (55)

call

a) E{ar}°2 E{Az—(BonIn)Aw} = 5T

.IZEQr = IZR(Qz+A°2Qw)’

with AoZ = a02 + boZ}

(56) M : b) Cov.{Ar}

If we partition § as S = (AEIznen), with A = [: _v],

we find with the orthogonalization technique of
section II from (56) that

1 o,~

I me A7) br
2"

0z a5)F = (@

(57)

( (I__ZnP;n)AP) “Ar,
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With the following definition of centred coordinates:

equation (57) becomes
-0 -0y~
o u v
(a3 4b) = AT =
-0 -o
v -u

-0
-ot 4-0 -ot _-l-o0,~1
= (u Qru +v Qr v ) [ 3°

=0

_Go] (IZIQ;I)Ar.

Hence,

—ot -1, ,—ot -1
uQ Bp+vi Q. 4q

~ <ot —lI-o0 -ot_-1-0
v

u Qr u +v Qr

(58)
-ot -1 -ot -1

~ v Q. Ap-u Q. iq

" —ot -l-o0 -ot -1-0
+
Qr u +v Qr v

. -0

Note that the barred coordinates, such as u , are
. . . -1

centred coordinates using the metric Qr . The LLS-

solution for the translational increments follows

from (56) as

- -~ ,t - o ~ t
- T - a
(Atx Aty) azuen) Ar-A (A& Ab) 7]

= azn(e;Q;len)_lezq;l)FAr-Ao(A5 AB)t].

Hence,

o

At = Ap - u A8 - v°ab
x c c c
(59)

At = aq - voa + uab
y c c c

In order to derive the LLS-solution of the coordinate
increments in the two coordinate systems we can
follow the same procedure as used in section III.

This gives then

AG = Aw + (BOt-%Q;l)P;O Ar

60y -1, 4
AZ = Az - (IanzQr )PSo Ar

The projector ﬁ:o in (60) reads as

1 L
Py = IZEPe _PRO'
S n
-ot -l-o -ot_-l-o0 '1_
(61)| where PEO = (u QT u +v Qr v )
o-ot -ot

-o-ot —o-ot, -1 -

(uou v v )Qr (u'v
-o-ot =-o-ot,t -1 -o—-ot -
(uov -vou ) Qr (uu +v

% )Q;]

o-ot, -1
voQ,

IV.2. Testing and Reliability

With (11) and (56) the overall model test becomes

Ml invalid if

t -1, L 2
(62)| Ar (12-Qr )PSoAI ) X (2n-&,0)32n_a

2n-4 2n-4

For the b=2 dimensional test (12) we shall consider
two cases. First we derive the test which tests
whether M. is invalidated by an Affine transformatiom.

I
The appropriate choice for Cy, is then

o ©
v u

(63) Cb:-[-

o 0O
uv]

Since
t-1,1 -1
(PG, (B,C)] :=
: GO[O;IGO+;0tO;l;O

% —ot,-l-o-ot_.-l-o_ -—ot
u v =(u

Qr uv Qr

I
Q;l;o)Z 2

(64)

1 t. -1 .t i t =1
((PyC) "0 'y) " ((ByC) Q) 2=

.= artp trmo e ot (e )P ar
; g0 (1,80 ) G0, (1,0 DF 0T,
it follows with,

-1 . -1, .
(1,mQ Py opf yc, = (I,m0.) Pg
2%e 7" b

t -1 t -1
i (1,mPg ) (1,mQ, )C,Cy (1,8Q ) (I,mFe )

-ot _~l-o -ot —-1-0
u Qr u + v Qr v
and
1 1
P= P.o = Pz P7o, that
Cb S Cb A
1 t.~1 t 1 t -1
((p,C) 0y y) () oy y):
(65)

- =1-0 =ot ~1- t -1
= (uotor u°+v° Qr vo)At (IZ-Qr )P%OPCbP%oAr.

Hence, with (12), (64), (65) and P -(E-In)PRO(E-In)’
1 0

where E =
0 -1

]. the test becomes



M] is invalidated by an Affine transformationif

(aotQ;lao+;0tQ;l;o) 2

4 (GOtQ; 1 l—lo\_IOt Q; l‘-,o_ (;ot

—T-0,2,
Q. v))
(66) ¥
ar® (1m0, Y PE, (BRI )Pzo (BRI IPFoAT

2
2
X (230)(12

2

>

The with this test corresponding reliability
ellipsoid follows from (22') and (64) as

, A (uOtQ 1= °+v°tQ v )

- =] =0- - s
(67) 2 k de ot luo othlvo_(uothlv )2

with d

(cosuk slnak)

In order to derive the b=2 dimensional test which

tests whether M, is invalidated by a misspecification

1
in pointi of the first coordinate system, we take

t, t
(68) Cpi= Tpme; -

Then

(P:Cb)tq;]y:= (Iznzzq;l)PioAr

[(e,c,) Qy (®yC,)1:= (IzaEEQ;])Pio(Iani)

Since the matrixA
1.metq PR T
27 i TA9Ti

(70) (1,m55Q, I3, (Lme,) =

is diagonal, it follows that the with (68)
corresponding b dimensional test can readily be
computed from the one dimensional test corresponding’

with the choice

71 Cf:= dt-cz, with dt=(cosa sina) .

From (71) follows that

) Qy y:= d BC, Q P— oY

1 o
Cl) Qy(PACI)

Hence, with (16) we have

(72) -t ~1_1
=d dnciQr onc
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M, is invalidated by a misspecification in

point i of the first coordinate system in the
direction dt=(cosu.sina) if

(3) atgat

BC. Q Ar
|c?=¢£—£1—|>VX (1,0,

The with this test corresponding reliability measure

reads
Al
(74) !V]| = :-r—_-i-T— 9
Q PAoc.
where
e -1 (c?Q_Ie )
Q = c,Q c.
ba A° i itr i [ ]
. e Qr e

115)

—-ot —1 2 -ot ~1 2

} (', ci) + (v'Q, ci)
;OtQ:l‘-B‘_ ;otQ;I;O

The with (68) corresponding b=2 dimensional test
statistic follows now simply from squaring and adding
the test statistic of (73) for two mutually orthogonal

directions.

V. Concluding Remarks

In this paper we have derived almost inversion-free
formulae which are needed when adjusting and testing
the Affine and Similarity transformation. The only two
inversions needed avre in case of the Affine
transformation the inversion of the 2x2 matrix
(Qz+B°QwB°t) and in case of the Similarity
transformation the inversion of the nxn matrix
(szAOZQw). Although we had to make some simplifying
assumptions in the covariance structure of the
observational variates, it is felt that these
assumptions are sufficiently general for many practical
applications. When digitizing maps, the covariance
matrix of the digitized coordinates can often even be
simplified to a scaled unit matrix.

The most important application of the Similarity
transformation seems. to be the connection of geodeticv
networks, although also here an application to the
problem of transforming digitized maps is possible if
one starts from the working hypothesis that no affine
déformations are present. This hypothesis can then be
tested with (66).

The assumption of the rotational invariant covariance

structure’is in many cases sufficient for geodetic



224

networks. For instance, the Baarda—-Alberda substitute
matrix (see e.g. Brouwer et al., 1982; or Teunissen,
1984b), which is an example of a rotational invariant
covariance matrix, describes the precision of many
geodetic networks to a sufficient degree and can Phere—
fore be used in our formulae.
Our use of regular rotational invariant covariance
matrices may seem to be contradictory at first sight
with the fact that coordinates, as functions of geode-
tic observables, can only be operationally defined
through the introduction of a coordinate reference
system for which usually a priori non-stochastic values
are adopted. Indeed, we know that the coordinate cova-
riance matrices of free networks with an ordinary S-base
definition (i.e. minimum constraints) are singular.
Therefore it may seem that through our use of regular
coordinates covariance matrices we identify z and w as
absolute coordinates. This is however not true as the
following remarks exemplify:
As said, the coordinate covariance matrices belonging
to free networks with an ordinary S-base definition
are singular. So, if we consider a part of a network
in which the S-base lies then the corresponding
covariance matrix will turn out to be singular. How-
ever, if the S~base does not lie in the part of the
network considered, then the corresponding covariance
matrix will be regular. Hence, if one connects over-—
lapping networks one can have the situation of regular
covariance matrices if the S-bases lie in the non-
overlapping parts.
Secondly we note that it is not strictly necessary to
follow the customary practise of introduéing S-bases
in a non-stochastic way. Stochastic S-bases (i.e.
weighted minimum constraints) are allowed as long as
one keeps good track of the estimable quantities in
future manipulations. That is, no harm is done in using
stochastic S-bases as long as only estimable functions
are used in subsequent computations. This now is pre—
cisely the case in our connection problem. By using
the similarity transformation as model one is-actually
only comparing the shape of the two overlapping net-
. works. Therefore only estimable functions as angles
and distance-ratios contribute to the adjustment.
Finally we note that one need not even has to start
from the assumption that stochastic S-bases were intro-
duced. For the connection problem one is namely allowed
to regularize singular coordinate covariance matrices
as was shown in (Teunissen, 1985b).
The conclusion must therefore be that it is permissable
to use regular (rotational invariant) covariance matri-

ces for the connection problem without identifying z
and w as absolute coordinates.

In the previous sections we already mentioned that
the functional models of the Affine and Similarity
transformation are non-linear and therefore had to
be linearized in order to apply linear estimation
techniques. For the linearization approximate values
are needed. Usually the approximate values are close
enough to the least-squares solution so that no
iteration is needed. However, if this is not the
case, one should iterate the solution and this can
be done by applying the so-called Gauss' method of
iteration (see e.g. Teunissen, 1984c). One starts
with an initial guess X, about the unknown parameter
vector x and proceeds to generate a sequence X X 3Ky
which converges to the least-squares solution %. Given
X the updated vector Xy is computed as _
xk+1=xk+Aik, where Aik is the linear least-squares
estimate of the parameter vector increment computed
with our formulae using X, as approximate value. As
shown in (Teunissen, 1985b) the convergence behaviour
of Gauss' method is mainly gouverned by the extrinsic
curvature kN of the non-linear manifold Hescribed by
the functional model used. It can furthermore be
shown that the two non-zero extrimsic curvatures of
the manifold described by the non-linear Similarity

transformation read

N'g, N i 2
ot T

z z
where the vector N has the first 2n elements of a
unit vector normal to the manifold as its elements
and the barred coordinates are centred using the
metric Q;]. Equation (76) shows that fortunately the
manifold is only moderately curved. Hence, covergence
will be fast in general. For more details on the
geometric theory of non-linear adjustment as
developed by the present author, we refer to
(Teunissen, 1984c, 1985a and b).
Note that if the points in the second coordinate
system are taken to be fixed, i.e. Qw=0’ both the
model of the Affine and Similarity transformation
become linear. In this case no linearization or
iteration is needed and our results can be simplified
by excluding the incremental sign "A" in the
formulae derived. If Qw=0, the linearity of the model
of the Similarity transformation also follows from
(76) . With a=0 all extrinsic curvatures are namely
zero.
In the very special case that Q=1 and Qw=0 our
model of the Similarity transformation reduces to the
well-known model of the Helmert transformation (see

Helmert, 1893). And then of course our results



simplify to the well-known results which hold true
for the Helmert tramsformationm.

Finally we remark that if the variance factor of
unit weight is not known a priori ome has recourse
to the test statistics tanza; sinza or cosza (see
figure 3). It is easily verified that in the

notation of section II we have

EEAS l5,-5., 112
a7 tanza -1727 s 8 2& =172
Iy -9,IF li y-5, 112
y 9,1 [ v-%,
- N2
2. ”y—y2”
COos ( = ———2 .
I y-5, I

From this follows then that under M]:

b mn-b

(78) tangn F(b,m-n,0); sin’g » B2, La P

m-n-b

cosza'\aB( %"’,;,0) R
where B(f],fz,O) is the so-called central beta-
distribution with degrees of freedom £, and f2

(see e.g. Rao, 1973).
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