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Introduction by P. Teunissen

NON-LINEAR ADJUSTMENT, AN INTRODUCTORY DISCUSSION
AND SOME NEW RESULTS

Let us first give a brief review of the geometry of linear least-squares
adjustment. The whole process of adjustment can conveniently be divided ino
a) an adjustment computational part and

b) a quality control or diagnostic part.

The adjustment computational part can be divided into

l) the actual adjustment and

2) the actual inverse mapping. ‘

If we assume that our mathematical model consists of a linear manifold n
embedded in an ambient Euclidean observation space M, with n={y,}+u,
y:€ M and U a subspace of IM, then the solution to the actual adjustment
problem is given by

§=y1+Py 4L (y—y) forsome y,€R, m

where P, ,1 stands for the projector projecting onto ¥  and along u
and y.c m stands for the given sample vector. Note that § is the unique
solution o the problem of finding that point on M which has least-distance to
ys€ M and that- § is normally distirbuted if y, is.

If we now represent the subspace U by a linear map A: n— M, ie.
U = AR, then the solution to the actual inverse mapping problem reads

% =B (§-yy) for some y,c 7i; and some B: m—n

9}
such that ABA = A

A

Note that % is nor unique if A™'(0)=% {0} and that &% is normally
distributed if y, is. As to the diagnostic part, one is usually interested in the
effects of changes in either the metric of M, the distribution assumed or the
linear manifold 71. If we focus on the latter effects, those are usually tested
on their significance through the use of statistical tests. For instance, under the
nulhypothesis we have:
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"5’—}’5"2

~X? (dim m — dim u) ,
o? (dim m — dim n)

which leads to X* —or F— tests, and
<pu*, u Si Ys—)’1>
o |[Pys y el

which leads to data snooping through the choice of the vector c;. Alternative
approaches are possible. '

Let us now consider the geometry of non-linear adjustment. Instead of the
linear manifold we would now have a non-linear or curved manifold 72 Cm.
The adjustment problem can then be stated as the problem of finding that point
on the curved manifold 7 which has least distance to the given sample point
ys € M. Questions that arise immediately are: How many of such points exist
and how do we locate them? It will be clear that the non-linear problem is
drastically more complex than the linear one. In general we could say that
solutions to linear problems are prefabricated, where exact solutions to non-
linear problems are custom made. To make a start, one might ask oneselves
whether a classification of type of manifolds may help to get more insight. It
turns out that for totally geodesic manifolds, § can be found without recourse
to iteration methods. Examples are the 2-dim geodetic triangulation chain and
the 2-dim. Helmert transformation. For the so-called ruled-type of manifolds
simplifications of the computational process through dimensional reduction are
possible. Examples are the 3-dim Helmert transformation, the 2 and 3 dim
models for connecting geodetic networks and the 2-dim closed polygon with
azimuth and distance observables. Also the properties of so-called canal mani-
folds could be used to explain how infinite curvature can produce non-
injectivity. And finally the theory of complex manifolds (hermitian defferentiai
geometry) may be used for 2-dim polygon adjustments is the complex plane.

~N(@©, D),

As to the distributional properties of the non-linear least-squares estimators it
is hard to give general resuits. However, for their first moments one can show
that to an approximation of the order o*, the following holds:

E {5~} = 4 o®N and E{£'-x") = - o g Iy

where: n = dim 7I; N is the unique mean curvature normal of 7 at ¥, and
I'tg are the Christoffel symbols of the second kind.

Note that it follows from the above, that the bias in § depends on the
extrinsic curvature behaviour of 7 and is therefore invariant to reparameteriza-
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tions, whereas the bias in the parameters X' is given by the average trace of
the induced connection. '

Despite that classifications of manifolds are useful, usuaily the methods of
location are still iterative in nature. One can discriminate between local and
global methods of location. If we restrict ourselves to immersions (the itera-
tive methods for submersions are rather complex), the iterative scheme

. =xf+axp, B=1,..,dimn, c)
for local .methods typically consists of the following steps:

i) Set @=0. An inital guess xoP in provided either externally or through the
use of observational data.
ii) Determine an incremental vector Ax qﬁ in the direction of the proposed step

ili) Test whether termination criterion is met. If so, accept xg+| as X. If not,
increase q by one and return to (ii).

Questions that arise are: when does the iteration method converge; what it its
rate of convergence and when do we have a local minimum of the least-distance
problem. Most iteration methods take the following form for determining the
incremental vector:

Axger = b () 20y’ (x9) & (3'-¥ () , |

where yi (x), i =1, ... dimm, are the coordinate functions of the non-linear
map defining the immersion and g; is the coordinate epression for the Eucli-
dean metric of m.

The so-called Newton method, Levenberg-Marquardt compromise and Gauss
method differ in their choise for hyp:

Newton:

hg (Xg) = Bap (xg) +32pY' (%) &5 (3—Y (9))
where gug is the induced metric tensor of the parameter space 1.
L-M compromise:

hag (Xg) = Bap (Xg) + Mg
where u is a scalar still to be determined.
Gauss:

hap (Xg) = 8ap (Xg) -

We will restrict ourselves to the last method, not only since it can be considered



48

as the natural generalization of the linear case, but also since it takes full
advantage of the distance structure of the adjustment problem. Moreover, it can
be shown that this method is preeminently suited for small residual adjustment
problems and moderately curved manifolds. Some results are:

1. A necessary condition far convergence is that the length of the least-squares
residual vector should be less than the reciprocal of the in absolute value
maximum principal extrinsic curvature of the manifold 7 at §.

2. The local convergence behaviour is linear and the rate of convergence is
given by

i (817X gap (0 «B,,—%P)

=k y-yl?,
4= (x,=%%) gop (R) (x—%P)

where k is the in absolute value maximum principal extrinsic curvature of
na j.

3. The convergence behaviour is invariant to admissable parameter transfoma-
tions. v

4. ¥ is a strict local minimum of the least-diastance problem if [§—y} is less
than the reciprocal of the largest principal extrinsic curvature of 71 at .

5. If either the extrinsic curvatures are zero at ¥ or the residual vector at § is
zero, then local convergence is quadratic with a rate determined by the

" Christoffel symplols of the second kind.

For the global variant of Gauss method we havg instead of (3) that

Xort =2 + g Ax P,

where the scalar t; is chosen, such that the length of the residual vector
decreases in each iteration step. One can show that the optimal choice for t,
would be

(= 2 @

2 - &'+k") 5~y _

where k! and k" are respectively the largest and smallest principal extrinsic
curvatures of 71 at §. Note that equation (4) shows that for moderately curved
manifolds, t; = 1 is a close to optimal choice. Also note that if in case of Gauss
method the scalar t; is taken infinitesimally small in each iteration step we
would get the autonomous dynamical system of first order differential equations

dxB 1 8
i (grad- > lys—y 0l 2)".
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This shows that in principle numerical integration techniques can be applied o
solve our adjustment problem. Open questions are then how to apply:

1. the qualitative theory of global behaviour of dynamical systems, which is
concerned with the existence of equilibrium behaviour of dyn. systems
together with questions of local and global stability;

2. Morse theory (Morse inequalities), which studies the equilibrium configura-
tion of a gradient system; and

3. Singularity theory, which studies the critical points of smooth functions.

Discussion

.SCHWARZ: Could you classify some cases in our geodetic problems, where we
‘could express non-linear or large curvature in a wrong way? I am talking about
cases where we need very good approximate values for the parameters in order
to ensure convergence.
TEUNISSEN: One such case is the ellipsoidal one (the reduction of the observa-
tions on the ellipsoidal surface), but here the curvature is very small. Some
problems can be solved with the conventional reduction, some others analytical-
ly. I can not yet identify geodetic problems with severe curvature conditions. In
general, it would be difficult to give such a classification. _
HEIN: Peter Meissl used to say that we never have to go to a non-linear
adjustment, since we always have some good apriori information to be used for
a Gaussian iteration. .
TEUNISSEN: In 90 percent of the cases, when we have to perform an iteration,
everything works all right. In the rest of the cases, we want to know what went
wrong, and we try to understand a little better the non-linear physical problem
itself. , :
DERMANIS: 1 would like to get into the distribution problem, which is critical
for hypothesis testing. It is difficult. to go from something which is originally
normally distributed to something else which is not normally distributed, or
which is approximately normally distributed but assumed to be so. In reallity,
the original observations are never normally distributed.
TEUNISSEN: We should try to find-out what is the effect of such an assumption
on normally distributed observations on the final results.
DERMANIS: If we forget the usual observation equations and we go into the
condition equations, or to the combined model, there are always alternative
ways to write the equations. For non linear example, a square root can be
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eliminated by raising to the second power, a denominator term can be transfered
to the nominator at the other side of an equation, etc. There are several
alternatives by which the linearization leads to different results. The problem is
to choose the best among equivallent forms. A very good example comes fram
an experiment when we tried to fit a surface to a dome-like structure. The
square of the distance did not work in our observation equations, but its square
root did. The problem was coming from the non-linearity of the equations. I
think that what we need are some criteria for choosing the best form among
possible alternatives.

TEUNISSEN: There are indeed several alternatives by which linearization leads
to a different situation numerically. However, all these forms are equivalent in
the sense that they have the same curvature. Hence, the performance of Gauss’
method is in theory not affected by these changes.



