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PREFACE

Many problems in physical science involve the estimation of a number of
unknown parameters which bear a linear (or linearized) relationship to a

set of experimental data. The data may be contaminated by (systematic or
random) errors, insufficient to determine the unknowns, redundant, or all

of the above and consequently, questions as existence, unigqueness, stability,
approximation and the physical description of the set of solutions are

all of interest.

In econometrics, for instance, the problem of insufficient data is discussed
under the heading of "multicollinearity" and the consequent lack of
determinability of the parameters from the observations, is knownthere as

the "identification problem". In geophysics, where the physical interpretation
of an anomalous gravitational field involves deduction of the mass distribution
which produces the anomalous field, there is a fundamental non uniqueness in
potential field inversion, such that, for instance, even complete, perfect
data on the earth's surface cannot distinguish between two buried spherical
density anomalies having the same anomalous mass but different radii.

Also in geodesy one is confronted with similar problems. In physical geodesy,
for instance, the fact that the data are generally measured only at discrete
points, leaves one with the problem of determining a continuous unknown
function from a finite set of data. And in geometric geodesy the non
uniqueness in coordinate system definitions, plays a fundamental role when
identifying, interpreting, qualifying and comparing results from geodetic

network adjustments.

2ll the above mentioned problems are very similar and even formally equivalent,
if they are described in terms of a linear model E{y} = 2a X , with rank

A < n. And these problems of solving systems of liggér eqﬁggiggé with
arbitrary size and degeneracy are readily handled via the concept of a
generalized inverse.

In chapter one of these lecture notes we will therefore present the basics

of the theory of generalized inverses. Contrary, however, to the algebraic
approach taken in the many textbooks available on generalized inverses, we

we will approach the problem of inverting matrices of arbitrary

order and rank rather geometrically and show, amongst other things,

how one can characterize an arbitrary generalizedinverse uniquely.

Also the relation between generalized inverses and systemsof



linear equations will become clear then (cf. e.g. sections I.2 and I.4).

In fact, our geometric approach enabled us to obtain some results concerning
the theory of generalized inverses. To facilitate reference we have summarized
the basic results in section six.

In chapter two the problem of free network adjustments, which essentially

is a problem of inverse mapping, is treated. In this chapter we will discuss
the datum problem and derive a general expression for S-transformations, which
allowsone to transform from one datum to another. Also the relation with

the theory of generalized inverses is shown.

NOTATIONS AND PRELIMINARIES

A subset V of a vectorspace W, V € W, is a subspace of W, if V - with the
same definition of vector addition and scalar multiplication in W - is a
vectorspace. V is called a proper subspace if V ¢ W and V # WanaV # {0}.
Let W be a vectorspace and U and V subspaces of W. The intersection of U and V,

denoted by U n V, is the set of vectors which are common to both U and V:

uUnv={yeW|yeu r yeV}

The intersection of two subspaces is again a subepace.
The sum of U and V, denoted by U + V, is the set of vectors which can be

expressed as the sum of an element of U and an element of V:

U+ve{yew|ly=u+v,uev, ve V!

Also the sum of two subspaces is again a subspace.
If U and V are finite dimensional (throughout the sequel we will only be
concerned with finite dimensional vectorspaces) we have the dimensicnal

relation:
dim U + dim V = dim (UNV) + dim (U+ V)

If U and V are subspaces of the vectorspace W such that W = U + VvV and
u Nv = {0}, then W is called the direct sum of U and V, which we denote

by W=Ue® V. U and V are then called complementary subspaces of W.

For a matrix A of order mxn the linear space spanred by the columns of 2
is called the column space or range space of A and dencted by R(A). The
rowspace of A, defined analogously, can therefore be denoted by R(At).

Rp denotes the vectorspace of all m~tuples with real coordinates. Since




. . . m . .
R(A) consists precisely of those vectors in P which can be written as

) n
Ax for some x in R we have:

R(a) = {y I y = Ax for some x in R’}

The nullspace of A, denoted by N(&), is the set of all vectors in R that

. . m .
are mapped into the nullvector in R under A, i.e.

N() = {x|ax = 0}

The dimension of the subspace spanned by the columns of matrix A is called
the column rank rc of A and the dimension of the subspace spanned by the
rows of A the rowrank r . Thus dim R(A) = r, and dim R(At) =zr_. Since

dim N(A) = n—rr, it follows from the dimensional relation

dim R® = n = dim R(A) + dim N(A)

that rowrank equals coclumnrank, i.e. r,=r = rank A.
r

If we speaklof orthogonality we mean, unless stated otherwise, orthogonality
with respect to the canonical innerproduct. Thus two vectors y1 and y2 in Rm
are orthogonal if yiy2 = 0.

The orthogonal complement of R(A) is denoted by R(A)l. Thus R = R(A) ® R(A)l.
and yﬁyz =0y v, € R(A), Y, € R(A)l. A'L denotes a matrix such that R(Al) =

. 4
R(A)”. Unless it is otherwise clear from the context, the columns of A
are assumed to be linearly independent. A matrix A is called orthogonal if

t . ot
A2 =1IandAr =1.

In view of the close relationship between projectors and generalized inverses
we give here the definition of a projector and some elementary results.

, m
Let the two subspaces U and V of R" be complementary, i.e. R =U & V.,

Consider an arbitrary vector y € R? = U & V and express y =y, + y2 such

that y1 € U and y2 € V, where y1 and Y, are uniqgue. 1
The mapping P:y =+ y1 is called the projector on U and along V. I-P, with I
the identity matrix, is then the projector on V and along U. (see figure 1).
Thus the subspace U can be identified with the range of P, R(P), and the

subspace V with the nullspace of P, N(P).



Figure 1 -
P;y—yl
Now let the columns of the full rank matrix U span the subspace U. i.e.

R(U) = U, and the columns of the full rank matrix V span the subspace V,

i.e. R(V) = V. The projector which projects on U and along V is then given by

t -1 t - iR
I (e i B U R S S pt
4
Note that the projector PU v is independent of the matrix representations
U and V for the subspaces U and V. The only conditions which need to be
satisfied are R(U) = U and R(V) = V.,
A necessary and sufficient condition for matrix P to be a projector is

that PP = P (idempotence) holds.

A vector y of order mxl will usually denote in the sequel a data vector

or vector of observables, and a vector x of order nxl the parameter vector

or vector of unknowns. The operator E{.} denotes the mathematical expectation
and the full rank matrices Qy and Qg the variance-covariance matrices of

respectively the observables y and estimated unknowns X.

I. GENERALIZED INVERSES, A GEOMETRIC APPROACH

I.1. Characterization of a set of linear equations

Many problems in physical science involve the estimation of a number of

unknowns x , which bear a linear (cr linearized) relationship to a set of

nxl
experimental data y :
mx1
(1.1) y = A x

mx1 mxn nxl

The data may be contaminated by (random or systematic) errors, insufficient
to determine the unknowns, redundant, or all of the above.

The first question that arises is whether a soluticn to (1.1) exists at all,
i.e. whether the vector y can be written as a linear combination of the
columns of matrix A. If this is the case we call the system comsistent.

The system is certainly consistent if the rank of matrix A, rank A=X, equals

the number of rows of A, i.e. r=m. In this case namely, the space spanned



by the columns of matrix A, R(A), equals RY and therefore y € Rm = R(a).

In all other cases, r < m, however, consistency is no longer guaranteed. To
see this, observe that rank A=r=3dmR(A). From r < m then follows that
r=dim R(A) < dim R® = m, i.e. R(A) is a proper subspace of Rm, R(A)C:Rm.

It would thus be a mere coincidence if the vector y € R" lies in the smaller
dimensioned subspace R(A) < Rm. Consistency is thus guaranteed if y € R(A)
or, equivalently, if y is orthogonal to the orthogonal complement of Kk(a),

R(A)l. 1
If we assume the subspace R{A)" to be spanned by the columns of a matrix of

order mx{m-r), say U,, consistency is guaranteed if

1

(1.2) U'1°.y = 0, with R@U) = rR(2)L.

Assuming consistency, the next guestion one might ask is whether the seoluticn
to (1.1) is unique or not, i.e. whether the data gathered in the vector y

are sufficient for determining the unknowns x. If not, the system is said

to be underdetermined.

The solution is only unique if the rank of matrix A, rank A=r, egquals the
number of columns of A, i.e. r=n. To see this, assume x, and xz#x1 to be

1
two solutions to (1.1). Then Ax1 = sz or A(xl_X2> = 0 must hold. But this
can only be the case if some of the columns of matrix A2 are linearly dependent,
which contradicts our assumption of full column rank r=n. In all other cases,

r < n, there will be more than one solution.

From the above considerations fcllows that it is the relation of r to

mand n which decides the general character of a linear system. Anéd a conceptually
very nice theorem which makes this characterization precise, is the so-called
Singular Value Decomposition theorem. It was first established by lEckhart and
Young, 1939 & Principal Axis Transformation for Non-Hermitian Matrices, Bull.
Amer. Math. Soc., Vol. 45, pp. 118-121].

The Singular Value Decomposition theorem:

Let A be a real matrix of order mxn, with rank A=r < min(m,n). Then there

exist orthogonal matrices U = (Up ! Uy ) and V = (V 3% vy )

such that mxm mxy mx (m-x) nxn nxr nx (n-r)
At 0 vt L ¢

(1.3) A= (U :U,) =U AV,

0
[y
=t 0
0
2]
(o]



with A: = diag (01,...,0r) , 0, 20,2 ...20_>0

Proof:

Since AtA is a real symmetric semi-positive definite matrix, it follows

that its eigenvalues are non-negative. Denoting these eigenvalues by
2

i= 2 ... 2 > =0 = ... =0_.
Oi, i=1,...,n, we can arrange that 01 P 02 or 0 r+1 n
The corresponding orthogonal eigenvectors are denoted by (vl,...,vn) and we
separate, them into Vo = (vl,...,vr) and V1 = (Vr+1""'vn)' With

AE = diag (¢,,..,0_) we thus have Aav =V A or
r 1 Y (o] or

(1.4) Awvtatay ATE o g ,
Y (@] orx r
t

and A AV1 =0 or,

(1.5) AVi =0

The columns of the matrix
(1.6) u =av A7
o or

are thus all of unit length and mutually orthogonal, i.e. UEU = Ir'

o
We can now choose a matrix U, such that the matrix U = (Uo Ul) becomes

1
. t .
orthogonal, i.e. UtU = Im and UU = Im;W1th (1.6) we therefore have that

t
(1.7) utav = A% and UtAV = 0
o © r 1 o
The matrix
£ U:;AVo UEAV
U AV = c g ,
UIAVO UlAV1

therefore reduces with the aid of (1.5) and (1.7) to

e, %0
U AV = p

0 0

and premultiplication with U and postmultiplication with thinally gives
the desired expression (1.3). Q.E.D.



The numbers Ui’ i=1, ..., n, are called the singular values of matrix A

and they are the square roots of the non-negative eigenvalues of AtA. The
corresponding orthonormal eigenvectors vi, i=1, ..., n, of AtA are called

the right singular or right eigenvectors of matrix A. The orthonormal
eigenvectors of AAt are given by the columns of U and they are called the

left singular or left eigenvectors of matrix A.

From decomposition (1.3) follows that the columns of Uo form an oithonormal
basis of the range space of matrix A and because of the orthogonality of U,
the columns of U, constitute an orthcnormal basis of the orthogonal complement

1

of R(A). In the same way we see that the columns of V_ and V] form

1

orthonormal bases of respectively R(At) and R(At) . Sﬁmmarizing, we have

(see figure 2):

RW_) = R(A), R(U,) = RA)" = N@&D)
(1.8 RV) = RA%),R(V) = RET = Nia)
Rn: "parameter space" Rp: "observation space”

R(Uo)

R(Ul)

= r(a%) e N@&) R = R(A) & N(AD)

Figure 2

I.2. A unique characterization of an arbitrary generalized inverse

We know that for a square and regular matrix A a unique matrix inverse B

exists, with the properties:

(2.1) AB = 1 and BA =1

For singular and rectangular matrices A of order mxn, however, in general
no matrix B can be found for which (2.1) holds. For such matrices then a

more relaxed inverse prcperty is used, namely:



(2.2) ABA = A

This matrix equation follows from the idea that an inverse-like matrix B
should solve the consistent set of equations y = Ax, with y € R(A).

That is, matrix B thould furnish a solution x = By such that y = ABy helds
for all y € R(A), i.e. ABA = A.

Matrices B which satisfy (2.2) are called genmeralized inverses of A.
Expression (2.2) is, however, not a very illuminating one. In particular
it does not tell us how generalized inverses look like or how they can be
computed. (This is also a peoint of criticism we have against the many
textbooks which deal with the theory of gereralized inverses. In many of
these textbooks, it seems that, algebraic manipulations and the stacking
of theorems, lemma's and corollaries, and what have you, tcgether with the
sometimes superfluous naming of cpecial types of generalized inverses, are
preferred to a clear geometric expositicn of what expression (2.2) actually
tells us about the matrices B). In the following we will therefore rewrite
expression (2.2) in such a form thet it becomes relatively easy to
understand the mapping characteristics of generalized inverses.

Fundamental is the following theorem:

Theorem 2.1

(2.3) ABA = A < BRx=x, Vx € R(S),
where the subspace R(S) < R" is arbitrary,
provided that dim R(S) = dim R(A) and R(S) N N(a) = {0},
i.e. R" = R(S) & N(a).

(2.4) ABA = A & ABy =y, Vy € R(A)

Proof of (2.3)

(=) From ABA=A follows BABA=BA meaning that BA is idempotent and thus
a projector.
From ABA=A also follows that N(BA) =N(A).
To see this, consider x € N(BA). Then BAx=0 or ARAX = Ax = 0, which means
that x € N(A). Thus N(BA) € N(&). If on the other hand x € N(A), then
Ax = 0 or BAx = C, which means that x € N(BA). Thus N(A) < N(BA).
Since BA is a projector with N(Ba) = N(A) we can write BA =

PR(BA) yN(R)®
Thus R(BA) is complementary to N(A). By denoting the subspace



R(BA) by R(S) we can write BAx=x, Vx € R(S). And the complementarity of
R(S) and N(A) can be expressed as dim R(S) = dim R(A) and R(S) N N(a) =
{o}.

(=) R® = R(S) & N(A) or dim R(S) = dim R(A) and R(S) N N(a) = {0} means that
R(S) is complementary to N(A). We can therefore construct the projector

= I-P Thus we can now replace BAx = x, Vx € R(S),

Pr(S),N(A)

N(a) ,R(S)" n
by BAPR(S),N(A) X = PR(S),N(A) X, Vx € R . With APE(S),N(A) =
A(I_PN(A),R(S)) = A we get BAx = PR(S),N(A)X'V}{G R or finally

ABAX = AX, Vx € Rn.

Proof of (2.4)

The proof is omitted since it is trivial.

So what does theorem 2.1 tell us about generalized inverses of A? First of
all it tells us, and this is essential, that the only condition a generalized
inverse B of A has to fulfil is that it maps the subspace R(A) onto a
subspace R(S) complementary to N(A). Or stated differently: Every matrix B

which satisfies
(2.5) BAS = S,
with R(S) complementary to N(A), is a generalized inverse of A. Thus every

genefalized inverse of A determines a one-to-one relation between the

subspace R(AS) = R(A) and R(S) (see figure 3).

n ) '
R': "parameter space” RT: "observation space'
//////,,_\\\\\\\ oa
dim R(S) = rank A /  R(S) \ mxn R(a) dim R(A) = rank A

f‘ | A \

/ - B/

o}
-
B
Z
¥
I
o]
i
H
2
o
Z
s

nxm

o)
]

R(S) & N(A)

Figure 3
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Secondly, theorem 2.1 gives us a neat way of unigquely characterizing any
generalized inverse of A. To see this, consider expression (2.5). Expression
(2.5) shows how matrix B maps a basis of the subspace R(a), namely AS, onto
the subspace R(S). But since AS is only a basis of the subspace R(A) and

not a basis of the total domain space R" of B, expression (2.5) is not
sufficient for determining B unigquely. Thus in order to compute a particular
generalized inverse B of A we in addition to (2.5) have to say how B maps

a basis of a subspace complementary to R(A). If we denote a subspace
complementary to R(A) by R(Cl), we thus need to specify how B maps R(CL);

say:

(2.6) }3c‘L

n
o

Since AS is a basis of R(A) and C"L a basis of a subspace complementary to
R(A) we have R(ASECL) = R°. Thus if we take expressions (2.5) and (2.6)
together,

(2.7) B(Asscl) = (S:D),

we can uniquely determine B as

(2.8) B = (sip) (asich) ™!
L -1 (ctas) et
With - (asic™) = _ , expression (2.8) then
Liesh et ash®
becomes
(2.9) B = s(ctas) et + ol (asHth tianht

So far we silently ignored our choice for D in (2.6). In principal, of
course, the choice for matrix D is completely free. But, as we will see,
one cam impose an extra condition, namely that R(D) < R(Vl) = N(a), without
affecting the generality of expression (2.9).

Assume that we have chosen matrices D and El, with R(EL) complementary to
R(A), such that

(2.10) 5 = BO-



With the projector identity P =1 we can then write

R(S) ,N(a) = PNea),R(S)
(2.10) as

) D = BC , Or as

ey, n@) T Pna,res)

_ -1 -
2.11 P D=RBC =~-P D
(2.11) N(),R(s)° = B R(S),N(A)
And with Ba = PR(S),N(A)’ expression (2.11) becomes
(2.12) P b = B(C - aD)
: N(A) ,R(S)
But this expression shows that if we put D =P | D and ¢ =C - AD
N (&) ,R(S)

we are back at (2.6), but now with the extra condition that R(D) © N(Aa).

As a conclusion we thus have that any generalized inverse B of A is of the

form

1t Lt 1-1

4 + ol (as)HretT (asyh®

(2.13) B = (sip) (asich) ™} = s(ctas) e

with R(S) complementary to N(A&), R(Cl) complementary to R(X) and R(D) « N(A).

(see figure 4).

Rn: "parameter space" R": "observation space"
dim R(S)=rank 2 / R(S) \ /mi? R(A) dimR(A)=rank A
/ \
/ \
- }
- R(D) 1 . 1
dim N(A)=n-rank A N (R) R(C) dim R(C )=m-rank A
nxm
n m L
R = R(S) e N(a) R = R(A) & R(C)
R(D) < N(A)

Figure 4
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I.3. Right- and left inverses

From theorem 2.1 of the previous section we learned that, for any generalized
inverse B of matrix A of order mxn, the matrices BA and AB behave like
identity-matrices on respectively the subspaces R(S) and R(EZ). Thus in the
special case that rank A = r = n the generalized inverses of A become left
inverses, since then BA = I —t Similarly, the generalized inverses of A
become right inverses if rank A = ¥ = m, becavse then AB = Im=r holds.

Let us now first, in order to give an interpretation of the subspace R(S),
concentrate on the special case rank A = r = m.

If rank A = r = m ther. R{(A) = Rm and therefore the subspaces complementary to

R(2) reduce to R(Cl) = {0}. wWith (2.6) we then alsc have R(D) = {0}. (see

figure 5).
n m=r s
R : "parameter space" R : "cbservation space"
dim R(S)=r R(S) mxn
‘/ B R(a) = R* ) dim R(A)=r=m
A
éim N(A)=n-r N(a)
\B/
n nxm m=r
R =R(S5)eN(a) R~ "=R(a)
Figure 5

From (2.13) follows, with R(Cl) = {0} or R(C) = R® and R(D) = {0}, that the

general expression of right inverses is given by
(3.1) B = S(AS)—1 , with R(S) complementary to N({(a).
Consider now a system of linear equations

(3.2) vy= A X ' with rank 2 = r = m.
mxl mxn nxl1
m . .
This system is clearly consistent for all y ¢ R . With a particular
generalized inverse (right inverse), say B, of A, we can write the solution

to (3.2) as



(3.3) {x} ={x | x=8By+va, Vo e R° 7}, with R(V,) = N(a).

1

And by choosing =0, we get as a particular solution xf:{x}:

= T
(3.4) X, By + \lal .

where ﬁl, so to say, contributes the extra information, which is lacking in

v, to determine xl.

Since R(B) = R(S) (see (3.1)) it follecws from (3.4) that

(3.5) w1, = WhSie, B .
1 1 1
(n-r)xn nx1 (n-r)x (n-r) (n-rixl (n-r)x1

But since al or cl contributes the extra information, which is lacking in vy,

to determine xl, the solution of the unicuely solvable system

Y A
3.6‘ = ] 71 1 A= v = n P
( ) [ Cl] [(Sl}t | X, with rank A Y m and R = R(S) e N(a),

(m+n-r)x! (m+n-r)xn nxl

is precisely X,

2 y | Y
3 e s
= = =S st o
Y X o J {:(;&sn AANCEEA J A

Thus in order to find a particular solution to (3.2), say x,, we merely

1
need to extend the system of linear equations (3.2) to (3.6) by introducing

o ’ i e )
the additional equations ¢, = (S7) X, so that the extended matrix

1
{

becomes square and regular. And this will be the case if R(S) is
complementary to N(A); i.e. if R = R(S) & N(a). Purthermore all right

inverses (3.1) of R are obtainable from

-1
: l
‘sl)t } = {S(AS)_l: vlllsl}tvll_l, o width R" = R(S) & N(a).
\ .

Let us now consider the case rank A=r=n. In this case all generalized inverses

of A become left inverses. If matrix A is of full column rank the null space
n

of A reduces to N(a) = {0}, meaning that R(D) = {0} and R(S) = R". (see

figure 6).



n=r m .
R" ~: "parameter space" R : "observation space"

A
/mxn
R(A) dim R(A) = r
R(CT) dim R(CD) = m-r
‘\B —
nxm
n=r _ R% = R(2) o R(CD)

Figure 6

With R(S) = R* and R(D) = {0} it follows from (2.13) that the general
expression of left inverses is given by

t, . -1 t . L
(3.8) B = (Ca) C ' with R(C™) complementary to R(&).

The with the full column rank matrix A associated system of linear

equations reads

(3.9) vYy=A x , with rank A=1xr =n
mx] mxn nx1
And this system i?inconsistent in general, i.e. y & R(B) = R(Uo) or with R?y#o
with R(Ul) = R(A)™ . One way to remove the inconsistency is by subtracting fromwy its
components which lie in the subspace R(Ul): y - UlUry = UoUzy.
(see figure 7)

t
____________ — Y
Uy f

R(A) =R (Up)

y-U,uty=u Uty
Figure 7 11 © o
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But one will admit that this is a rather arbitrary way of restoring
ccnsistency. In general one can therefore say that consistency is restored

by subtracting from y its components which lie in a still freely chooseable

t 1 -1t -
subspace, R(Cl), complementary to R(A): y - CL(Ulcl) 1Uly = Uo(CtUo) 1Cty
(see figure 8) R(U.) R(Cl)

1
P_. |, o, YV fmmmrmam———
r(ch r@)Y 7Y
/
/
/
/
/
/
/
/
/ R(A)=R(U.)
Figure 8 »l T \o

Y Pt r@) Y TR, R(HY

Thus the inconsistent system (3.9) is then replaced by the consistent
system

fcl)-lUfy =AaA x with rank A=r=n and RP=R(CL)®R(A).

mxn nxl

(3.10) Yy - Cl(U

But this system is identical to

(3.11)  y = (2 3: ct) (%)

mx1 mxn mx(m-r) (n+m-r)xl

To see this, pre-multiply (3.11) with UE. We then get Ufy = (UECL)X
or A = (U:CL)_luiy. Thus the solution £6r x of (3.10) and (3.11) are
identical.
Because of the fullcolumn rank of A in (3.11) and the complementarity of
R(Cl) with R(A) it follows that the matrix (AECL) is squate and regular.
Thus the solution of (3.11) is therefore:

x (cta) 7 et

(3.12) y | = (AEClW-ly = (Utcl)-lut y
1 1)

Thus in order to make the in general inconsistent system (3.9)’consistent,

we merely need to extend the system of linear equations (3.9) to (3.11)

by introducing additional unknowns, so that the extended matrix (AECL)

becomes square and regular. And this will be the case if R(Cl) is complementary
to R{A), i.e. if R = R(A) e R(Cl). Furthermore all left inverses (3.8)

of A are obtainable from
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I.4. An arbitrary system of linear equations and arbitrary generalized inverses

In the previous section we saw how a particular solution of an underdetermined
but otherwise consistent system of linear equations could be obtained by
extending the matrix A rowwise. Especi&lly the principal role played by the
subspace R(S) complementary to N(A) in removing the underdeterminancy was
demonstrated.

Similarly we saw how consistency of an inconsistent, but otherwise uniquely
determined, system of linear equations was restored by extending the matrix
A columnwise. And here the subspace R(Cl) complementary to R(A) played the
decisive role.

It is therefore natural to try to apply a similar approach to an arbitrary
system of linear equations which is possibly inconsistent and underdetermined

at the same time. Let us assume such a system to be given by

(4.1) y = A x , rank A =r < min(m,n)

mx1 mxn nxl
From the possible rank deficiency of matrix A in (4.1) follows that the
unknowns x cannot be determined uniquely, even if y e R(A). Thus the information
contained in y is not sufficient to determine x uniquely. One can overcome this
problem by adding the minimum information needed to determine x uniquely.

Thus by replacing (4.1) by

b}
(4.2) [ ¥ } = [ A_L tJ X , with R = R(S) & N{(Aa).
c (s™)
(m+n-r)xl (m+n-r)xn nxl1

But although the extended matrix of (4.2) has full column rank, the system

can still be inconsistent. Now we know from the previous section that
inconsistency is removed by extending the matrix of (4.2) columnwise, So

. m 1
that the resulting matrix becomes square and reqular. Since R =R(A)®R(C ),
the range space of

CL }
0
(m+n-r)x (m-xr)

(

is complementary to R([ But also R([ }), with X an arbitrary matrix

b
(:;L)t] ’

X
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. A
of order (n-r)x(m-r), is complementary to R([(sl)t]). Inconsistency is thus

removed if we replace (6.2) by the uniguely solvable system:

(4.3) [Y ] - [ c }

c Lsht x

¥1 . with R" = R(S) & N(a) and
A m

&% = R(a) & R(CD)
(m+n-x)x1 (m+n-r)x (mftn-r) (m+n-r)xi

And the solution of (4.3) is given by

x] ’A C'L —1 y
(4.4) ' = =
: 1
x| leshtx c
r _ _ _1. ] .L e
- s(ctas) It - vl[(sl)tvli 1xrufcl1 U? i v,L(s )tv11 ! Y
e l-ve T T, T '
{ u,c 10, ! fic)
with R(Ul) = R(A)l, R(Vl) = N(Aa) ,
. . s . - -Lt _1. -Lt
in which we recognize, if we put -Vl'(S ) V17 X =Dor X =-(8) D, our
general expression
(2.13) B = (sip) @sich ™! = sctas) et + prutet1 e}

of an arbitrary generalized inverse.

I.5. Transformation properties and some special types cf generalized inverses

t
With the aid of the singular value decomposition A = UOA;;Uo {see (1.3))

we can write for our general expression (2.13) of generalized inverses

. . - - l.-1t
(5.1) B = (s:D)(As:cl) . S(CtU A%vts) 1ct + DrUtC 1l u;, or
oro 1 1
- . - - - 1l ¢
(5.2) B = [s<vt5) 1vtlrv A %UtJLU (CtU ) 1ct] + prute J'u, .
o) ° or o ° o 1 1
, . . . t..-1.t
In this last expression we recognize the projectors P =S(V_S) v,
R(S).st) (o)

projecting onio R(S) and along N(a), and PR(A),R(CL)=U0(C Ué)C » projecting or R(A)
and along R(C"). We can therefore obtain any particular generalized inverse
ﬁ, uniquely characterized by, say R(§), R(EL) and 5, from arbitrary generalized

inverses B, by applying the transformation rule:

- - t= -1 t. t =t -1
=T 1T
(5.3) B S(VOS) Vo..B][UO(C Uo)

l]-lut

_t - t_
c] + D[Ulc 1
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Let uw now consider some special types of generalized inverses and see what

role is played by the subspaces R(S), R(Cl) and R(D).

- least squares generalized inverses -

Assume given the inconsistent system of linear equations
(5.4) Yy = A x rank A =r<m
mx1 mxn nx]

From the least squares criterium min%mize[y-AXJtQ;er-AX]r with Q;l the

weight matrix of the datavector y, follows

(5.5) AtQ-yl (y-Ax) = 0

and with (4.3) this gives AtQ;CHX=O VAerR T or R(Cl) = R(Q Ul)'

The corresponding least squares generalizéd inverses are therifore obtained
by choosing R(Cl) = R(Qyul)’ while R(S) and R(D) may still be chosen
arbitrarily.

= Minimum norm generalized inverses -

Consider the consistent system of linear equations

(5.6) y = A x rank A=r <n
mx1 mxn nxl

The set of solutions to (5.6) is given by

(5.7) {x} ={x|x =By +v ;

n-xr
40 Yo € R}, R(V, = N(A)

with B an arbitrary generalized inverse of A.
We now want to find & solution such that

(5.8) min [By+v. a0 1B +v. o)
a 1 X y 1

From this condition follows o = - [VTQXVIJ-IVTQxBy and the unique minimum

norm solution is thus given by
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t -1 t
5.9 = (I-v,[V,0 V =R ¥ B
$58] x = (I-v,[Vio v, 1 V0) BY = Poio-ty )y BY
X O
Since y € R(A), it follows from an expression like (5.2) that By is independent
]
of the choices made for R(C) and R(D). It therefore follows from (5.9)
that the minimum norm generalized inverses are obtained by choosing R(S) =

R(Q;lvo), while leaving R(Cl) and R(D) open for arbitrary choices.

- Maximum rank gemeralized inverses -

From expression (5.1), B = (st)(ASECl}—l, follows that R(B) = R(S:iD). Since
dim R(S) = dim R(A) = rank A,we see that dim R(B) 2 dim R(A) or rarkB 2 rank A.
Thus the rank of any generalized inverse of A is greater than or equal to

the rank of A. Furthermore R(B) = R(SiD) shows that the rank of B is completely
determined by the choice for D and B will have maximum rank, rank B = min(m,n),

if one can choose D such that dim R(D) = min(m,n)-r.

i ]

- £7 A " T e aoo  [rnmaad. s aana )
Re; Lexive generalLilizec tnverses (mnimim rank 1nverses;/ =

Generalized inverses B of 2 which have minimum rank, i.e. rank B = rank A, are
called reflexive generalized inverses. And from our interpretation of R(D)

we know that the minimum rank property can only be obtained by choosing

R(D) = {0}. Taking R(D) = {0} in (2.13) and (5.3), the general expression of
reflexive generalized inverses becomes

(5.10) B = s(ctas) ¢t

]

-t . = 3. &
FS(vtS) Vv 1B ur(ctu Y&
@] o o o

with R" = R(S) & N(&), Rm R(A) & R{Cl) and where B can be any arbitrary

generalized inverse of A.
The reflexive or reciprocal character of these generalized inverses follows
from the fact that the matrices A and B of (5.10) are generalized inverses

of each other, i.e. ABA = A and BAB = B holds.

- The minimum norm least squares generalized inverse (Pseudo-inverce) -
, : 1
From the least squares criterium follows that we must choose R(C) = R(Qin}.
And the minimum norm condition gives us an eguation like (5.9):

(5.11) x .By , with B being a least squares inverse of A.

= Pro v ) .N(a)
4 o

Contrary to (5.9), however, we now may have a data vector y for which y ¢ R(R).

It therefore follows from (5.11) that the unique minimum norm least squares
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-1
generalized inverse is found by choosing R(Cl) = R(QyUl), R(S) = R(Qx Vo)
and R(D) = {0}. In the special case that Qy = Im and Qx = In this inverse is

known as the Moore-Penrose or Pseudo-inverse.

I.6. Summary

-1 1t l--1 1t
(6.1) aBA = A & B = s(ctas) et + DM ((as)T) 1T ((as)T)
n " m " 4 "
R : "parameter space R : "observation space
T /‘A\ T
/// \ mxn / ™
R(S) R(2) \
— =
R(D) Y |
‘nB.—/ R(C | /
s ~—
‘ nxm N\
g . P
R’ = R(S) & N(a) R = r(a) & R(CY)

R(D) € N(a)
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II. ON S-TRANSFORMATIONS

"Where he looked for a flower, he discovers a whole garden. But only
one flower in the garden gives him immortality, and nobody knows which it
i1s. So what to do? There is only one thing - go back and describe the garden”

¥
[P.Cc. sabatier, 1979]

II.1. Intxoduction

In chapter one we have seen how to characterize an arbitrary generalized
inverse of matrix A uniquely. In particular the principal role played by
the subspaces R(S)?xgomplementary to N(3a), and R(Cl), complementary to R(2a),
was demonstrated. The choice for R(Cl) determines the way in which the
inconsistent system of linear equations y = Ax is made consistent and by
choosing R(S), with x € R(S), one gets around the difficulty of under-
determinancy. And, as we know, consistency is guaranteed if y € R(A) or,
equivalently, if y is orthogonal to the orthogonal complement of R(A),
R(A)l. Or in terms of linear equations: if y = Bx for some x, or if Ufy = 0,
with R(U) = R(A)T.

In the frame-work of adjustment theory these two types of linear equations

correspond to the so-called second standard problem - or Gauss-Markov model

formulation, E{Ej = Ax, and the first standard problem - or adjustment-by-

conditions formulation, U§E{X} = 0 (The underscore indicates the stochastic
character of the observables). And since consistency is merely related to

the choice for the subspace R(Cl) of the observation space Rm, and thus has
nothing to do with the parameter space R and the subspace R(S), the least
squares estimators of E{X} will be identical for both model formulations

E{X} = Ax and UEE'{X} = 0. With a Gauss-Markov formulation, however, one
aims at more than only adjustment. One then also aims at finding an estimate
of x which corresponds to the least squares estimate of E{Xj. And here is
vhere the problem of underdeterminancy, with the many possible choices for
R(S), might manifest itself, i.e. where the flower might turn out to be a

garden.

In the theory of geodetic networks the probklem of underdeterminancy is

encountered as a consequence of the fundamental non-unigueness in the relation

* P.C. sabatier; Geophys. J.R. astr. Soc. (1979) 58, 523-524.



23

between geodetic observables, like height differences, angles, distances

etc., and coordinates. In a levelling network, for instance, absolute

heights cannot be computed if only height differences are measured. That is,

for computing heights, one additional needs information on the absolute

vertical datum as a conditio sine qua non. Similarly, one cannot obtain

position, orientation and scale of a triangulation network if only angles

are measured. Such networks for which the observational data are insufficient

to determine either the (horizontal and/or vertical) position, orientation or

scale, are called free networks.*

As a consequence of the underdeterminancy, the design matrix A of the

linear (iZed) Gauss-Markov model E{X} = Ax will have a rank deficiency. There-

fore no unbiased linear estimator X = By of x exists, since this would require

E{g} = BAx = x for all x, or BA = I, which is impossible since the rank of

a product of two matrices cannot exceed the rank of either factor. But

although x is not unbiased estimable, there exist linear functions of x which

are. And an essential part of this second chapter focusses on the question
tractable choices of such linear functions exist and how to interpret

them.

Coordinates and datum definitions

Let us commence, in order to fix our minds, with the simple example of a

levelling network (see figure 1).

After adjusting the network we obtain a consistent set of adjusted height

i i i h ition: + + ... + +
differences satisfying the condition h12 h23 h(n-2)(n—1) h(n- y.n

+ h 1 = 0. And it is clear that we cannot compute the heights of the net-
n,

* Here and in the remaining part of this chapter we disregard configuration

defects, since in our opinion they are merely the result of poor surveying
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work points from these adjusted height differences. So how are we then to
present our results of adjustment? One way is of course, to just list all

the adjusted height differences with their variances and covariances and leave
it at that. But, we only need a set of height differences which are mutually
independent. For instance, the result of adjustment is completely described
by listing the adjusted height differences h12' h23""'h(n-2)(n—l)'h(n-l)n
and their variances and covariances. But then again also the set

h,oore../h ' hn

23 (r-2) (n-1) " P(a-1)n
possible. So which to choosge?

1 suffices and in fact many more choices are
It seems reasonable, although we know we cannot really compute absolute heights,
to look for a set of which the height differences at least resemble some of

the properties of height coordinates. The advantage of working with coordinates
in general is namely, that they all have one and the same reference in

common. With coordinates the relative position of any two points in a network
is easily obtained without that cne needs to bother about the way in which
these two network points are connected by the measured elements. Coordinates
are also very tractable for drawing maps or making profiles of the whole or
parts of the network.

Thus we like to have a set of height differences from which one can easily
obtain the relative vertical position of any two points of the network. A set
Like Byor Bygr oo Bip2) (n-1) " Pln-1)n
in order to get a picture of the height difference between, say the points
P, and Pn—

2 2
appropriate set is, however, hl2' h13, ey hl,(n—2)' hl,(n—l)’ hl,n' In

does not really suffice, because
, we need to draw a profile of almost the whole network. An

this case we just can take point P1 as reference and mark out the height

differences h12 and h1 (n-2)° Also note that these height differences are
’ =</

very close to being height coordinates, since we merely have to adopt the

reference point P, as origin or give it an arbitrary height, say hl' By

1
adopting the arbitrary height h1 for reference point Pl' we can write

(2.1 h, = h,, + h, = h, + h

And this expression shows that the set of height differences h1i = hil)
can indeed be considered to be a set of height coordinates. But instead of

taking point P1 as reference we could also have taken point PS. We then get

(2.2) hi =h_, + h, = h, + h
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In fact we can take any point of the network as point of reference. We can

even take the centre of "gravity" or the main-point PM' with the adopted
1

3 = — + ... ’ i :
height hM (h1 + h2 + h ), as point of reference
1 (M)
. = = + + ...+ + = + .
(2.3) hi (h1i h2i h i) hM hi h

Thus all sets' of height differences like hél), his) or hiM) can be seen as

sets of height coordinates. And it is now not more a question of which set
to choose, because any set will do.

It is important , however, to observe that the statistical properties, the
(1) (5) (M)

first and second moments, of the heights h, ', h. or h, ', very much
depend on the choice of reference point. From E{hél)} E{h12 + h23}
and E{héS)}- e{- hy, - b, } follows for instance that E{h(l)}#

(5
3 )} Also thelr variances and covariances differ. Thus if

E{h
one wants to compare two sets of heights, where the two sets are computed

from two different and independent observational campaigns - for instance

for the purpose of a deformation analysis - it is essential that these heights
are defined .with respect to the same reference.
Now in order to get all heights in the same reference system one needs to

be able to transform from one system to another. From writing (2.1) as

r ( ( N 7 1
h, ) : ) 1 0...0 h,
h : 1 h
2 | 2
(2.4) R R ORI ; 0 . '
- bR - .
h : 1 h
\ nJ \ * J \ J \ nJ

follows that

: 0olo0..... .. 0 h,
(! -1 11 .
2.5y (P =l .} -, O By | v
: -1 0 Ty h
n
and substitution of (2.2) then gives
0/0....... 0 )
2.5my | 1;t 0 n (>
1 . . 1
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Expressions (2.5) thus show how one can transform from any height system,

5
e.qg. hé‘), +o0 the height system defined by taking point P1 as reference.

In a similar way we obtain from (2.3) and (2.1) the transformation

)

m-1 -1 ........ -

e s 0 s
1
—>
o]
!
—
[
-
.
.
.
.
.
.
.
e e s e »

)|

(2.6) P, (1)

- i

o

!
= B
=2

[}
fuey
.
.
.
.
.
.
.
.
.
.

1
-
o]

|
—
)

Transformations like (2.5) and (2.6) which transform one reference system

into another are called S~tramsformations.

Let us now consider a two dimensional planar triangulation network in which

-

only angles are measured (see figure 2).

5

Fig. 2 2 3

After»adjusting the network we obtain a consistent set of adjusted angles,
which determines the shape of the network. It determines the shape and

that is all it determines. The position, orientation and scale of the network
are still unknown or still free to be chosen arbitrarily.

Now in order to describe the shape of the network we have, just like in case
of the levelling network, many possibilities at hand. Each set of mutually
independent adjusted angles, for instance, will do. But on the grounds of
the earlier mentioned arguments we are in favour of coordinates. However,

in order to compute coordinates we first need to fix some reference, i.e.

we need to fix the position, orientation and scale of the network. One way
to accomplish this is by fixing two points of the network, i.e. by assigning
arbitrary and non-stochastic coordinates to two points of the network. For
instance, we can start by fixing the points P1 and P2 and then compute, with
the aid of the adjusted angles, the coordinates of the points Pl' P4, P5 and

P6 (see figure 3a). Or we can fix the points P3 and P1 and then compute the



27

points P4, Psf P6 and P2 (see figure 3b).
5 5
6 4 6 4
2 3 2 E
Fig. 3 (a) (b)

Let us for the moment, however, leave in the middle which two points we fix.

Let's just call them Pr and Ps' We then can write (see figure 4).

L
I
w
+4
[

sin A + 1 ., sin (A + T+ )
sj rs

j 5 rs rs rsj
(2.
Vo, ey A L cos A o Cos A + T+ )
3j ¥ rs rs s7 s rsj
v A

\\\Fg~f”’f‘ 8]

=
figure &
Linearization of (2.7) gives*
Ax, = Ax_ +x° Alnl _ +y° MA  +x° Alnl  +y°. A +y°. Ao
] r rs rs rs rs sj sj sj  rs sj  rsj
(280 by, = Ay + yo BinT  -=> AR & yo, Binl . ==, A& ~=x°, A
3 r rs rs rs rs s3j s sj = rs G
which we can write as i 3
x
r
o (o) . <} o )
hx ysj xs] ﬁcrsi I o yrj xrj ﬁyr
=1_,° © 'sj |+ . o
ayj xsj ysj Aln I;; 0 1 xrj yrj ﬂArS
| Alnl__ |
r
(2.9)

* 1 L) ] : . .
The upperindex "o" indicates the approximate values.
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Note that the first term on the right hand side of this expression only

1
contains observed cquantities, since Aln -zi can be computed from the angles
in the triangle PrPst by means of the sine-rule.

From inverting the relation

Ax yo x> An
rs rs rs rs

A = _.0 o

Yrs *rs Yrg Aln lrs

follows

An Yo -xo Ax

rs 1 rs rs rs
= — o o
Alnlrs (l:s)2 xrs Yrg Ayrs

And substitution of this expression intc (2.9) gives

o] o]
ij ysj xsj Aarsj .
= (] e} s9 +
(2.10) Ay, - , Aln
Y3 s Ys3 ) 1sr
4 oyo+o o\r _xo o\rxo 0_ox011rAx\
1 ryXs yrjyr rj rs rs rj] xrj rs rjyrs rjyrs yrj rs r
o .2 o .2 o .2
.
‘ (-rs) I j (lrs) it (lrs) J Ayr
( O.yO _XO yO. Wr x° o O [o) 1r o o +yo.yo 3 Axs
ri“rs rs rj 1- rj rs rj rs' rj rs rj rs rj rs riji“rs
. Ay
o .2 2 o .2 s
q (1) Il <1rs> i <1rs) It (a_) J )
\ J
call Mr,s

J

If we now take points Pr and P as reference- or base points by assigning to
el

them the non-stochastic approx1mate coordinates x ,y and x ,y

(Axr = Ayr = Axs Ays = 0), the coordinates of any other poxnt Pj of the

network are computed as

Ax (x,s) (o) o 1

3 ysj xsj Aa??i
(2.11) by = _xo‘ yo' Aln _52_ ‘
-3 s3] s)

rs

where the upperindices (r,s) indicate that these coordinates are computed

with respect to the base points Pr and PS. These coordinates are thus just
M . . .

like the height coordinates h(l) iS) and h(l), all linear (ized) functions

of the observables.
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With (2.11) we can write (2.10) as

4 Ax 1
b
Ax. Ax . (r,s) by
3 3 s x
2.12 = !
( ) ij ij + MJ Axs
L A‘YS J

And this expression is the complete analogon of the expressions (2.1),

(2.2) and (2.3) we found for the levelling network.

Also here we can transform from one system to another. The S-transformation
that transforms any reference system into the (r,s)-system, for instance,

follows from (2.12) as:

[ Ax y (x,s) r } 'Ax W
r . . r
Ayr by
Ax . Axr
A S 0 0 . A [
Ys . ys
ij Ax
(2.13) = M 1 . 0 )
: by, - 5 2
YJ J . ij
. ) 0 I -
{ . ) { ) SR

In the above given derivation we implicitly made use of the model of
similarity transformations. To see this, assume the origin of the reference

system pertaining to the set of approximate coordinates to be positioned in
o o
oint P_. Then = = 0. i€ iti Ax _, A AR and
poin r en x_ Y, 0. The difference quantities r! yr, rs

Aln lrs in (2.9) can then be interpreted as translation (Atx' Aty), rotation

(Ad), and scale (A)\) parameters. And with (2.11), relation (2.9) then reduces

to f Atx ]
Ax Ax. ) (xrs) 1 0 y? x? At
J J J J Yy
(2.14) Ay. = Ay, + 0 1 —x? yo Ad '
3 J 373 AX
. J

which is exactly the result one would obtain when linearizing the two

dimensional similarity transformation :
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(r,s)
X, cos sin X, t
3 ¢ ¢ 3 <
(2.15) = + '
-sin cos¢ . t
3 ¢ ¢ Yy -
under the assumption 2 =1, ¢° =0, t: = t; = 0.

Thus we can derive transformations like (2.13) from the (differential)

similarity transformation (2.14) by fixing two points Pr and Ps,i.e. by
(x,s) (r,s) . (x,s) A (x,s)
= ys

= Ay = Ax

setting Ax .

bx_y (x,s)*
J
[Afz’j] o o
similarity transformation to the approximate coordinates xr, Yoo X

= 0. The coordinates

may then be thought of as having resulted from a (differential)
o]

o
s’ Yg

of the base points_Pr and Ps.

Summarizing, we can say that despite the fact that many ways exist for
presenting the results of a free network adjustment, only special types of
vresentations deserve to be named coordinates. And since these coordinates
depend on the reference system chosen, one should exercise great care in
future manipulations. In particular one should be aware of the fact that
their statistical properties depend on the chosen reference system.

In the following sections we will generalize the above given results and
show how one can characterize the group of S-transformations. Also the

relation with the theory of generalized inverses will become clear then.

II.3. S-transformations

Consider the linear (ized) Gauss-Markov model

(3.1) E{yl= a x.
mx1 mxn nxl
Definition: A linear function ctx is said to be unbiased estimable under
the linear model (3.1), if there exists a linear function

btz such that E{btz} = Ctx.

Since E{béz} = btAx = ctx should hold for all x ¢ Rn, it follows that a
necessary and sufficient condition for ctx to be unbiased estimable is

c € R(At). Thus every linear function of x, including x, is unbiased
estimable if rank A = r = n, i.e. if R(A") = R'. Not so if rank A = r < n.

Then x is certainly not unbiased estimatle.
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In case of an angular network the linearized observation equations

) ( Ax
E{A_qkij} = \ k
Q Yk

(@] - (o] [o] © o O. . (=} A
S . . . . X, . X,
Yo o Tyyon Yy Yie o Fis 0 Yig o ¥i3 0 Fid ok
17T o 2!, 0 2 o .2 o .2 . ,.0 .2 o .2 . o 2. o .2 V.
: Do, 170)° sy (1) i

(lik) . (lik) . (lij) (lik) . ( 1k) ¢ i3 o Ti3c . ij Ax
" Ay,
(3.2) ¥y

constitute the linear model (3.1). And it is clear that the observed angles\
alone do not suffice to determine the unknown coordinates. The corresponding
design matrix A will therefore have a rank defect, i.e. rank A = r < n. This
situation is now typical for all free network adjustments, where the
observables may consist of angles, distances, distance ratios etc. In all these
cases the observations alone do not suffice to estimate the unknown coordinate
increments unbiasedly. _

From the condition c € R(At) follows, not surprisingly, that the linear
functions Ax are unbiased estimable. But what we like tc find are unbiased
estimable linear functions of %, which still can be interpreted as coordinates.

s .
Let us denote these unbiased estimable coordinates by n§; ). Unbiased

estimability then implies that x(S) is unbiased estimable by linear functions

of y, say By . We can then write
nxm mxi

(3.3) xS

E{By} , or

—
w
&Y

v,
»

]

BAX.

In section two we already met some examples of expression (3.3), namely the
height éoordinates hil), hiS) and h;M) which are linear functions of the
observed height differences and the coordinates (Ax;r'S),Ay;r's)) which
follow from expression (2.11).

Now if we stick to the example of a two dimensional angular network, the
x(S) should be transformable to any other coordinate system, say X, by means

of the (differential) similarity transformations (2.14):

(3.5) X =X + Mp ,

.o Zo 20 At
1 0 yj xj At
with R(M) = R ( 0 1 -x? yg ) and p = Ad




And since the angular observables are invariant for any networkshape
preserving coordinate transformation, i.e. for any similarity transformation
of the type (3.5), we have

'3.6) Ax = ax'S)

or with (3.4)

Ax = ABAX.
Since this expression should hold for all coordinate systemdefinitions possible,
i.e. Vx ¢ R?, it follows from theorem 2.1 of chapter one that BA is a

projector, projecting onto a subspace R(S) complementary to N(A) and along

the nullspace N(A) = R(M) = R(Vl)' We therefore have

e e . .
| o ¢
10 yg x-

(3.8) x(s) = BAX = S(VtS) lvtx, with RnrR(S}eN(R) and N(2)=R( g < )

o ° 01 -x_v.
R I
{
. . . . t -1t R T U SR B o \
And with the projector identity S(VOS) v, = I-v, 0 (g7) v, 1 (87) , this

expression can be written as
(3.9) x =x  + v, rnes—) v.J (8

which is the generalization of the expressions (2.1), (2.2), (2.3) and (2.12)

we found in section two. The (S)-system is thus defined by the restrictions
lt
(3.10)  ($) x = 0, with R" = R(S) & N(a)

Since the coordinate system defining subspace R(S) only needs to fulfil the
complementarity condition R = R(S) & N(Aa), it follows that there are many
more (S)-systems possible than the ones considered in section two. Some

more exemples are given at the end of this section.

The general expression for an arbitrary S-transformation now readily follows

from (3.8) as

=5, (v s) W=z - vlf(s+)tv ]'l(si) ; R

< R(S.) & N(a)
o i (o) n i 1 i

= Pr(s.),N(@)
1

(3.11)
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The last expression in (3.11) is for practical purposes the most manageable,
since R(Vl) = N(A) is given by the linearized similarity tranformation and
Si is chosen in order to define the reference system. Note by the way, that
the Si-matrix only depends on the subspaces R(Si) and N(A) and not on the
matrix representations taken for these subspaces.

Because of the projector property of the Si-matrix we have

(3.12) S.S, =8, (idempotence)
iTi i

And since all the Si project along the same subspace N(A), we also have

(see figure 5)

(3.13) S.S.

= 8.
i3 i
R(Si)
»X
N (A)
Fiqure 5

So far we only considered two dimensional networks of the angular type, but
the situation for other type of free networks is very similar. The only
difference lies in the nullspace N(A). For a two dimensional trilateration

network, for instance, the nullspace of the design matrix reduces to

.. :o
(3.14)  n@y =g (|1 ° 3
01 --xj

i.e. the scale parameter is excluded from the similarity transformation. And

if azimuths and distances are measured the nullspace becomes

(3.15) N(A) = R (

e O Hoo‘
e b [@ 3
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For three dimensional free networks, we will need the model of the three

dimensional similarity transformation:

x X, 5 24

s 3 i b 4

(3.16) ¥, |= )\RnyRZ ¥ | ¥ ty
z AR t

1L i z

with: A scale factor,

1 0 0 ‘cos 0 -sin
¢y ¢y
R = 0 cos® sind i R = 0 1 0
% X X v
0 -Sln¢x c05¢x smcby 0 cos®
t
X
and ty the translation vector.
T
z
Linearization, under the assumption lo = ¢z = ¢; = ¢2 =
then gives
(At
X
(s) o] o ot
Axl Axi [ 1 0 0 0 »zl yi X ) i
o) o) o .
ﬁyi = ﬂyi +:1 @ f B z; 0 %, ¥ Ad
Az Az RIS s R ~y? x° 0 22 J bo
i i i i %
Ag
L A
(3545

cos¢ sind O
2 z

; R =|-sin cos 0
z ¢z ¢z

0 0 1

from which the nullspace of the design matrix of a freethree dimensional network

can be extracted.

In table 1 we have given the various matrices which characterize the null-

space of the design matrix for free networks.

Let us now consider some examples.

Levelling network

EXEEEIE 1z

For a free levelling network we just have one translational degree of freedom,

i.e. dim N(A) = 1. Thus in order to define an S-system we need to choose a
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decisive . N(a)
. dim N{(A) -
observational type Translation rotation scale
levelling/ height differences/ . ' _
rel. gravity | gravity differences dim N(a)=1 1
2 dim. distances and dim N(A)=2 1 0
planar ,
network azimuths 0 1
distances dim N(A)=3{ 1 O bYs
i .
by
0 1 Lo—X]
. i _O o)
angles and/or dim N(a)=4 1 0 Yy LXy
| |
distance ratios 0 1 |-x§ i y?
i
3 dim. distances, azimuths |dim N(A)=3" 1 0 O©
network astron. latitude 1 ©
and longitude 0 1
distances dim N(A)=6'§ 1 00 ;0 -2 y;)
0 : z? 0 -x°
]
0 1 1.y2 x°
! nE *3 0
. : ! e} o o)
angles and/or dim N (a)=7 1 0 0 0 —zj yj e
- |
distance ratios o ! z? 0 -x? | yg
0 f g () ] | [¢]
| -y¥ - :
B Y3 o Xy 0 | zZ5
Table 1
A1 1
vector n§1' such that R(S) is complementary to N(A) = R( i ). Let us take
J_ /

R(S™) = N(A). Using expression (3.11), the corresponding S-transformation

matrix then becomes

(3.18) SM

-
f
[ I A=Y
.
S

S DS B

3

Example 2: two dimensional network of the angular type

In this case we have four degrees of freedom and the nullspace of the

design matrix is given by
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1 0 y? x?
N(a) = R( o of)
I
i

] 4
Let us now again choose matrix S such that R(S™) = N(A). The four

i\ % nx4’
restrictions (S7) x. = 0 then become
4xn nzl
An %n 4n . 5 kn % &
(3.19) TAx =0, £ Ay, =0, I (y.bx,-x Ay,) =0 and I (x Ax.+y Ay.,) =
yroog ey \ i . LS L - ATt ey
i=1 1 i=1 i=1 i=1

Giving the corresponding S-system the upper index (M), we get from applying

(3.11) the following transformation n/2
z Ax,
i=1 *
a) n/2

. . s (r-y25-5%%) (v2%+xTH) w39 S-R) M
(3.20) d - 3 - J ) J 2 J J 1=

T e e R
| ] ] J

- i=1
n/2

i=1

2

n /
> yi and n/2 being the

B

£D n/2 n
with: r = z

® a5 %, s
1 1 Il .. .
i=1 i=1 i

number of network points.

Example 3: two dimensional network with distance and azimuth observations.

In this case we have two translational degrees of freedom left. And the null-

space of the design matrix is given by

N(a) = R(

[ e B B
LRCEE S o B

By fixing just one network point, say Pr' the corresponding S-transformation

simply is

Ax ) ) (Ax, bx_
(3.21) Jpo=1 3

. {Yiéxi' ’E;&’f

Z(fﬁhﬁ+ﬁhr)
i s

~f|
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ExamEle 4: other then cartesian coordinates

So far we assumed the unknowns in the observation equations to be cartesian
coordinates. But the theory is of course also valid for other type of
coordinates. Instead of taking cartesian coordinates one can for instance

take polar-, spherical- or geodetic coordinates. Let us assume that n§1

denote cartesian coordinates and n%l an other coordinate type. With the

linear (ized) transformation

E
]

o

the original Gauss-Markov model

=
= 0 TR . 2y
E{y} = ax, with N(&) = R(M) = R ( 13
L o o 1)
0l =% W
ot o = =d
EEn s
then transforms to
q o o =
E{y} = a7 "Tx = AT "x = AR, with N(&) = R(TM)

Thus the cclumns of the matrix TM span the nullspace N(A).

Let us take as an example spherical cocrdinates. We then have

X. r, cos ¢, cos A,
d b h 1
3..22) (=] e icos b, sin A,
= ¥y ;i ¢l il
z. r, sin ¢,
i bt i

And linearization gives

© o o) o) °© _i° ,© o) o
Ax . sind. cosA, -r . cos¢, sinh, cos. cosA, Ad,
i g i i i 5 i i ol i 3
o] o o o o g o Gl 0
A =| -r. sin sinA r cosb, cosA cost, sinh, A,
Yi i ¢1 1 b & ¢ i 1 ¢l o 1 &L
. o © o
Az, cos¢ 0 sind, Alnr
g 4 i i il
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. ,0 o
-sind, cosA,
i i

or
Ad,
i
1
(3.23) A)xi = -.,.T
Alnr, +
i

Substitution of (3.17)

(3.24)

And this expression enables us to derive any S-transformation in terms of

1 r . y (s)

( .
L. o o
-r.sind,cosA,
i i
.0 -1lo . 2O
-r_cos®i sin}
i : i
o o o)
r.cosd,cosi,
i i i

L .

spherical coordinates.

Example 5: orientation and scale unknowns included in the observation equations

1o ., .0
~cos'd, sinA,
2 i

o o
cosd, cosA;
i i

-1 —1-
© ., ,O0 ., 40 (=) (o]
-r.sin¢.sinX, r,cosd,
i i i i i

o -1.0 o
r.cos ¢ cosA, 0
i i i

o . o} o . o]
r.cos¢.sinA, Y, sino,
i i TiTTi

. ¢}

. L0 ., 40
~sin¢, sinl;
i i

-1 o o)
cos ¢, cosA,
i i

O . .0
cos¢. sinA,
i i

o

COS¢i Axi
0 Ayi
.0

51n¢i Azi

[N

in the above expression then finally gives

. .0
~sinl;
i

. o .
tan¢?cosf? tan¢.s;nk9 -1
i i i i

0]

.
.

o

.o

-

In deriving S-transformations we so far assumed the unknowns x in the Gauss-

o

o 1 g

,

At
X
At
Y
At
Z
A
Ad
TA%)
&) |

»

<

N

Markov model E{y} = Ax to consist solely of coordinates. This assumption is valid

if the observables are functions of coordinates only, which is the case with

angles, distance ratios, distances etc. In practice, however, one will often

write down the observation equations in terms of directions instead of angles.

Beside coordinates, one will then also have orientation unknowns. Similarly,

one will additionally have scale unknowns if the observation eguations are
expressed in terms of pseudo-distances instead of distance ratios.

Therefore, in practice, the Gauss-Markov model will be of the form

(3.25)

E{y} =

(A1A2)[

X

)

}.

with X,: orientation- and/or scale unknowns; x.:

1

o°

the corresponding normal equations we have

coordinate unknowns. And for
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t -1 t -1 t -1
Ale A1 Ale A2 x1 Ale Y
(3.26) =
t -1 t -1 t -1
AZQy A1 AZQy Az x, A2Qy Yy

For the derivation of S~transformations it is now of interest whether one
considers the unknowns Xy to be merely nuisance parameters which are to be
reduced from the normalequations or whether one intends to involve these
unknowns in the many S-system definitions possible.

If one opts for the first approach, the reduced normalequations follow from

premultiplying (3.26) with the matrix

I 0
t -1 t -1 -1
-AzQy AI(Ale Al) I
This gives
t -1 t -1 ’ v t -1
AQ A AQ A X AQ Yy ]
(3.27) 1 1 1%y 2 1 1%y

t -1 t -1 -1t -1 =l t -1 t -1 -lt -1
0 A0, (1-1:‘1(11;19;y A,) AQ A, || %, A0, (I-Al(AIQy Al)Ale )y

call

And recognizing the matrix I-Ai(ATQ;1A£§AiQ;1 as the projector P =" P,

which projects onto the subspace R(QyA%) and along the subspace ¥

R(Al)' we can write the reduced normalequations as
) t -1 _ t -1
(3.28) (PA2) Qy (1>A2)x2 = (PAZ) Qy y

Since x2 now only contains coordinates we are back at our familiar situation.

For instance, for a two-dimensional planar network of the angular type we have

}

Y.

o}
M e

t -1 B ~
(3.29) N((PA,) Q (PA,)) = N(PA,) = R(

o

-

|
LR
u. 0 W
.o o
[ 99 B o BN W Ny |

The approach of reducing for the unknowns x, is the one which is usually

1
followed for two dimensional planar networks, since the orientation- and
scale unknowns in this case do not have a special significance of their own.
However, it is good to point out that in principal these unknowns can also

be used in the definition of an S-system. In case of a two dimensional planar
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network with direction- and pseudo-distance measurements for instance, one

can scale and orientate the network by fixing one scale unknown and one
orientation unknown. The translational degree ofAfreedom is then taken care

of by fixing e.g. one network point.

This brings us to the second approach where the unknowns x, are intended to

be involved in the S-system definition. Since the null-space N(A1§A2) of the
Gauss-Markov model (3.25) differs from (3.29) we see that some modification is
needed, in order to find transformations like (3.17).

Let us first assume we have a two dimensional planar network with only direction
measurements rij' In figure 6 a part of such a network is drawn. Also the

theodolite frame in point Ps is shown by dashed lines; the direction PSPo

being the direction of zero reading.

Figure 6

The idea now is to temporarily assume point Po to be another ordinary network

point. Its coordinates are then given by

»
1

o xs + lso sin ©
(3.30) s

y + 1 cos O
[ sO S

with the orientation unknown Os being the azimuth of line PsPo' By interpreting
Po as an ordinary network point, we see that the direction observable rsj
can be interpreted as the angle cobservable aosj' But this means that

transformation (2.14) applies:
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¢ 3 ¢ y (s) 7

)
. . ol . . ()
bAx Ax 1 yo x° | |At
s s s x
o o
Ays Ays 0 1 “X_ Y, Aty
(3.31) = + o o .
Ax Axo 1 0 Yo o % Ao
o o
Ayo Ayo 0 1 XY, \Ak J
\ ’ / \ ’ J \ ’ ’ J

We can now use the linearized version of (3.30) in order to express

t
the transformation (3.31) in terms of the coordinates (...Axs Ays AOs Alnlso..) .
This is similar to what we have done in example 4.

From (3.30) we obtain

(1 0 o 0 ][ ax ) (1 0 0 0 V[ ax ]
S s
0 1 0 0 Ay 0 1 0 0 Ay
S _ s
-1 0 1 0 || ax 0 0 1° coso® 1° sino® || a0
@] SO 1= sO s S
Lo -1 0 1| ay 0 0 -1° sin0® 1° coso® || Alnl |
o] sO S SO S SO
Qor
( 1 0 0 0 )
) 0 1 0 0 , \
Bx W e} (o] o ] AX
S -cos0 sinO cosO -sin0O s
Ay s S S S Ay
(3.32) ) = lZo l:o lZo lZo
AO o] (o] (e} (o] Axo
= -sinOs -cosOS sinos cosOs
( Alnl__ ) L by )
SO 10 lO lO l0 (o]
L so so so so

Substitution of (3.31) into the above expression then gives

4 : 3 r . } (S) ( . . . . }
Axs Axs 1 0 yo = [ st )
s s X
Ays Ays 0 1 -x: YZ Aty
= +
(3.33) AOS AOg 0 0 1 0 Ad
Alnl_, binl 00 0 1t |(&y
L : J \ : J L . . : - /
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However, since the direction measurements only determine the direction
PsPo we can delete the Alnlso-row from (3.33). Thus the null-space of the

Gauss-Markov model (3.25) becomes, if only directions are measured:

[ 5 e o)
. X,
yJ J
. _ Lo .o
(3.34) N(a A, =R (| 0 1 %y Yy )
0 o 0

If only pseudo-distances are measured, we obtain in a similar way

’

. . ‘o ‘o

0 . X,

yJ J

2y - oo _0 o

(3.35) N(Al.H2J R(| 0 1 xj yj
0 0 1

Although the results (3.34) and (3.35) could have easily been predicted,

we have given a so detailed derivation because the same reasoning applies to
the more complicated situation which arises in case of three dimensional
networks.

In figure 7 we have generalized the situation of figure 6 to three

dimensions.

Z A

Pigure 7

Since the local coordinate differences

X l ., sinv , sinr
s3 s sj s
vy . |I=l 1 . sinv , cos r
sj sj sj s
z l ., cos v

s3 sj s3j
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in the theodolite frame are related to the coordinate differences (Xs. YSj Zsj)t
by the transformation
ij -51n@2’s —sxn@llscosez’s cos@l'scos@?_'s cos@3'S sxn@3's 0 xSj
Y . = e . . ei e} )
s cos@z,S 51n®1’551n@2's cos@l'SSLnGZ's sln@3’s cos@, o 0 ysJ '
Zsj 0 cos@lls sxn@l,s 0 0 1 zsj
we get for the points Po and PS:
X - -si .si ~-sinB
Xo . cc:sG)l's cos@z’s Xo Xs s;n@2’551n®3,s sin 1,s°°sez,s°°59§%
- + . N +1 - i i ,
Yo Ys .lso c:os@1's 51n62's ; Yo = Ys lso cos@2’551n93's 1n®1’351n62,scosqgs
Z Z sin0® zZ- Z cos® cos@. .
. "o s i,s o s 1,8 3,8
(3.36)

Following the same reasoning as before and assuming that pseudo-distances and

directions, horizontal as well as vertical, are measured we then finally get

the transformation:

( 1 f y(s) 7
AX Ax 1 0
s s
o)
Ay Ay 0 1 0O Z
s s
Az AZ 0 0 1 -¥°
s s
Ael,s = Ael,s + 0 0 O -sxn@z’s
o) o
A@2,s A@z’s 0 0 © tan@llscosez's
A® AG 0 0 O cos-1®O cos@o
3,s 3,s i,s 2,s
A A 0 0 O 0
.S .5 . . .
| - , - J R :
(3.37)
@1 s and @2 are the orientation unknowns which
[ ’

the first theodolite axis with respect to the XYZ-frame and 63

. AR F
-z° v© %% |At
s s s x
0 -x° ¥°||at
s s y
o o
XS 0 ZS Atz
cos@zls c O A¢x '
o )
tan91'551nezls -1 0 A¢y
-1_0 ., O
cos 1,951n®2,s 0 0 A¢z
0 0 1 [{AX
. L

determine the direction of

is the

’

horizontal orientation unknown. Thus if the theodolite has been levelled,

the angles ei g and 62 ¢ determine the direction
r- 14

peint Ps with respect to the XYZ-frame.

of the gravity vector in



II.4. The relation with generalized inverses

Consider again the Gauss-Markov model

(4.1) E{y}= a x, rankA=r<n, m2z2r, Q
mxn nxl mxia

From chapter one we know that the set of weighted least squares estimates X

of x is given by

with B being a particular welghted leabt squares generalized inverse of 3,
unlquely characterized by R(C ) = Q A ) and arbitrary choices for R(S)

and R(D). We now also know that in order to obtain an unbiased least squares
estimate of the coordinates x(S), we need to transform the in general biased
estimate & by means of an appropriate S-transformation:

. P N W, o4
Q. s sy V]

o ¢t
‘

Once again we see here that the first- and second moments, E{ng)} and
92(5)’ very much depend on the chosen S-system.
Substitution of one of the estimates out of the set (4.2) into (4.3) gives

(4.4) £ =rste) Ty T

And it is readily seen from our general expression (2.13) or (5.3) in

chapter one of generalized inverses of A that (4.4) reduces to
(4.5) 2'%) = s(c'as) ¢ty
with R(C ) = R(

Thus any reflexive weighted least squares generalized inverse of A will

always give us unbiased estimates of the type 2(5):
) t.t -1 . -1t t -1
(4.6) i(s‘ = S(SAQ AS) S AQ y.
Y Yy
Expressioné (4.5) and (4.6) indicate that we obtain the estimate 2(5) by

simply solving for the extended Gauss-Markov model:
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(4.7) E{ly} = & x , rankA=r<n, m2r, Qy ; under the restrictions

mx1 mxn nxl mxm

(Sl)tx = 0, with R" = R(S) & N(A)

In practice this is probably also the easiest way of computing the estimate
. (s)
b4 .
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