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1. Introduction

For computing geodetic networks on an ellipsoid of revolution the executed
terrestrial observations need to be reduced to the reference surface. For
this reduction gravityfield information is indispensable. In practice,
however, the necessary gravityfield information is not always available
meaning that the computed geodetic coordinates ¢ and A are effected
accordingly. In fact they become anholonomic. A description of the
resulting misclosures‘can be made by using the general Stokes integral

theorem.

2. Anholonomity and the Stokes integral theorem

Let us consider the differential one forms
W= r. dx’, (1)

a : o]
We assume the matrix ri to be smooth, with det ri # 0 having a constant
. . . . i . .
sign; 1ts elements are functions of the coordinates x . The differential

one form wa is exact if there is a function £% such that

w = ag® (2)

Using the ai notation for partial derivatives, it follows from (1) and

(2) that

o

and since Biajf = Bjaifa, we get as necessary conditions for the

differential one forms wOt to be exact:

3 ¥ = a_r‘j’,‘ . (3)




A differential one form that satisfies (3) is
exact differential form is always closed, but
generally false. An additional condition that
to be exact is that the domain of wa is simply
the domain to be an Euclidean space, which is
(3)

. . a
differential forms w to be exact.

After applying the exterior derivative operator 4 (see e.g. Flanders, 1963)
to the differential forms (1), we get
i a a ) i
dwa = d(rq ax®) = l-(B.r.~8.r.) ax? A ax’, (4")
i 2 i 13
. . i ia . . .
and substitution of dx = r v (the inverse relation of (1)) gives
. 9 i B Yaef o Y
s = 1-(8‘rq-8_r9)rjr}w Aw ae Q wB A Y (4"
2 71 CiT§ TRy By
o .
where the quantity QBY is known as the object of anholonomity (see e.g.
Grafarend, 1975).

From (4) follows that, if the object of anholonomity o

called closed. Thus an

the converse, however, is
will guarantee closed forms
connected. Since we assume

simply connected, condition

is, in our case, a necessary and sufficient condition for the

does not vanish,

By

dwa¢o,.meaning that the so-called integrability conditions (3) are not

fulfilled. In this case the differential forms wCL are inexact orx

anholonomic.

For exact differential one forms (see (2))

closed line integrals vanish.

For anholonomic differential forms this is generally not the case. And the

resulting misclosures can then be described with the aid of the general

Stokes integral theorem, which reads

f W = f aw” (see e.g. Flanders,
G

9G

Substitution of (4) into (5) gives

(N

f W = f o wB Awl -
3G c BY é

. . .
(3.r -3, r%) dax? A ax*
FTi TiT .

1963, p. 64) (5)

l
!

L (6)

In the geodetic literature already various examples of anholonomity are

treated. In (Grafarend,

1975) the anholonomity of the natural orthonormal

frame is considered and Frobinius type matrices of integrating factors

are introduced which enable to transform anholonomic differentials into



holonomic ones. In (Leclerc, 1977) estimates are given for the misclosures
in the local coordinates for a simple closed path and in (Doukakis, 1977)
anhclonomity caused by neglect of polar motion is studied.

Another case of anholbnomity comes up in geometric geodesy. In classical
geometric geodesy one is confronted with the problem of transforming the
measured elements into the geodetic coordinates ¢ and A. In order to
execute this transformation one needs, among other things, a geodetic
datum definition and the availability of gravityfield information for
reducing the terrestrial observations to the reference surface, an
ellipsoid of revolution.

In practice, the datum definition includes the fixing of one network point
on the reference surface. But since this reference surface is an ellipsoid
of revolution, one theoretically fixes one coordinate too many. Hence

the possible occurence of anholonomity. In this paper we will, however,
restrict ourselves to the case of anholonomity which follows when the
gravityfield is not properly taken into account for the reduction of
terrestrial observations to the reference ellipsoid. We will describe the
resulting distortions in the geodetic coordinates ¢ and 2 using the

Stokes integral theorem.

3. Transforming the measured elements into the geodetitc coordinate

differentials

Let us consider the following four orthonormal triads:

The earth-fixed frame & with 1.3 toward the average terrestrial pole (CI0O)

Croq toward the line of intersection of the

plane of the average terrestrial equator
and the plane containing the Greenwich

vertical and parallel to €13

gI—Z completing the right-handed system.

The ellipsoid-fixed frame CH with &3 parallel to the rotation axis of

the ellipsoid of revolution




€ lying in the ellipsoidal equator-plane.
=i=

e, completing the right-handed system.

i=2

The astronomical frame oA with ¢ i toward astronomical caot
= L=

€re9 toward astronomical north

en3 toward the local astronomical zenith.

The local geodetic frame e with e toward geodetic east
-0 —0=1

e toward geodetic north
—=2
4=3 toward the local geodetic zenith.

These four frames are related by the following transformation formulae:

e =R e
—=A N =1
e =R e, 7
- oA =i (7)
e, = (I+E)e: ’
—1i —I
where
-sin v cos v 0

Ruv = -sin u cos v -sin u sin v cos u

COS u Ccos Vv cos u sin v sin u

I: the identity matrix

0 -€ €
2 Y
E = € 0 -€
z be
-€ € 0
v p'e
¢, ¢ are the astronomical and geodetic latitudes
A, A are the astronomical and geodetic longitudes
€

+ € , € are the small angles of rotation relating 31 to Ei

When projecting the differential displacement vector dx onto the three
- . A a .

axes of the frames EA' Ea we get the differentials w , w respectively,

with

dx =wAgA = w , . (8)



and

dl sin 2 sin A dl sin g sin ¢
wA = | dl sin Z cos A W = dl sin T cos o (2)
dl cos 2 dl cos g
where
A, 0 are the astronomical and geodetic azimuths
Z, T are the astronomical and geodetic zenith angles
dl is the length of the displacement vector ax.
From (7) and (8) follows:
o T A
= + 10
W= Ry (T4E) Ry v (10)

and with a first order approximation, i.e. neglecting quantities like

(A-X)zl (A-2) (9-9), Ei etc., the transformation matrices occurring in (10)

become:
1 ~(A-A\)sin¢ (A-X)cos
T . '
R¢AR¢A = (A-A\)sin ¢ 1 (d-9) (11")
- (A-A)cos ¢ -(0-¢) 1
and
¢ 0 ~-Le_cos¢cosi+e_cosdpsink [-€_singcosi-€ sindsin))
X y X Y
+ezsin¢] +€zcos¢]
T R .
R¢XER¢A_ [Excos¢cosk+€ycos¢51nk 0 -[eycosk—ex51nkj
+€zsin¢]
-E€ singcosi-¢ singsind [€ cosA-€ sin)] 0
x % y x
+€zcos¢]

For the purpose of obtaining the north-south component £ and east-west

component T of the deflection of the vertical 6, we temporarily assume ax

£ .
0 be parallel to the EA=3 axis
which =8 holds.

(see figure 1). That is, we assume Z2=0 for




n L=

e

—0i=3

(ceod.zenity)

dx [l e (astronom. zenith)
—] —A=3

— ‘
~ o’ e _2(geod.north)
~ o=
~
~
= Figure 1
§q=1(geod.east) =
Substitution of Z = 0 and = 6 into (9) gives with (10) and (11), and
the approximation sin 6 = 6:
sinf sina ] 6 sin « (A-X)cos¢ + [Fexsin¢cosk—evsin¢sink+£ﬂcos¢] ]
sinf cosa {=| 0 cos a |[={ (¢-¢) + [Exsink—sycosaj
cosB 1 1

(12)

From the first two rows of (12) follows for the east-west component 1 and

north-south component. £ respectively:

6 sin o

(A-X)cosd + Ezcos¢ - € singsini - Exsin¢cosk (13")

6 cos «a

oy
I

(d-9) + € sina - € cosA (13")
x y

Note that the two last terms in (13') and (13") are polar migration-like

correction terms (see e.g. Heiskanen and Moritz, p. 189).

Substitution of (13) into (11) gives with (9) and (10):



’

dl sin § sin O

.dl sin ¥ cos « =
. d1 cos ¢
( ) 1 —[ntan¢+cos—1¢(excosk+€ sin)] n
~[ntan¢+cos~1¢(excosk+€ysink)] 1 d _E .
{ -n -g 1

[ dl sin 2 sin A
.{ dl sin 2 cos A - (14)
dl cos 2

. . A . .
This relation relates the measured elements w to their geodetic ccunter
a ' ‘ .
parts w . Consequently relation (14) should contain the classical reduction
formulae for azimuth and zenith angles. This is seen as follows: Dividing

the first row by the second row of relation (14) gives

. . . -1 . s
sina _ sin Z sin A - [ntand+cos ¢ (Excosk+cysan)J51n Z cos A + 1N cos Z

. -1 i ) _ ) (15)
cosQ {ntan¢+cos ¢(€xcosk+€yslnl)351n Z sin A + sin Z cos A + & cos 2

The conversion formula for azimuth then follows from substitution of

A =0 +AA into (15) using a first order approximation:
An = A-0 = ntan¢.+ [E€sinA-ncosAlcotz + cos-1¢[§xcosk+€ysinkj (16)
The third row of (14) gives us

cos L = -nsin Z sin A - £ sin Z cos A + cos Z

Substitution of Z = ¢ + AZ and again using a first order approximation

results in the reduction formula for zenith angles:
Az = 2 -C=-nsinA -  cos A (17)

In an analogous way one can obtain the classical distance reduction

formula from a relation like (14) (see e.g. Teunissen 1922).

A . as
The next step is to relate the differentials W to the geodetic coordinate
differentials d¢, &4 and éh (h is the geometric height above the reference

ellipsoid).




With

dx =dx e, =We , (18)
I —1 —
and
i=1 .
X [ (N+h) cos ¢ cos -
(=2
X = (N+h) cos ¢ sin X (19)
i=3 2
xl (EE N+h) sin ¢
where

N is the principal radius of curvature perpendicular to the meridian
2 is the semi major axis of the reference ellipsoid

b is the semi minor axis of the reference ellipsoid

we get, using (7):

aA cos—1<b(1\,’+h)—1 0 ( wq=1 )

as | = 0 (M+h) ~ | w2 (20)
=3

dh 0 (W

where M is the principal radius of curvature in the

meridian.

The cémbination of (14) and (20) finally gives us the relation which

. . . . . A
transforms to a first order approximation, the differentials w ,

containing the measured elements,

differentials dA, d¢ and dh:

ax )

ay | =
dn

N .

o -1 -1

cos ¢ (N+h)
(M+h) " [ntand +

into the desired geodetic coordinate

-1 . (M+h) £ (M+h)
cos “¢(€ cosA+e sin)) ] _
X Y
-n -£ 1
A=1
]
A=2 "
. (21)
A=3 }
To carry out this transformation properly, we see that we need information
on the deflection components £, N and on the geometric height h above the

-

- -1, -1 . . -1 -
-cos 1¢>(N+h) 1[ntan¢+cos Q(EXCOSA+€yslnX)] ncos "~ ¢ (N+h,

1



ellipsoid. In practice, however, this information is not always available
and consequently one will obtain anholonomic coordinate differentials

d¢', dA' and ah'.

4. Anholonomity due to lack of gravityfield information

By setting n, &, h and the rotation angles € equal to zero in (21) we

obtain the anholonomic coordinate differentials:

-1 -1

an’ cos N 0 0 dl sin 2 sin &
do'’ = 0 M_1 0 dl sin Z cos A (22)
dh' 0 0 1 dl cos 2

Combining (22) and (21) then gives us the relation between the exact
coordinate differentials d¢, d) and dh and the inexact or anholonomic

N

geodetic coordinate differentials d¢', ar', dh':

ax’
ap'| =
éh'
[ - - -1, -1
ﬁ%ﬁ ﬂghcos %[ntan¢+cos 1¢(€Xcosk+eysink)] -ncos 1¢N
N+h -1 . M+h _——
aave cosp[ntand+cos ¢(€xcosk+€yslnk)3 u oM
L N(N+h) cos¢ E (M+h) 1
[ ax
a¢ (23)
dh

a relation which is of the form of (1) and for which (2) holds.

From the last row of relation (23) we get

Q Q
J an' - an = [ [n(N+h)coséal + £(M+h)dd] , (24)
P P

in which we recognize the well-known formula of astronomical levelling,

in physical geodesy, for computing the height differences between the

reference surface and the geoid.



In a similar way we can use the first two rows of (23) in geometric
geodesy to describe the misclosures in ¢ and A due to the neglect of
gravityfield information. Assuming that the geodetic network points lie

on a surface parametrized as h = h(A,9), it follows from (23), with

dh = gg a¢ + g% ax, dSA = N cos¢dX and ds¢ = M d@$ , that:
§ dsi—dsx = ﬁ[hCos¢—-‘ﬂ]]d%+[(M+h)[ntan¢+cos ¢(€ ,COSA+E 51nk)] n553d¢ (251
é ds&—ds¢ = §[—(N+h)cos¢[ntan¢+cos @(e cosA+eyslnA)] g ]dl+[h E ]d¢ (25"

The Stokes integral theorem can now be applied to (25) in order to
describe the misclosures in ¢ and A. Since we are dealing here with

differential one-forms, the Stokes integral becomes

f ca = f dca.
with (26)

o o o
c = cl(x,y)dx + cz(x,y)dy

o o
dec = Byc1 dyAadx + 9 ca

e o a
% 2dany = (ch2 aycl)dxAdy

"As an example we apply (26) to (25'), assuming the rotation angles to be

zero and approximating M and N by R the mean earth radius. The result is:

oh on on oh 1
fj[ - Bs} asé R

§ ds’~ds ta ¢ + . gh
% 9%

A
< ]ds}\ ds¢ (27)
¢
Further simplifying (27) by assuming n,%{ to be constant for the region
considered, gives:

1 dgh £
§ dsi -dsA = ff - Qs\AdS = - E-ff dsAAds ' (28)
from which follows that the misclosure in east-west direction is

proportional to the enclosed surface.

In a similar way one will get from (25")

$ dsy - ds, =-§ f]dsAAds¢ (29)

Thus we can conclude that, under the simplifying assumptions made, ex-

pressions (28) and (29) enable one to estimate the misclosures in ¢ and 2,

-



due to the neglect of gravityfield information, of closed loops in

geodetic networks computed on the reference ellipsoid.
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