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Abstract

The concepts of quality control in kinematic data processing are discussed.
Particular attention is paid to testing procedures. A distinction is made
between global and local model testing. Slippage-type tests are discussed in
detail. Furthermore a method for the estimation of variance components is
described. The interdependence of testing procedures and filter adaptation is
pointed out and is illustrated by an example.

1 Introduction

Land vehicle navigation systems are supposed to provide the user with an optimal
estimate of position at every instant. These position estimates are often obtained
using kinematic data processing algorithms. The problems encountered in data
processing for land navigation purposes are to a large extent similar to those found
in other fields where kinematic data processing is applied, e.g. aircraft navigation
and offshore surveying.

In general two characteristics of kinematic data processing are that the object
(vehicle) of which the position has to be estimated is moving and that usually
more than one positioning system is used. This inevitably leads us to the concept
of integrated navigation systems.

Before any computations can be performed at all, models underlying the mov-
ing system have to be specified. These are functional models describing the non-
random characteristics of the dynamics (or kinematic behaviour) of the system
and the relation of the observables with the system parameters. Stochastic mod-
els describing random disturbances in dynamic and measurement models have to



be designed. Ilowever, any misspecification in the (functional or stochastic) model
will invalidate the results of the (position) estimation and thus also any conclusion
based on these results. It is crucial therefore to have ways to validate the assumed
model. This brings us into the realm of quality control.

We assume that the kinematic data processing is based on the well-known
Kalman filter (see, e.g., Gelb [1974]). The rationale of using Kalman filters is that
only then optimal use is made of all present and past information and that a much
more enhanced quality description of the system is feasible than with single fix
processing.

Quality control and Kalman filtering are general concepts and thus indepen-
dent of a particular application. Hence we have no particular sensor combination
in an integrated navigation system in mind. Possible positioning measurements
are, for instance, map matching procedures, dead reckoning ((differential) odome-
ters and compass), and radiopositioning systems (GPS, Loran-C). The particular
characteristics of land vehicle navigation enter in the design of the dynamic sys-
tem model (which parameters are of interest and what is their relation in time?)
and in the design of the measurement models for the various sensors to be im-
plemented. Once the dynamic and measurement models have been specified the
quality control procedures outlined in this paper can be applied.

The contents of this paper is as follows. In the following section we briefly
introduce the Kalman filter. Then we discuss the concepts of quality control in
Section 3. Testing procedures to detect possible misspecifactions in the model
are discussed in Section 4. In Section 5 the adaptation of the stochastic model is
discussed. The close relation between model adaptation and testing procedures is
discussed in Section 6 and is illustrated with an example. Finally some concluding
remarks are given.

2 'The Kalman filter

In this section no derivation of the Kalman filter algorithm is given. The literature
abounds with numerous derivations based on different concepts, and we merely
point out that the Kalman filter can also be derived using the concept of least
squares. The reason we make this observation is that the theory of quality control
is well established for least squares adjustment [Teunissen, 1985]. This observation

greatly facilitates the implementation of quality control techniques in the Kalman
filter.

Consider the following linear dynamic system with dynamic model and mea-
surement model given as

Zy = Qrr-1zi_; +d; (1)
Yy, = Az +g (2)



where an underscore indicates the random character of a variable; the n-vector
zx denotes the system state, a set of parameters that completely describes the
system at time k; ®,,_; is the state transition matrix that .describes the non-
random transition of the state from time k — 1 to k; dy is an unobservable random
disturbance vector that models the uncertainty in the state transition at time k
(the sample of d, is taken to be equal to the zero vector); y, is the my-vector
of observables at time k; e, is mi-vector of measurement noise; and Ag is the
my X n designmatrix that relates the mean of y, to the statevector z;. With the
customary assumptions the Kalman filter algorithm reads [Kalman, 1960; Gelb,
1974) '

Zepe-1 = ‘I’k,k—lik-xw-l + d; (3)
Pre-1 = Ppp-1Pi 1@y, + Qi (4)
Ly = Zape-r + Ki(y, — Aeigp-1) . ()

- Pe = (I - KpAyx)Pyp-s (6)
Ky = Pip1Ay(Re + AP A}) 7! (7)

where Py, Qi, and Ry are the covariance matrices of the system state, disturbances,
and observables respectively.

Equations (3) and (4) constitute the time update and equations (5) to (7) the
measurement update. An important role in the process of verifying the validity of
the assumed mathematical model is played by the so-called predicted residual. The
predicted residual is defined as the difference between the actual system output
and the predicted output based on the predicted state

Yk =Y, — Arlyp-y - (8)

The predicted residual represents the new information ‘brought in by the latest
observable Y,- Under ‘the working hypothesis that the mathematical model is
specified correctly, the predicted residual has well defined statistical properties:

v~ N(0,Q.,) , (9)

where
Qu, = (I} + AkPk“‘-lA,‘c) . (10)

Note that the predicted residual and its covariance matrix are available during
each measurement update.

Knowledge of the distribution of the predicted residual can be used for testing
the validity of the assumed mathematical model.



3 Quality Control

In the introduction we established why quality control is of the utmost importance
in kinematic data processing. Additionaly it can be remarked that in general
dynamic systems are probably more prone to system failures, which we will call
model misspecifications; than static systems. Furthermore such misspecifications
(e.g., outliers in the data; sensor failures) have to be detected in real-time in
order to prevent degradation of the positioning estimation result. In general one
only has two or three positioning related measurement systems available. This
renders a correct detection of a misspecification and decision regarding the cause
of the misspecification rather doubtful if one restrics oneself to a single positioning
update. Besides an unmodelled trend (e.g. a “soft” sensor failure) might be
impossible to detect using quality control procedures based on a single fix only.
We therefore introduce methods that take more than one epoch into account in
order to facilitate the detection of unmodelled trends. '

Another aspect of quality control we will consider is the establishment of a
correct stochastic model. As noted before, the estimation results are only optimal
if the model is correct and an improved estimate of the stochastic model will
certainly enhance the estimation results.

We will now discuss the term quality in some more detail. In geodetic literature
the term quality comprises two aspects: reliabihity and precision. Precision is a
measure for the spread of the estimation results due to the stochastic model and
is usually represented by a covariance matrix.

Reliability is concerned with the effects of possible misspecifications of the
model on the estimation results. More precisely reliability describes the ability of
the redundant observations to check model errors. Only if precision and reliability
are taken into account simultaneously one can speak of quality control.

The concept of reliability only has actual meaning if one performs tests for
possible misspecifications in the model. Thus testing procedures form the basis of
any reliability theory. This means, for example, that an integrated system with
redundant measurements is still unreliable if the redundancy of the system is not
used to test for possible misspecifications. '

Because one usually has some ideas on which misspecifications might occur
one can check beforehand (i.e. in the design phase) if the tests related to these
misspecifications lead to an sufficiently reliable systein.

In this paper we will examine two aspects of quality control more closely.
Firstly we describe test statistics to detect misspecifications in the model, in par-
ticular misspecifications'in the mean of the predicted residual (8). That is, we
will only consider slippage tests. Secondly we discuss a method to estimate the
variance levels of the diflerent observation types and the dynamic noise.
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4 On Testing Procedures and Reliability

For the testing procedures considered the null hypothesis is that the models (1)
and (2) and the associated stochastic models are specified correctly. We make a
distinction between local model testing and global model testing. We speak of local
model testing when the-tests performed at time k only depend on the predicted
state at time k and the observations at time k. If the test takes more than one
epoch into account we speak of global model testing. From this definition it follows
that in contrast with the global tests, the local tests can be executed in real-time
and thus corrective action can be taken immediately.

Furthermore we will consider two specific types of tests. Overall model tests
do not specify any particular alternative hypothesis to be tested against the null
hypothesis. Rejection of an overall model test may indicate an unspecified failure of
the system model. Because one is generally interested in the cause of the rejection
one will try to specify several misspecifications as alternative hypotheses. Our null
hypothesis and alternative hypotheses can be specified in terms of the predicted
residuals. We will first consider local tests. The following two hypotheses are

considered:
e e IIO.k: Uy ~ N(O,Qv_k)

(11)
Har: v ~ N(Vu,Qua)

We will assume that the m;-vector Vv, can be parametrized as

Vvk = C.,__k Vk

2
my X1 kabk bk)(l’ . (1)

with the full rank matrix C,_x known, the bi-vector V, unknown, and b, < m;.
It is well-known [Graybill, 1976; Teunissen, 1985; Koch, 1988] that the local

overall model LOM test statistic can be written as
[ %

T =v;Q%u | . ’ (13)

where the test statistic % has the following distributions under Hy ; and Hy 4

Hoi: T* ~ x*my,0)

(14)
Hpp: T ~ x2(mg, Ai)

where .
A= ViCo 1 Q hCok Vi

v

is the noncentrality parameter of the test.
The test of size a is now as follows: Reject Hy_, if and only if T* satisfies
T > x¥(e: my) where x*(a : m;) is the upper a probability point of the central



x?-distribution with m, degrees of freedom. If the hypothesis Hy_; is rejected, one
can search for possible misspecifications of the model.

A special case arises if one considers one-dimensional misspecifications. Then
the number of columns of the matrix C,_; is chosen equal to one and the matrix
becomes a vector, which we denote as ¢, ;. In this case the test statistic can be
written as [Teunissen ahd Salzmann, 1989):

-1, \2
¢k — (C;.lcQu-ka)
Co 1@ kCor

(15)

The lower case kernel letter ¢t will be used for our one-dimensional slippage test
statistics. This test statistic can be used to identify particular one-dimensional
misspecifications in Hy_y, such as a slippage in the mean of the predicted state, a
slippage in the mean of the observables, or a slippage in the mean of a combination
of observables and the predicted state. Hence we call (15) a local slippage (LS)
test statistic.

For every test procedure one has to define the level of significance (a). The
level of significance is the probability that one rejects the null hypothesis Hy_; even
when Hg, is true. Additionaly one also wants to control the error of accepting
Hy_, when the alternative hypothesis I Ak is true. This is done by choosing the
power of the test (1 — ), where g is the probability of accepting Ho_, when H4 .
is true. By fixing o and § the noncentrality parameter A of the (one-dimensional)
test can be determined.

Once the noncentrality parameter has been fixed, we can compute the size of
the errors V. These are called marginal detectable errors (MDE’s) and can be
computed for each one-dimensional alternative hypothesis as

Ak
Vil = —— 16
IVl Ve Qkeus | (16)

The MDE'’s give the magnitude of the misspecifications that can be found with
probability 8 performing the one-dimensional tests. The MDE’s are a measure of
the so-called internal reliability.

One can obtain a best estimator of V, under H4 ; as

ilc = [es 1 Qo kco] M) @y kuy - (17)

If one, for instance, suspects sensor failures or outlying observations one can
follow the datasnooping approach [Baarda, 1968; Teunissen, 1985] by choosing m,
number of vectors ¢, ; of the form

G = (0 N 0)' ,
mg X 1 1 ) my ’ (18)



fort=1,...,m,.

The test statistics given above are easily executed in a Kalman filter environ-
ment. This follows since the predicted residual v, and its covariance matrix Q,_,
are readily available during each measurement update. A disadvantage of the test
statistics given above is, however, that they are local. It will be clear that obser-
vations taken after timé & have no effect on these local tests at time k. Thus any
misspecification in the mathematical model that may occur after time k£ has no
effect on these tests. A somewhat similar situation exists for observations taken
prior to time k. That is, although local model testing is dependent on the observa-
tions taken prior to time k, this dependency is rather weak, since misspecifications
that occur prior to time k are only felt indirectly via the predicted state.

Therefore we turn to global test statistics that take more than one epoch into
account. Global test. statistics are based on a batch (or window) of predicted
residuals (v;, ¢ =1,/ +1,...,k). It can be shown [Teunissen and Salzmann, 1989]
that a test statistic similar to the OM test statistic can be derived

T =Y uQ:y, |, (19)

which under Ho_ is distributed as x*(T%, m;,0). Note that this test statistic
reduces to the LOM test statistic (13) for I = k. The global recursive test statistic
T"* can be used to perform an overall model test for detecting possible unspecified
global model errors, and is consequently called global overall model (GOM) test
statistic. It is seen that the GOM test statistic can be computed recursively.
Hence, it can easily be implemented in Kalman filter software.

The LS test statistic can be generalized to more than one epoch as well, but
this cannot be done so straightforwardly. This is due to the fact that a possible
misspecification does not only influence the predicted residuals directly via the ob-
servation vector, but also indirectly via the predicted state. It is possible, however,
to derive recursive forms for these so-called global slippage (GS) test statistics. The
GS test statistic reads [Teunissen and Salzmann, 1989):

k_ [T ¢y i@y vl
C XhicQukens |

¢

(20)

Note that this test statistic reduces to the one-dimensional LS test statistic (15) for

= k. The one-dimensional global slippage test statistic t"* can be used to identifly
particular one-dimensional global misspecifications in Hy_x. Recursive schemes for
the computation of the vectors ¢,;, i =1,...,k can be derived from the Kalman
filter algorithm. In |[Teunissen and Salzmann, 1989] recursive schemes are given
for the following cases: a) a permanent slip in the state vector that starts at time




l; b) a single slip in the vector of observables at time l; and c) a sensor failure that
starts at time [.

The advantage of global tests is that their detection power is considerably
larger than that of local tests. Depending on the power of the various tests, the
choice of the window length of the global tests should be made in the design
phase of the filter. The price one has to pay is a small delay in the detection of a
misspecification. In our opinion it is, however, more important to detect a possible
misspecification with a small delay than not to detect it at all.

5 Estimation of Variance Components

In order to operate at an optimum the Kalman filter’s functional and stochastical
model have to be specified correctly. In practice the specification of the functional
model poses the least problems. The dynamic behaviour of the object under
consideration is usually quite well known. A good description of the measurement
sensors (and their inherent biases) is generally available as well.

For the specification of the stochastic models (i.e. the matrices Q and R in
Section 2) no standard recipes can be given. Besides modelling the truly random
dynamic noise, the dynamic noise is often also used to model small non-random
effects and thus the specification of the dynamic noise (Q) can be tedious. Fur-
thermore the availability of several positioning sensors may require a more sophis-
ticated stochastic model for the measurements, in which a variance component for
each separate sensor type is introduced. If, for example, two positioning systems
are available the stochastic model as introduced in Section 2 can be refined as:

Er ~ N(0,0’le -+ U:Rz)

where o} denotes the variance component for system i. Such a refinement is
deemed sufficient for many applications. The variation of the precision of ra-
diopositioning systems due to propagation effects and beacon positions relative to
the user can, for example, to a large extent be described by a variable variance
component. ‘

Hence a technique to estimate the noise levels of the different components
of the stochastic model would be more than welcome. The literature abounds
with articles on so-called “adaptive filtering” techniques. These techniques are,
however, often only useful under special conditions and/or diflicult to implement
in real-time systems.

Now let us assume that Q and R are linear functions of known matrices, i.e.

N N
Q=) 0olQand R=) olR; (21)
i=1 =

i=1




where IV is the number of variance components. Bélanger [1974] showed that the
correlation function of the predicted residuals can be written as a linear function
of the variance components

N
E{yv vy} = ZU?A-'(’CJ) . (22)
i=1

One arrives at (22) by straightforward application of the Kalman filter update
equations ((3) to (7)) to the predicted residuals (8), starting at time k = 0. The
matrices A;(k,!) can be computed in a recursive manner along with the Kalman
filter. One can estimate the variance components in a recursive manner (using a
separate (secondary) Kalman filter) and obtain real-time estimates for the variance
components.

The computational cost associated with such an algorithm does not seem pro-
hibitive for, e.g., high precision navigation applications. The algorithm to estimate
the variance components is not described here any further.

6 Practical Considerations

In the previous sections we discussed testing procedures and briefly outlined a
method for variance component estimation. Test statistics and variance compo-
nent estimates depend on the predicted residuals. As it is clear that the predicted
residuals are influenced by misspecifications in the model, it follows that the esti-
mates of the variance components are also heavily dependent on these misspecifi-
cations if they are not corrected for. Good estimates of variance components can
only be obtained from “clean” datasets, i.e. datasets with all misspecifications
removed. On the other hand the test statistics are only optimal if the stochastic
model is correct (note that the test statistics depend on the variance components
through the covariance matrix of the predicted residual @v_t). The test statistics
and the variance component estimates are thus correlated. Although this seems
to lower the prospects for a combined testing procedure and variance component
estimation technique, some remarks can be made. The test statistics are based on
the predicted residuals at a single fix or on a small batch of predicted residuals.
The variance component estimates on the other hand are based on a large number
of predicted residuals. If only the largest misspecifications can be removed from
the dataset (these will be detected even if the model is not totally correct) one
will still obtain better variance component estimates. After a number of variance
component estimate updates these will probably be close enough to the true vari-
ance levels to warrant optimal characteristics of the test statistics. This is an area
of current research.



1.0 2.5
2.0
0.5 { 1
. t.54
o'o-r}i\\—— 1.0 ﬁU\W
0.5
-0.5-
0.0
—Io::::c:e::::::::::: =0.5 bty
a) b)
5.0 40
4.0 +
u 30 o
.04 -
204
20} a
1.0 1 1oy o]
0o
a a go
0.0 +—————t— bbby OW—W—J—Q—G—Q—Q—S’—W—E—Q—q—Q—&Q_ﬁ_Q_.__-
"C)“ o d)

Figure 1. Simulation results; a) variance component estimate for the distur-
bances (dynamic noise); b) variance component estimate dead reckoning observ-
ables; c) variance component estimate position observable; d) LOM test statistics
at fixes where a position observation is available, without reset (circles) and with

reset (squares). A tickinark on the x-axis corresponds to 10 seconds.

Example

This example illustrates the dependency of the test statistics and variance compo-
nent estimates. Observations are simulated for a vehicle running a straight track
at 100 km/h. We assume dead reckoning observations available every second. A
position update (e.g. GPS) is simulated every 10 seconds.

In our simulation we estimate variance components for the disturbances (dy-
namic noise), dead reckoning observables, and position observables. The a priori
variance components used in the Kalman filter are specified correctly for the dead
reckoning component and a factor four too large for the position observables. The
a priori variance comiponent for the dynamic noise is chosen in accordance with




a very rough track, and is thus specified far too large (an undisturbed track is
simulated). Fig. 1a to 1c show the estimated variance components. The variance
components for the dynamic noise (Fig. 1a) and dead reckoning observables (Fig.
1b) closely correspond to their expected values (0 and 1 respectively). The vari-
ance component of the position observables (Fig. 1c) seems to perform well, but
displays a strange jump at the 12'» position fix. This is because we simulated an
error of 100m in this position fix. It is clearly seen that a misspecification has an
impact on the variance component estimate. What is worse, however, is that the
misspecification is not detected. The circles in Fig. 1d give the sample values of
the LOM test statistic. If the level of significance () is, e.g. 0.05, the critical
value x?(0.05 : 4) = 9.49 is never passed. Choosing a wrong a priori stochastic
model thus impairs the performance of the tests. :

If one had, for instance, reset the variance components to their estimated value
at the 10'® position fix (where the variance estimate of the position observable is
0.237, remarkably close to its theoretical value of 1/4), the error would have been
detected. The squares in Fig. 1d give the values of the LOM test statistic when a
reset is applied at the 10'* position fix. Now the LOM test is clearly rejected at
the 12* fix (30.4 >> 9.49). This example serves to demonstrate that careful tuning
of the model (which can be achieved by applying methods described in this paper)
is required to obtain optimal estimation results.

7 Concluding Remarks

In this paper we discussed some aspects of quality control in Kalman filtering.
We paid particular attention to (slippage-type) test statistics. The test statistics
derived are all functions of the predicted residuals. In Teunissen and Salzmann
(1988, 1989] considerations regarding the implementation of global (slippage) tests
are given. For the design of filters the detection power of theé various tests should
be taken into account. Reliability can be described by the marginal detectable
errors.

To obtain optimal estimation results testing procedures and variance compo-
nent estimation have to be applied simultaneously. The interdependence of the
test statistics and the variance component estimates was discussed in Section 6
and was illustrated by an example. The adaptation of the filter model by variance

component estimation and its relation with testing procedures is a field of current
research.
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