NTAL T BOUNDARY VALUE PROB =SQU, COLL!
AND ASTRONOMICAL LEVELLING.

by
Rummel, R. and P.J.G. Teunissen
Faculty of Geodesy
Delft University of Technology
Delft, Netherlands

ABSTRAI

It is possible to solve the geodetic boundary value problem (b.v.p.) in

spherical and constant radius approximation employing horizontal type

observables, such as astronomical latitude and longitude, horizontal

positions and horizontal gravity gradients. The sclution is overdetermined
when using all three types of observables and uniquely determined when using
any combination of two. For the case of vertical deflections, i.e. the
combination of astronomical latitude and longitude with horizontal position,
it is shown that if the number of observations on the boundary surface goes
to infinite the least-squares collocation solution converges toward the

solution of the boundary value problem. The basic difference of the
horizontal type b.v.p. with astronomical levelling is that the former yields
T on the surface and in its exterior, whereas the latter is of local

character.




1. INTRODUCTION

In a recent work on the overdetermined geodetic boundary value problem
(1987) the authors derived, among others, a solution of horizontal type.
Horizontal is understood here in the sense, that the observation model of
the three considered pairs of observables after linearization and in
spherical approximation contains the "horizontal" coordinate unknowns,
Ax and Ay, but not the vertical one. It was rather interesting to us that a
solution of this type exists, however several questions remained open as
to its proper interpretation. The purpose of this contribution is
therefore to present this solution and discuss its relationship with unique
versions of horizontal type boundary wvalue problems (b.v.p), with
collocation and with the astronomical levelling.

Given one of the three pairs of observables {&,A} astronomical
latitude and longitude, {x,y} local horizontal positions in North-South and
East-West direction e.g. from G.P.S. and {rzx' rzy} the mixed vertical-
horizontal gradients. The observables are given on the Earth’'s surface. The
linearized observation model of the anomalies of the observables becomes in
spherical and constant radius approximation, compare (ibid).
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In (1) it is T = W - U, the distubing potential, Grad denotes the surface

gradient [ 2, cos'p & |" on the unit sphere ¢ (0,1) and Uo = 22 and
- a R
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ro=2%-= Qb . We assume further:

AT = 92T =0 (T is harmonic) outside o 2

1im T = 0 (T is regular).

r = o

In this case T can be expressed as a series of fully normalized spherical

harmonics:

® +n n+1
T(r,p,A) = Uo TirlE [?] AC an m(w.h). (3)
n=o0 m=-n
The AC are the unknown dimensionless coefficients of degree n and order
m and Ym the orthogonal spherical harmonics. (The reader should not get
confuseglby the indexing of m from -n to + n, since the explicit form of the
harmonics shall not be needed).

The surface gradient %bcrad‘l‘ in (1), a vector fleld on o with

components € and m, the N-S and E-W components of the deflection of the
vertical, respectively, becomes with (3) (cf. (Meissl, 1871)):
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Eq. (1) can now be written in constant radius approximation (r = R) as:
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Each combination of two of the three vectors of anomalies in (5) represents
together with (2) a uniquely determined b.v.p. The combination {A®,AA cosg}
together with {M"u. A!'y:} requires, in addition, the elimination of the
three translational degrees of freedom. The full set of three pairs together
with (2) defines an overdetermined b.v.p. where, in addition, a weight
function has to be assigned to each pair.

The overdetermined problem can be solved by least squares. For the

solution of the inner products of type Eflf‘r (Grad Ymn' Grad Ykl}dor. that
o

appear in the normal equations, use can be made of Green's first identity,
as shown in (Meissl, ibid):

ann' Grad Ykl Jdo =
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where Lap denotes the surface Laplace operator. From (6) follows that the

i 1
vector functions Unm = Talnely Grad Ynm can be viewed as a normalized and

orthogonal basis in a space of differentlable surface vector functions v for
which Rot v = 0.
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The least-squares solution Iis divided Iinto two steps. First the
geometric unknowns Ax and Ay are eliminated by forming linear combinations
of the observables:
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We observe that A®-Ap = (& - D I N ¢ )y = b - = &% and
observ ¢ b PP wp ¢’ 3 pp

analogously (AA-AX)cosyp = (J\p—lp)cos ¢ = SAcosyp are the components of the
deflection of the vertical £ and . They are disturbance quantities.

With p¢ the dimensionless weight of {A®, AAcosg}, Py, that of {&x, Ay} and
pr that of {AI"“.AI‘“}, the solution of the overdetermined b.v.p. of
horizontal type becomes, compare (Rummel, Teunissen & V. Gelderen, 1987):
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where Fn = n{n+1)((9p¢pr.+pxp¢-5p¢pr(n+2l+(p¢pr+pl..pxl(n*2}2)

Finally, with eq.(3), a closed formula for T can be derived:

T(P) = 2—0 .r GKS(W {cosx £ + sinx n} 60 (9)
o
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We observe that the integral kernels dﬁw) and are isotropic and
that the arguments {cosaf + sinan} and {cosa (nrxz =3 31“069) + sina
uryz = 3r Aa cosp)} are the projections of the observable anomalies on the

line Jolning P and Q. The expansion of the kernels in a Legendre series
becomes:
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ay
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n

3.  SPECIAL CASES AND INTERPRETATION

If instead of all three pairs of observable anomalies only two are
assumed to be gliven, three types of uniquely determined geodetic b.v.p.
emerge. They are simply derived by setting in (8) either p‘hpx. or pp = 0 to
zero. The results are :

I o
p_ = 0: .ﬂc —{—}—(Tr (Grad Y N Jdo
*x n+l)(n an bryz - 3AAcosy
o
=0: a0 =~ - f(cradv Eldar
Pr = nm n (n+1) an 2 % (11 a-c)
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Py =0 ¢ Gy, = - srmerytery A J (6 Yo for i
Tyz = 3AAcosy

The corresponding expressions of the disturbing potential become:

. p. =0 : T(P)

R
5 =W {cosu{nl"xz Sl"oaﬁhslm(u‘ﬂ STOﬂMosw}}da-

()

_ Uo
Pp=0: T(P) = H{ {cosaE+sinan}de (12 a-e)
2
Py = 0: T(P) = %ﬁ £ dﬁ:w’ tcosodM‘xz-—:!r'ohw]*'sim(&l‘yz-t]rod).coswl}do"

In the uniquely determined case closed expressions can be derived for the
integral kernels Ki, Kj, and Kk and their derivatives with respect to ¥
using the method described in (Tscherning and Rapp, 1976) and (Moritz, 1980).
The series expansions are :

o 2n+1

M i = TR, SR
Kiw) = - 3° TR (cos ¥) (13 a-c)
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All three integral formulas (12) require some type of surface gradient
function to be observable. The integration 1is carried out over the
projection of the surface gradient function on the 1line connecting
integration and computation point, the so-called longitudinal part of the
surface gradient. Hence the formulas require the complete surface gradient
te be available all over the globe. In the future, when gradiometers in
combination with satellite positioning become operational eq. (12¢) could
gain practical Iimportance. However (12a) and (12b) bear hardly any
practical relevance, since ¢ and A will always have to be derived from a
global coverage with astronomical observations, a very laborious and
time-consuming endeavour. We did not come across these integral formulas in
earlier literature. Only integral kernel Kj is discussed in (Meissl, 1971).

Krarup (1968) developed least-squares collocation, one of the really
great achievements in physical geodesy. As Is well known, this method
represents a natural generalisation of least-squares prediction. It
determines In the least-squares sense an optimal approximation of the
disturbing potential in a chosen reproducing kernel Hilbert space from an
arbitrary number of discretely distributed observables. The observables are
arbitrary linear functionals of the disturbing potential. The observables
are perfectly reproduced by the approximated function or its functionals. If
the observables are assumed to be contaminated by nolse approximation can be
combined with smoothing. Also this type of collocation is well known in
geodesy, compare e.g.(Moritz, 1973), and is called here least-squares
smoothing collocation.

A very obvious question that arises when thinking about collocation is
what happens if the number and precision of the observations goes to
infinite. This question has been addressed in (Krarup, 1981) but must still
be considered an open case. Naturally one expects that for this global
limit collocation converges towards the classical solution of the geodetic
boundary wvalue problem. Furthermore it is our expectation that if the
observables are different from those of the classical quadruple of the
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geodetic b.v.p., i.e. different from W,g,®, A, this global limit becomes one
of the solutions of the uniquely or overdetermined geodetic b.v.p. discussed
in (Rummel, Teunissen & Van Gelderen, 1987) or (Sacerdote & Sanso, 1985). In
view of the solutions discussed there one could take a view about the place
of collocation and of the geodetic b.v.p. in our geodetic bullding different
from that taken in (Moritz, 1880, ch. 26). There the distinction is made

between the operational approach, which starts from the observables and
derives the desired quantities from them and the model approach. The
geodetic b.v.p. would be an example of the latter, least-squares collocation
and integrated geodesy (Eeg & Krarup, 1975) of the former. Could one not as

well argue that the solutions of the geodetic b.v.p.’'s., wuniquely and
over-determined, as well as collocation and integrated geodesy belong to the
same building, in which the solutions of the various b.v.p.'s represent the

global limit of collocation for the number and precision of the observations
going to infinite? Without such an Intimate connection collocation would
rest on loose ground.

The relationship of discrete and stochastic observables with the
functional model, as obtalned from the solution of the geodetic b.v.p. is of
fundamental importance. For a discussion we refer to (Baarda, 1967), (Rummel
& Teunissen, 1988), or (Sanso, 1987).

As already mentioned, the proof that collocation converges to the
solution of the various b.v.p.’s. in the limit is rather difficult. For the
case of least-squares collocation the limit for the number (not the
precision) of the observations towards infinite has been treated in (Moritz,
1976) or (Sjéberg, 1979).

In order to establish the connection between the solution of the
uniquely determined b.v.p. of horizontal type, e.g. for £ and 7 and the
corresponding collocation case, the following procedure can be followed.
The solutions of the uniquely and overdetermined b.v.p. were derived from
the global limit case of the least-square problem lly - szuz_‘ = min. with

D the inverse weight matrix or a priori variance matrix defining the metric
of this quadratic norm. This approach can be followed Iirrespective of y

being element of R(A) or not. The elements of y, A, x and D are given in
(Rummel et al., 1987). It is well known that least-squares collocation is

identical to a regularisation solution of the form
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ty = ad®_+ asi?_ = min. (14)
D K

with x € H, a Hilbert space with reproducing kernel K. The solution of eq.
(14) can be written in two ways:

x= (ATD7'A + k) ATD Yy (15a)
= KAT(AKA"+ aD) 7y (15b)

In (Rummel et al., ibid) form (15a), without the term oK ', has been derived
for the problem under discussion. Least-squares smoothing collocation takes
form (15b) and can easily be derived from (15a).

We have y the global surface gradient function containing pairwise the

a (P)

Y
deflection components [ﬁ] A consisting of pairs of - 9-1“” 3
cos wakYM(P)
the solution vector x containing all coefficients ﬁcnm and K for this case
being infinite dimensional and diagonal

K= 3.3

c
n
2n+1 "nk ml (18)

Where ¢, are the degree variances defining the reproducing kernel. Then it
can easily be shown that the elements of an arbitrary 2 x 2 sub-matrix of
AKA’. i.e. the covariances between £ and 1 at two points P and P’ become

K

c
n '
EE = I N m av Ym(P]aPYm(P )

.

o 2
§ cn[avtap'tpn“'] + 8w' tPﬁ(tl]
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Kml = E i ZaeT ©°% pcos ¢ &AYnn[P)ahYnm(P )
-1 -1, % 2 i
= i o [cos gcos ¢ aat_ak, t.Pn(t.haM. tPn(t)]
with t = cosy_,, in agreement with (Tscherning & Rapp, 1974) and (Moritz,
1972). Similarily a £ and 1 element of KA' becomes
n
Kac g = b T 8,Y (P
E (18a,b)
“n o |
Kﬂcnm“ = i 2 TS Bl ¢8AYnm(PL

With egs.(17) and (18) collocation formula (15b) can be established.
The global limit - £ and n given pairwise globally - is derived using eq.
(15a). The result for this case is eq.(8) with Fn in the denominator

replaced by

(2n+1) (p@-rSPr*Px)

n c
n

The limit « = O results in the solution of the geodetic b.v.p. of horizontal
type, eq.(8). Hence a consistent building is obtained.
Finally one might ask what the relationship is between eq.(12b) and the
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very simple astronomical levelling :

P
M-NP-NQ--Ieds
Q

(19)
P
= - I{cosue + sinan}ds
Q

In both cases the observable, that goes into the integral is e = cosaf +
sinam, the output in (18) is the geoid difference AN between P and Q, in

(12b) it can be made AN by considering N = } and evaluating (12b) at P and
Q. However, whereas (18) requires € only to be given along an arbitrary
profile connecting P and Q, eq.(12b) requires global coverage. At first
sight this seems a paradox situation. But (19) is derived from the
differential :N—S = - € and € contains only horizontal derivatives of T.
Therefore AN can be computed locally, requiring for instance no continuation
into outer space. Eq(12), on the other hand, has been derived from a
solution of a b.v.p.. This implies that in this case by applying (12) T or
any functional of T is not only derived on the boundary surface, but as well
in its exterior. Thus we can conclude that the astronomical levelling Is
very convenient in many practical situations, eq.(12) involving the
same observable, but given globally, is much more general.
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