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The geodetic boundary value problem (b.v.p.) is discussed in the context
of the definition of a complete physical model, consisting of observations,
deterministic and stochastic model. The linearized classical b.v.p.'s in
spherical approximation, scalar and vectorial, are solved by linear infe-
rence. Introducing a minimum principle the same approach is applied to
the solution of the overdetermined geodetic b.v.p. The result of the o-
verdetermined problem is worked out for a combination of the observables
potential, scalar gravity, vertical gradient and vertical geometry. It is
discussed together with a number of specializations and with a suggestion
concerning the non-linear problem. The overdetermined case is treated in
parametric form as well as in the form of condition equations. The sto-
chastic interpretation of the method provides a means to analyse the pro-
pagation of observation and discretization errors.

keywords: physical geodesy, geodetic boundary value problem, overdeter-
mined qeodetic boundary value problem, least squares adjustment.
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1. Introduction.

With the large increase during recent years of the number of available
observations, with the advent of various new, very precise, measurement
techniques; such as satellite altimetry and positioning by GPS, and with
the development of very efficient processing algorithms, physical geodesy
shall much more intrude into everyday practise in the coming years. In such
a situation it is of fundamental importance that adequate physical models
are available. Under physical model we understand, starting from a given
problem, the complete sequence from the definition of the required preci-
sion and the resulting choice of observations, choice of the stochastic and
deterministic model, linking of observations to the models, estimation
process, quality control and mapping backwards (prediction) from the model
to the "real world".

In such a context the ;1assicai work on the geodetic boundary value
problem (b.v.p.) by Stokes (1849) and Molodenskii et al. (1962), as well as
the modern work, reviewed fdr example in (Holota, 1978) or (Sansé, 1981),
can be viewed as the derivation of the deterministic model in linearized
form, respectively as investigation of the existence, uniqueness, and
stability of the deterministic and in general, non-linear geodetic b.v.p.,
of course, having in mind a certain idealized set-up in terms of observable
quantities. On the other hand, one could claim that least squares colloca-

- tion, (Krarup, 1969) and (Moritz, 1972), and Krarup's integrated geodésy
(Eeg and Krarup, 1975) represent already physical models in the above
described sense. This is true, at least to a large extent. However, in
these works emphasis is given especially to a proper treatment of the most
fundamental complication in physical geodesy, its intrinsic underdetermi-
nancy, for a field function, the gravitational field, is to be derived
from the always finite number of observations.

Our intention is to take one step backwards and to treat the linearized
unique and overdetermined geodetic b.v.p. by linear inference. This approach
seems not only to have the advantage of being familiar to all geodesists
and surveyors, it should also permit to solve in a straightforward manner
the overdetermined geodetic b.v.p. in all possible configurations, just by
applying the least squares principle. In a second step, a stochastic inter-
pretation shall be given to the outcomes and observation error propagation
and discretisation error can be discussed. Hence, the main purpose of this
paper can be described as being threefold:
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1. The introduction of the principle of linear inference as a means to solve
the global linearized geodetic b.v.p., uniquely determined as well as
overdetermined. .f

2. The explicit solution of the overdetermined geodetic b.v.p. in various
configurations. .

3. The stochastic interpretation of the results in terms of observation and

" discretization errors.

This way we also try to emphasize, that despite of the general intrinsic

underdeterminancy in physical geodesy, it is very well possible in practise

to achieve redundancy at all or many sampling points. The present work
should be seen as one step further on our intended way to derive a complete
physical model, the previous steps being (Rummel & Teunissen, 1982) and

(Rummel, 1984).

2. Physical Model.

Our notion of a physical model is strongly influenced by Baarda's work
(1967 and 1973). In short, it can be described as follows. Assume a prac-
tical problem is posed, the division of some real estate, the construction
of a bridge, or e.g. the prediction of a satellite trajectory. In addition,
in order the problem to be meaningful, the precision requirement is defined.
Only the description of the required precision permifs the selection of the
proper observations and deterministic (mathematical) model, a point some-
what neglected in physical geodesy. The observations can be viewed as a
mapping from “"a piece of real wortd" to the world of numbers. They are
associated with mathematical concepts (distance, velocity, force etc.) and
compared with the corresponding quantities of the deterministic model.
Depending on the problem and the kind of selected observables the determi-
nistic model could in our case be either purely geometrical, kinematical,
or dynamical. Typical to the observables in physical geodesy is that they
are considered functionals of the earth's gravitational field. Thé process
of linking observations (numbers) with a deterministic model (mathematical
abstraction) could be denoted connection. It is the key to everything, for
it means that it is possible to describe a piece of nature by a mathema-
tical model. Without it physics would be disconnected from mathematics.

The observed numbers shall never perfectly agree with their model counter-
parts. The discrepancies are due to imperfeciions of the measurement
process as well as of the chosen deterministic model. They are described
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on an average basis by the chosen stochastic model. The observations are
assumed to belong to a larger ensemble of stochastic samples, taken under
similar circumstances. If simple second-order statistics cannot adequately
describe the discrepancies, it is common practise to either bring the obser-
vations closer to the deterministic model by means of reductions, or to
extend the deterministic model, so as to describe better the taken obser-
vations. For a more detailed discussion it is referred to (Rummel, 1984).
After connection of the observed numbers with the deterministic model and
after introduction of a proper stochastic model, the estimation process and
the internal quality control is carried out. Finally, the estimated para-
meters are mapped back into the physical environment, which means they are
given a physical interpretation, and controlled externally by independent
experiments. In case the external control meets the beforehand defined
standard the process is completed. In Figure 1 the basic ingredients of the
physical model are shown schematically.

OBSERVATION OF DESCRIPTION BY CONSISTENT PREDICTION OF
PHYS1CAL EVENT MATHEMAT{CAL MODEL FUTURE EVENTS
Data determined l Choice
empirically, | of deterministic model
Repetition of > Un-linking of
experiments under | of stochgzz:zemodel. ///formallsm.(inductive)
equivalent circum- | (probability distribution) |
stances. | 4\/} | Probability statements
| Deduction within the model ::;i:> are transiated into
. statements concerning
//’ leads to new probability outcomes of future
Linking=up of | statements. | |experiments.
formalism.

(inductive)

Figure 1

In case the results do not meet the desired standard, the cause is in
general either an inadequate choice of the observations or of the determi-
nistic model. In physical geodeSy, where a field quantity is to be recon-
structed from a finite number of observations, the model error could be
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divided into the discretization error and the model error in the narrow

sense (the error of the continous model). Only the latter, e.g. the error

of linearization, is usually treated in theoretical studies of the geodefic

b.v.p. N ‘

In summary, any application case in physical geodesy requires

- the proper problem definition, that has to include the definition of the
quality standard to be achieved,

- the selection of observation types and spatial distribution, stochastic
and deterministic model in such a manner, that observation, discretiza-
tion, and model (in the narrow sense) error meet the required standard,

- internal as well as external quality control.

3. Geodetic B.V.P. and Linearization.

In this chapter the selection of the deterministic model is discussed
for the case of the classical geodetic b.v.p. No observation and discreti-
zation errors are considered. Hence the problem definition is: Given at all
points of the earth's surface S, the gravity potential differences C and
the gravity vector g, expressed by the scalar gravity g, and the astronomi-
cal latitude and longitude, ¢ and A, determine S and the gravitational
potential in the space outside S. Thereby it is assumed that V, the gravi-
tational potential, is a harmonic function in the space outside S and
regular at infinity.

This problem is aimed to be solved ourdays with a relative precision
of 107° (uncertainty of S re]ativg to the earth's radius R). This implies
for example that the earth's topoéraphy and atmosphere have to be carefully
taken into account, (see (Moritz, 1974) and (Mather, 1974)), and that the
observables are, as usual, corrected for the luni-solar tidal effect. On
the other hand, it also implies that a large variety of time variable
effects, such as pole tide, crustal deformations groundwater variations
a.5.0. can be neglected.

The problem of determining S, as defined above, represents a free,
oblique-derivative b.v.p., compare e.g. (Grafarend, 1975). The first step
towards a solution is a linearization. The process of ]inearization shall
be shown explicitly for the potential difference C(itio) = W(x) - w(io),
where W is the gravity potential at an arbitrary point, expressed by its
Cartesian coordinate vector x and the gravity potential at the datum point
The gravity potential W consists of the centrifugal part Z(x), which

%o+
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is assumed to be known, and the gravitational part V(x):
W(x) = Z(x) + V(x) (3.1)

The gravitational potential V can be expressed in a chosen parameter form
by

RS

0

V(x) = u E“" c ey (X) (3.2)

k=1
GM

0 0 . . _
= -1 S dimensionless coefficients and ek(i) base

with scale factor u
functions fulfilling Laplace' partial differential equation outside S.
For example, the base functions could be the fully normalized complex
spherical harmonics

(§)n+1“ .5 n+1§m( ) imx n+1

Yom(@sA) = () plele " = (%) [R(@:2) + i§nm(m,x)] (3.3)

of degree n and order m, where

an(w,x) ) COS MA
) = P (sin o) (3.4)
Snm(w,x) ‘ sin mx

In this’case the c, are easily related to the spherical harmonic coeffi-
cients Cnm and §nm' Furtheron we define for later use, that the base func-
tions en(ﬁ) are orthonormal on the unit sphere o{0,1}. Hence for r = R, it
holds

= J e (ne,(x)do = 6, (3.5)
ag .
With eq. (3.2) the gravity potential can now be written

W(x) = Z(x) + u° E o e, (x) (3.6)

with unknowns c, and x. With approximate values cﬁ and 50 linearization

gives
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W(x) = [z(i") + 0 IE Czek(éo)] + [aJ.Z(iO) + i cﬁajck(éo)]AxJ

0 .
+u i Ackek(io) (3.7)

where Ax = x - 5? and Ac, = ¢, - cﬁ. The neglected second and higher order
terms become part of the model errors. With the definitions

U(x) = Z(x) + u’ = cee,

X) (3.8)
c .

for the normal gravity potential and

T(x) = u° i ACkek(i) | (3.9)
for the disturbing potential, eq. (3.7) becomes

W(x) = U(io) + ajU(io)ij + T(io)
or with the potential anomaly

o AW(x) = aju@’)m& + T(x") (3.10)
Carrying out the same linearization at the datum point Xy» yields -the
observable potential difference anomaly

AC(X5X,) = -aW(xy) + 8.U(x")axd + T(x) (3.11)
AR A /] 0 J jod

If we consider now x and 5? to represent discrete points Pi and Pg with
i=1,...,I and the base functions en(ﬁ) run from k = 1,...,K, eq. (3.11)
becomes a Tinear system of equations of dimension I-(3I+K) in the unknowns
Axg, where j = 1,2,3, and Ac, and with one additional column for the datum.
parameter Awo. It is assumed that the points Pi represent a uniform cove-
rage on the sphere ¢, arranged in a so-called e-net; for a definition we
refer to (Moritz, 1975; ch. 2). For I - «» the e-net shall converge towards
a global, continous coverage and K + = (a complete, infinite countable base).
The linearized model, written for all four observable anomalies,

oC, Ag, A%, and AA, results - apart from the datum parameter Awo - in a
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system of dimension 4I.(3I+K), compare also (Knickmeyer, 1985). It is the
discrete analogon of the linearized global geodetic b.v.p. The problem is
still oblique derivative. At each point Pi the coordinate corrections ax'
could be eliminated, by forming certain linear combinations of the four
anomalies, as shown in (Grafarend, 1979). This results in the classical
boundary conditions. On purpose this step is not taken here. Finally, it
should be mentioned that (besides AW ) the system has a rank defect of
three. Itis invariant with respect to three translations, see (Krarup,
1973).

For finite dimension, the anomalies arranged e.g. in an equi-angular
grid, the system could be solved by least-squares methods, depending on
the size of 1 and K, with methods very similar to (Colombo, 1981). However
it is very difficult to derive an analytical solution for the global limit
(I » = and K > ») case. Because of this difficulty further approximations
are introduced. First, the coefficients of the unknowns Axg and Ac, are
computed in spherical approximation. In our example, this means that
ajU(gf) in eq. (3.11) is approximated by aj(%ﬂ)l50 with r = [xg+y§+z2 }

0l
With ax’ expressed in the local geodetic triad, eq. (3.11) reads now

aC(x,x,) = -aM(x)) - v(x")az + T(x°) (3.12)

X,)

where y(x) = E; . To stress the point, the linearized model still refers to
r
the normal potential defined in eq. (3.8), only its coefficients are com-

puted in spherical approximation. This type of approximation underlies, for
example, the solution of the Molodenskii problem by surface layer given in
(Heiskanen & Moritz, 1967; ch. 8-6 and 8-7). It is this step that results
in a significantly simplified structure of the coefficient matrix, on the
expense that the unknowns can only be determined with a relative precision
of the order of the flattening (= 3tlm).

Finally, the coefficient matrix can be further simplified by computing
all coefficients of the linear model at one mean radius r = R instead of at
the individual spherical distances r of the points 52. We could call it
constant radius approximation. With this further simplification the Stokes
problem is obtained, formulated for the telluroid. In our example 7(59) is

replaced by y = Eg . Hence eq. (3.12) becomes
R




AC(XsX,) = -AH(x,)

- YAZ + T(io)
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(3.13)

The approximations appliea to the coefficients can be interpreted
geometrically as a slight change of the base vectors, that span ‘the tangent

space in {x°,U}.

Carrying out the same type of linearization for the scalar gravity,
and the astronomical latitude and longitude for an arbitrary point Pi we
obtain the well-known equations, compare e.g. (Rummel, 1984)

r

AC

A9

Ad

LAAJ

Ig]luroid.

We did not discuss how the approximate coordinates x

r

-AW

-

[0

=X —

o T
AX
_ AT
ay | + ar
_ 1ot
AZ Ry 30
4 _ 1 3T
. Rycoszw o

05 are defined.

In principle, the solution of the linearized problem has to be independent
vl the choice of the Taylor points 50, as long as the 50 lie inside the '
radius of convergence of the problem, and as long as one is prepared to
compute the solution in several Hterations. Hence it does not matter

whether the 50 are derived simply from topographic maps or in a systematic
manner from the observations themselves. The latter case implies that the

x" are derived from the so-called observable natural coordinates {W,?,A}

or {g,o,A}, by means of one of the so-called mappings, compare the dis-
cussion un (Bakker, 1983). The mapping {N,¢,A}x = {U,w,x}xo is denoted

Marussi mapping, {g,e,A}, ={vys0s2l0 gravity mapping. The complete set of

approximate points defines the telluroid. If either gravity or Marussi

mapping is applied, the numericals value of the corresponding anomalies
shall be zero, see the left hand side of eq. (3.14). As discussed in
(van Es, 1983) the distance ox between the telluroid derived from the

gravity mapping and S, shall be greater by a factor

classical "Marussi" telluroid.

AW

than that of the
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Solution of the Non-linear B.V.P.

The model errors introduced by the linearization and by the spherical
and constant radius approximations can be corrected for by careful backward
substitution in an iterative solution, see (Rummel & Teunissen, 1982).

Start with initial values 50 and cz. Solution of the linearized b.v.p.
gives Ax and aAc,. Hence it is

xt=x%+ 2 & c; = cg +ac,

The non-linear expressions, e.g. eq. (3. 6) are then linearized using 51

and c;, which means in fact a careful up-date of all anomalies. Then the
second jteration loop can be started. No difference seems to exist between
the convergence measures known from non-linear adjustment problems and the
problem at hand. The former is treated in (Teunissen, 1985).

4, Linearized Geodetic B.V.P. and Linear Inference.

The general scope of our paper is a discussion of the definition and
proper use of a closed physical model in physical geodesy. In this chapter
the technique is introduced that is applied throughout for our derivations.
The idea is to write the linear geodetic b.v.p. in spherical approximation
in the form of a linear system and to apply to it the procedures well-known
from least-squares adjustment. It shall be possible this way to address a
whole class of uniquely determined and overdetermined geodetic b.v.p.,
formulate the overdetermined cases in the form of observation and condition
equations, analyze rank deficiencies and study the error propagation and
discretization errors. _

In order to attain maximal symmetry in the linear system, we define
all quantities dimensionless:

AC + AW :
dW = 0°,dg=§3,d¢=A¢, dA = aA,
0
U Y
_ AX Ay _ Az
dX——R-, dy—r, dZ—'-R',
GM GM
0 _ 0 0 _ 0
where U~ = - and y = ];T , and
dT =~ =1 ace, = £ B.Y | (4.1)
k k nm nm

TR n,m
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We see that two types of base function representations are defined for dT.
Although, in principle the first one would suffice, the second one is con-
venient in cases where lateral derivatives occur, for it provides an
immediate connection to the spherical harmonics, eq. (3.3) and their coeffi-
cients. Furtheron we notice, that for convenience the datum anomaly Awo has
been merged wi@h A6C. We shall return to this point later. The coordinate
corrections dx' are understood to be defined in the local geodetic triad.
With these definitions the linear system (3.14) becomes

[ dW ) (0 0 -1 (I Ac, e )
( dx ‘ k k "k
dg 0 0 -2 -Z AC, 3 €
= dy + k k r "k (4.2)
do 1 0 0 . - -ﬁ ac, Bw ey
\ / Ack
| €0S wdn | 0 .1 0 | { -i Tos o °x Sk

or analogous expressions with spherical harmonic base functions Ynm' For
simplicity it is assumed, that the translational invariance is removed by
setting the three first degree coefficients 610. By_y» By, zero.

In the sequel four cases of the uniquely defined geodetic b.v.p. shall be
treated.

4.1 Classical Stokes.

Since the classical Stokes solution is known very well, it is used to
explain our approach. It starts from solely dW and dg. Hence with eq.
(4.2) in point Pi it is

awi -dzi + E ac, ek(Pi)
(4.3a,b)

dgi -2dzi + Acn(k+1)ek(Pi)

k

The respective weights of dW and dg are denoted Py and pg' They can later
be interpreted stochastically as inverse variances o2 and o;. With egs.
(4.3) formulated at each point of the e-net a linear system of type

y=Ax (4.4)
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is obtained with a priori weight matrix P. The dimensions are dim y = (2I-1),
dim A = 2I.(I4K), dim x = (I+K)-1 and dim P = (2I-2I). Alternatively to the
matrix notation we useX)

([dN]i
Yy = (4.5)
[dgli
4
'['Gij]ii [ek(Pi)]ik
A= (4.6)
[-2853155 [(kel)e, (P)14y
)
[dZ]i
X = | (4.7)
\[AC]k
Pdiilii 01y, .
Ey= (4.8)
L0055 Tpgdyjli

The notation is self-explanatory. Inside the brackets the matrix elements
are statéd, where §,; i is the Kronecker delta. Outside the brackets, the
first index denotes the rows, the second the columns. Throughout we assume
()1 <1 < I}, {k|1 < k < K}, or when the basis Ynm is used degree

{n|0 < n < N} and order {m|-n £ m < n} where in any case elimination of the
first degree is assumed.

It is common practise to eliminate dzi from eqs. (4.3), which results
in the so-called fundamental equation of physical geodesy. This step shall
not be taken here, to show that this step is not essential in obtaining a
solution of the geodetic b.v.p. Actually, since A of eq. (4.4) is regular
for I » » and K +~ =, a solution of (4.4) would simply require its inversion.
S1nce the1nvers1on could be rather cumbersome, we compute it by

A= (A A) -1 T . Hence, formally the classical least-squares approach is
followed.
It is
3=9_xATE y
Y (4.9)

”)In order to keep the formulas compact k is to be understood at the same
time as index of the base functions and as (spherical harmonic) degree.
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where
-1 T -
G=N =@y . (4.10)
Estimated quantities are denoted by "*", but at this point no stochastic

interpretation is given to the results. Insertion of egs. (4.6) and (4.8)
yields

[(p,*4Pg)845)5; [-(pw+2(k+1)pg)ek(Pi)]ik
- | (4.11)
[P+ (k+1) pg) 8y Dy

For the derivation of element N,, of N the global Timit of the e-net
vogether with the orthogonal relationship of the ek(P) has been used:

Hin L ey (Py)ey(P,) - = £ e (Ple, (P)dop = 5, , (4.12)

With the well-known relations

Q, = (N=N,, 11 12)

Q, = 11 APLP (4.13a-c)
Q, = Nl * N11N12022N21N11
we find for the elements of Qx
2
! (p,*2(k+1)p )
Q,, = I (6, + e (P.)e, (P.))1..
p,+ap ij 112 (SN Ead AR ERALE
witg k  (k-1)"pgp,,
P, t2(k+1)p |
le = [ 2 ek(P'i)]'ik (4.14a-c)
(k-1)"pgp,,
Q p"+4p ]
= 8
22 k2 'kk
(k-1)%p wPg

Furtheron it is
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-[pwdw + 2pgdg]i
y = s (4.15)
[p,dW, + p.(k+1)dg 1,

|
o

4

g

where we used

. 1
}lz ? dwW, ek(Pi) ol I dW(P)e, (P)dop = dW, (4.16)
g
and analogously
Tim I dg, e (P;) = dg, . , (4.17)

I i

The inverse relations to eqs. (4.16) and (4.17) are

dW(P)

: dW, e, (P) ,
(4 18a-b)

ﬁ dg, e, (P)

dg(P)
Eq. (4.9) gives with (4.14) and (4.15)

1
the well-known solution of the Stokes problem (in the spectral domain).
Note the solution does not depend on the weights p_ and Py
For dz, (Bruns' equation) we find

g

dzi

1 -
P, [-(pwdw+2pgdg)i + i(pw+2(k+l)pg)Ack e, (P;)] |
v (4.20)

|
_i dwk ek(Pi) + i =T (dgk—2dwk)ek(Pi)

Finally, eqs. (4.19) and (4.20) can be brought into the usual - but still
dimensionless - form

dT(P)

I Aék ek(P)
k (4.21)

d(GM) + 7= St (¥pq) (dg-24H) gdog
g



241

and

d2(P) = -dM(P) + d(GM) + 4~ | St(4pg) (dg-2dW)gdog (4.22)

[0
or when splitting back dw iato relative potential difference dC = é% and
height datum effect d, = v
U
s 1
dz(P) = -dW - dC(P) + d(GM) + 5~ £ St(vpg) (dg-2dC)dog . (4.23)

In eq. (4.21) the zero-order term has been interpreted as a relative scale-

error d(GM) = ﬁéﬁﬂl » St(y) is the Stokes integral kernel.
0
We see, that our approach leads to the classical integral formulas in

phyzical geodesy. In most textbooks, implicitely the Marussi mapping,
dW “€"" 0 is assumed. One feature of our approach is that it yields auto-
matically the error propagation, if gx is interpreted statistically.

4.2 Stokes and Vening-Meinesz.

Although traditionally, when solving Stokes problem, the point of
departure is the four eqs. (4.2), only the two for dW and dg are employed
for the solution. From them one solves for dT, and after insertion into the

Bruns' equation dz. Independently dT is used to derive the deflections of

the vertical ¢ = - — %1 and n = - ——t %} from dT, the Vening-
ry. °® ry’ cos @

Meinesz equations.
We want to show that the four equations (4.2) can be treated in one

step, the so-called vectorial Stokés problem. Since the derivation runs

analogous to the previous one, details are left out. '
We use now the representation of dT

dT = nfm Bom Yo (4.1)
It is
( S
(dWl;
(dg].
y = 1 (4.24)
[d®]i
{[cos Y dl\]iJ
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( _ \
Oy 005 o555 DMan(Pi) i (am)
S L I LR E P LY P “"*”Ynm(Pi”i(nm)
A= | (4.25)
[8idiy [0y I0dy5 D=3y You(PO) o
-1
.[O]ii [Gij]ii [OJii [cos © % nm(p )]1(nm)J
[dx]; )
(dy1,
X = (4.26)
(dz],
\[B](nm) 4
XN N 075 (005
[pgsislyy 0Dy, [01;;
[pydi;14  [01y; |
| symmetric [pAﬁij]ii

/

It is assumed, that Py = Py
Before we derive N some preparations are needed. For Laplace's surface
spherical harmonics (r=R) holds, compare (Heiskanen & Moritz, 1967; p. 20)

2 A =2 2
aw Ynm - tan o a‘p Ynm + co§ © 3, Ynm = -n(n+1)Ynm

o s -2 _ 2 .
“Hence it is cos “o[cos ¢ aw(cos ¢ aw) + BA]Ynm = -n(n+1)Ynm or with the
surface gradient operator (see (Meissi, 1971))
c A0
05 -¢-3,

Grad = cos

%

we find that

Lap Yom = -n(n+1)Ynm , ~ (4.28)
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where the Laplacean Lap is the surface divergence of the surface gradient

Grad. As a consequence of Green's first identity we have for twice

differentiable functions f and g on the unit sphere

J(Grad f, Grad g)do = -/ f Lap g do = -f g Lap f do
o _ o

o

With f and g = Y__ eqgs. (4.28) and (4.29) become

nm
1 .
o i (Grad Y __, Grad Y, )do =
eea (Y _LlapY,, do =
In 5 nm P Tke

= 1
n(n+l) o £ Yom Ykg 90 =

- n(ned)eny gy,

(4.29)

(4.30)

The orthogonality relationship and (4.30) shall be used to derive the normal

matrix N.
It is
f
[pydel,
[p, cos ¢ da)
H
-[2pgd9 + p, AWl
1 :
3 IpwdHnm + pg("+1)dgnm](nm) “ i[d¢p¢qunm + GAPABAYnm]mU
where again

lin ¢ aN(P,)Y, (P.) = 7= J AW(P)Y, (P)do = d
R o ag

and
[ 1pgylys  10)y4 1y |
Ny = Ppéy3l44 (0145
] symmetric [(pw+4pg)éij]ii)

(4.31)

(4.32a)
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7

[-p am Ynm(Pi)]i(nm) )

& o =1
Mo = [-p, cos = @; 3, Ynm(Pi)]i(nm) (4.32b)

L[h(pw+2pg(n+1))Ynm(Pi)]i(nm)

_ 2
sz = [[pw i pg("+1) 5 p¢n("+1)]5nk6mg](nm)(nm) (4.32¢)
Inversion of N yields the elements of Q:
-
RS p. +4p
olit) w gy, wps 28 g ¥ P8 Y (P
11 P, 1 el pwpg(n_l)z nm' i’ nm' 3’/ i
P, H4p 5
o'12) wpr — ¥ 8 5y (P.)cos } @ia Y (Pi)ls
11 112 @ nmi 3 X hm gt 441
nm p,Pg(n-1)
p,+2p.(n+l)
Q§i3) «pp S et (P (4.33e-f)
mm pp,(n-1)°
w g
0(22) = Liii] + [z ,_Eﬂiigﬂ__ cos-l 2. Y (P-)COS-l @:3,. Y  (P:)]..
R = (n-1)> @i % 'nm\" i JOaam} 370
PuPg
. p._+2p _(n+1) :
0t = 12 L cos™ 3, ¥y (P4 Von(Py) s
nm p,p.(n-1)
w'g :
2
8: 4 [p, +2p (n+l)]
al39) & freetdocd. W L8 B Y (P )Y . (P) )
S T T T T T Rl
( p, 4P o) :
a Y (P,
“112 ‘@ onm‘i
PyPg(n-1)
. pw+4pg -1 ! 4
012 ) 2 Sl (piaJ\Ynm(Pi) (4.3 )
PyPg(n-1)
PP
_L_g__zynm(p1)
| PuPg(n-1) |
P, H4p
q 4.35
0 = 1 2 Gnksmil(nm)(nm) ( )

PyPg(n-1)
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After a lengthy derivation we find

. 99y 2N,
Bam = T — | (Stokes) (4.36)
and
dg__-2dW

di, = do, + . nm

i ® ;; aw rlm(P ) n-1 (Vening-Meinesz) (4.37a-b)

) dg__-2dW
dy; = cos o, dA; + £ cos ', 3, Y (P,) —m___nm

i i nm i ‘nm\Ti n-1

dg -ZdN _

d21 = -dN1 + x Y (P ) —_—ﬁ:T——__ (Bruns-Stokes)  (4.38)

These expressions can very easily be transformed into the corresponding well-
known integral formulas. For egs. (4.36) and (4.38) the result is egs.
(4.21) and (4.23), eqs. (4.37) become

dX(P) = do(P) + 7= Eégéil cos a(dg-2dW)do
g .

| (4.39a-b)
dy(P) = cos wp dn + 7~ | dStww sin o(dg-2dW)do
o .

4.3 Hotine.

The classical Hotine integral (Hotine, 1969) assumes that besides
scalar gravity the geometry of the boundary surface S is given. As a conse-
quence the corresponding b.v.p. dis fixed, not free.

We shall treat, in short, two versions of this problem, where we
assume one time potential differences to be given, the other time scalar
gravity, besides the surface coordinates x, y, z in the local geodetic
triad, obtained for example from GPS and altimeter measurements.

CASE ONE: Given C and x, y, z of S.
In analogy to eq. (4.2) we write for an arbitrary point

(aw ) [0 o -1) (£ ac, e, )
i L ac ey
dx 1 0 o0 0
. dy | + (4.40)
dy 0 1 o0 0
: dz

dz 0o 0 1 o

\ ) \ / \
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or for the complete system

f[dw]i ) ( [0l,,
[d"]i ; [ch.]
[dyli [0111

1921y | | 101y,

ii

0035 [=6;5)45 [eg(Py)ly
03, Bl 01,
[6ij]ii [01,, 015,
() PR £ PR ()

3

)

“

( [dx]i\

[dy]i
[dz]i

(4.40)

[nc]kJ

Following the approach explained in chapter 4.1 we find for Qx

(O
1
[723111 [0]
Q, = 53
[0] [—=]
Py
Q,, = [0]
RO L
22 prZ

The estimated parameters become, as to be expected,

hck = dzk + dwk

or
dT(P) =

and
dz(P) = dz(P)
dy(P) = dy(P)
d%(P) = dx(P)

[pe (P3) 15

[(PyP,) Syca Tk

CASE TWO: Given g and x, y, z of S.

In this case eq. (4.45) remains valid and

TR
AC) = X1 (dgk+2d2k)

dz(P) + dW(P) = dz(P) + dC(P) + dW,

(4.42a)

(4.42b)

(4.42c)

(4.43)

(4.44)

(4.45)



which, when transformed back from the spectral domain, gives

(AT(P) = g f Holupg) (d9(Q)+242(Q)) dog
where the integral kernel

Ho(y) = f%;al Pn(cos v)
n

4.4 Gradiometric B.V.P.

Hotine
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(4.46)

For completeness also the (vertical) gradiometric b.v.p., discussed in

(Heck, 1982) or (Rummel, 1985), is included.
CASE ONE: Given dC and dr.

The linear model becomes for this case

dw1 a -dz1 + i aCy, ey

dr1 ] -3d21 + i ;(k+1)(k+2)Ack €

where the d3mension1ess vertical gradient anomaly is defined as dr = 4L

and ' = 2%—. The elements of Q are

(P + 3 Py (k#1)ks2) 2

1
ot e g g (k-1)2E, nrInE
3
Pu * 3 pr(k+l)(k+2)
Q, = [ e, (P)]
12 (k-l)zEk k' 17949k
Py*9Pr

—_—]
22 g “kk
(k-1)%E,
where E, -prpw(-j(k+4))2. The solution is

sy * TRy (-3 )

or

dt = A(GM) + g | Mlvpg)2(-IN(Q)+dr(Q) Jdog

(4.47)

l.,0

(4.48a-c)

(4.49)

(4.50)
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where

2n+1
H(v) = L 4= P (cos )
n (n=TY(n+4) "n

and the factor 2 inside the integral is due to the chosen normalization of

AT. For dz we find

d2(P) = -di(P) - AW+ d(GM) + =/ H(¥pg)2(-3dW(Q)+dr(Q) )dog
g

CASE TWO: Given dg and dr.
Now the elements of Qx become

(2p(k+1) + 3 pp(k+1) (k+2))?

1
Q,, = I {6,. + ¢
11 lpg+9pr iy (k-l)zEk
3
2p,(k+l) + 3% p(k+1)(k+2)
= -3 r
Q, =1 R e (Pi) 5k
k

4p +9pr

Q. = I 6,1

. 2
with Ek =pgpr(1+k) .
Then it is

- 1

or

4T(P) = g5 J Glvpq) (2r(Q)-3dg(Q) )dog
with

2n+l
G(v) = ﬁ =T (el P,(cos v)

The derivation of dZ is straightforward.

(4.51)

(4.52a-c)

(4.53)

(4.54)
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Conclusions.

Although the purpose of this chapter was just to demonstrate our

approach for a number of classical cases of the uniquely determined geodetic

b.v.p. some conclusions can be drawn with respect to the interpretation of
the results:

1.

In the treatment of the potential differences one datum unknown Awo was
introduced. In reality oW, cannot be assumed to be constant all over

the earth. For each height datum zone a separate constant Awo (zone) has
to be introduced. For a brief discussion it is referred to (Rummel, 1984).
An analysis (by the authors) of the height datum problem and its proper
treatment is in preparation.

. In the so-called Bruns' equation, eq. (4.23) of the classical Stokes

solution the anomaly dC at the point of computation appears outside the
integral. Due to the implicit use of the Marussi mapping the numerical
value of dC may usually be assumed zero. However this does not imply that
this term has not to be included in the error propagation. Actually this
means, that when estimating the variances of computed geoid heights (or

height anomalies) the variance of the potential differences (orthometric
height, normal height) of the computation point has to be added. This
fact is to our knowledge neglected in practise.

. Throughout constant weights were assumed for all observables. Especially

the assumption Py = const. is not realistical. This problem needs addi-
tional consideration.

. The linear model, eq. (4.2) shows that A¢ and AA cos ¢ have to be

strictly distinguished from the deflections of the vertical, ¢ and n, at
least in thcory, the differences being =— Ax and —X » respectively,
The neglect of thesedifferences leads to the anho]onom1ty in astronomical

levelling, discussed in (Teunissen, 1982).

. The discussion in chapter 4.2 shows, that the coordinate corrections ax

and Ay result from a combination of a¢, aA and the Vening-Meinesz inte-
grals, eqs. (4.37) and (4.38). We see that the Stokes and Vening-Meinesz
integrals together represent in a consistent manner the complete solu-
tion of the vectorial Stokes problem in spherical approximation.

. The step from the spherical approximation to the solution of the origi-

nally non-linear or linearized geodetic b.v.p. can be taken in the

"backward" computation (up-date) step of an iterative scheme.
v
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5. Overdetermined Geodetic B.V.P. and Linear Inference.

A1l problems treated in the previous chapter were one-to-one. Now we
shall apply our solution method to the class of overdetermined geodetic
b.v.p.'s. This requires the introduction of some minimum principle. We
choose the least-squares principle, whereeven at this point we are still
not forced to give a stochastic interpretation to the outcomes. With other
words the observables may still be seen as non-stochastic, and the p's
still be interpreted as weights. It is a small step to go from here to a
stochastic model.

Three overdetermined problems shall be discussed, a gradio-gravimetric
b.v.p. with dC, dg, and dr given, an altimetric-gravimetric one with dC, dg,
and dz, and a combination of the two with dC, dg, dr, and dz. Any other
version can easily be derived along the same:line.

5.1 Gradio-Gravimetric B.V.P.

The linear model for this case is with eqs. (4.2) and (4.47):

dW = -dz + E AC, €

dg = -2dz + z(k+1)Ack e (5.1)
k .

dr =

-3dz + z i(k+1)(k+2)Ack ey
k

Then we obtain for the elements of the linear system {y, A x, By}:

(Taw1,
l = [dg]i (5.2)
[dr],

(1-63515 Lo (P 1y,
['26'j111¢ [(k+1)ek(Pi)]ik . (5.3)

1
1-36,145 [R(keL) (ke2)e (P 1y

ijhii

|
u

([dz]; (5.4)

>
"

\[AC]k
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(1p,8550; (01, 014,
L R [pgéij]ii (01 ' (5.5)
| symmetric [prcij]ii
)

Following the line of chapter 4 we find for 9, = ﬂ-l = (AT Ey‘ﬂ)-li

3 2
i 1 (pw+2pg(k+1) + 5 pp(k+l)(k+2))
,
P +2p (k+1) + vaL (k+1) (k+2)
Q. =[* 9 r e (P:)]. 5.6a-c
a (k-1)%, k{Pi) i (5.6axc)
0 [pw+4p +9pr ]
= s
22 (k-l)ZEk ke kk
. 2 2
WIth by = (pypg + pgpL(1+k)" + pop (-3 (k+4))?) |
Since
AT Py -lp,dW + 2pgdg + 3p.dr], 5.7)
[pwdwk + pg(k+1)dgk + pri(k+1)(k+2)drk]k
one arrives after some lengthy derivation at:
. 1 }
(5.8)
+prpw g(k+4)(-3dwk+drk)}
or alternatively
08, = Ty (-(2p, + S(k+4)p.)p. dW. +
k (E-ISEk Pg* 7 Pr/Py ¥y
(5.9)

* (R~ 3(kt1)p)pgdg +(2(ke1)p g+ (k+4)p, )pdr, }

with £, as defined above. Egs. (5.8) and (5.9) are the core of the solution
of this type of overdetermined geodetic b.v.p. No closed integral formulas
are derived.

With (5.8) or (5.9) it is
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dt(P) =-6% =1 8, e (P)
df (p) = - L
, == —— = -1 Bk(k+1)ek(P) (5.10a-c¢
y or k S
dT__(P) U £ B, 3(k+1)(k+2)e, (P)
rr I,o arz K k k

Finally, it follows the overdetermined "Bruns equation”:

dz(P) = 5_:zﬁi:gﬁ; [p, (dT(P)-dW(P)) + 4p

- (dT_(P)

g
(5.11)

~dg(P)) + 9p(dT..(P)-dr(P))]

The three weights Pu? pg, and pp are assumed constant. From an appropriate
definition of the weights, the uniquely determined b.v.p. are rederived:
CASE ONE: Pr = 0 (Stokes).

Eq. (5.8) gives, compare also eq. (4.19):

A |
ACk = F‘T (dgk-Zdwk)

i

CASE TWO: pg = 0 (gradiometric b.v.p. version A).
Again from eq. (5.8)

-~ 1
ACk = W ("3dwk+dfk)
compare eq. (4.49).

'CASE THREE: p,, = 0 (gradiometric b.v.p. version B).
From eq. (5.8)

- 17"
compare eq. (4.53).

5.2 Altimetric-Gravimetric B.V.P.

Observables are potential differences C, scalar gravity g, and the
geometric surface S (from GPS and/or altimetry). The linear model for this
case becomes with eqs. (4.2) and (4.40)
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dW = -dz + i ac, e,
dg = -2dz +.i(k+1)Ack e \ : (5.12)
dz = dz

We find for the elements of Qx:

(P +2pg(k+1))®

1
Btegrm, il e e (Pley (P4) 1y

O
i

(p,+2p,(k+1))

= [ e (P.)1s, - (5.13a-c)

k

O
(M)
1

[pw+4p *p,

Q,, = 3 8y e kk

with
2 2 ,
B =(k-1)"ppg + P2 (P +Pg(k+1)") . (5.14)
Then the gravity field parameters become:

08, =E% (PyPg(k-1) (dgy-2dHy ) + pgp,(k+l) -

(dwk+dzk)} (5.15)

or alternatively
8¢, =gi-((-299(k'1>+pz>pwd“k + (p,(k-1) + p, -
. (k+1))pgdgk + (pw+2pg(k+1))pzdzk} . (5.16)
This is the solution of the overdetermined "altimetric-gravimetric" b.v.p.,

where d! and dz are obtained completely analogous to chapter 5.1.
Again the special cases of uniquely determined b.v.p., treated in

chapter 4 are derived from either Pys> Pg O P, = 0.

g
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5.3 Overdetermined B.V.P. of Type C, g, I', and z.

Naturally at this point the derivations become a formal exercise. Only
for reasons of completeness the overdetermined case with four observables,
namely potential differences C, gravity g, vertical gradient I and known
boundary S is included.

The linear model for this case becomes

dW = -dz + E Ack ek
dg = -2dz + z(k+1)Ack e
k _
(5.17)
dr = -3dz + £ 3(k+1)(k+2)ac, e,
k
dz = dz
The elements of QX are
- 2
. . { (29 (k¢1) + 3 pi(ke1) (ks2))
= §5.. + L , : .
11 pw+4pg+9pr+pz iy Ek
. ek(Pi)ek(Pj)}]ii
3
pw+2p (k+1) +t5 P (k+1) (k+2) ,
- g r -
Q, = I E, e (Pi) 15k (5.18a-c)
-pw+4pg+9pr+pz
Q,, = I £, Sealkk
and
E, = {(k-1)2(p, p+p;p.(k+1)%+ kp-p. (k+4)*) +
k™ w9 g e (5.19)

+ by (p g (ktD)? + p(3(ke1) (k+2)))

We derive for Aék:
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- 1
Ack =E: {pwpg(k-l)(dgk-Zdwk) + pgpr(k-l)(k+1)

(2drk-3dgk) + PP, ;(k+1)(k+2)(3dzk+drk)

+pwpz(dzk+dwk) + png(k+1)(dgk+2dzk)

+pgP . (k=1)(k+4)(-3dW,+dr, )) (5.20)

or alternatively

. 1
g ((=2pg(k-1)-3p, 3(k-1)(k+4)+p,)p dH, +

+ (py(k-1)-3p,(k=1)(ke1) + p, (k+1))p dgy +
+ (p, 3 (k-1)(k+4) + 2pg(k+1)(k-1) + p, 3 (k+1)(k+2))p dry +
+ (pw+2pg(k+l) + 3pr(k+l)(k+2))pzdzk} (5.21)

Again dT and dz are derived analogously to chapter 5.1. From eq. (5.20) or
(5.21) follow all cases treated so far, uniquely as well as overdetermined,
by defing either one (overdetermined) or two (uniquely determined) weights
to be zero. The additional special cases, not treated so far, {W,I,z},

{g,r,2}, and (r,2z}, result from, respectively, p

Py = Pg = 0.

g = 0, Py = 0, and

Conclusions.

1. The proposed - least squares - approach allows to solve the overdeter-
mined geodetic b.v.p. in spherical approximation. The relatively simple
result depends however on the assumption that each jndividual weight
(or variance) is taken constant all over the earth.

2. From the result a variety of uniquely and overdetermined b.v.p.'s can be
deduced by specializing the weights.

3. The observables astronomical latitude ¢ and A, or alternatively the
gradients r and Fyz could be included in a straightforward manner,
the way it was shown for the vectorial Stokes probiem in chapter 4.2.
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4. The geodetic b.v.p. with more than one observable being a function of
Ax or Ay has not been treated so far.

5. The matrix Qx can be interpreted as a posteri variance-covariance
matrix. .

6. In the overdetermined cases the weights (or inverse variances) permit
a comparison of the required relative precisions of the involved
observables.

6. Overdetermined B.V.P. - Dual Formulation.

It is well known from adjustment theory, that adjustment by parameters
and by condition equations are dual to each other. In the previous chapter
the overdetermined b.v.p.'s have been solved in parametric form, by least-
squares. In the sequel the dual formulation in the form of condition equa-
tions shall be discussed.

6.1 Condition Equations for dW, dg, and dr.

We had, eqs. (5.1) to (5.4)

(1) (Losgglis Lol )
[dz].
gl | = | 2550y Likel)e (P, i (6.1)
[Ac]k
Lwrny ) | E3ey40y [5(k+1)(k+2)ek(Pi)]ikJ
or rewritten i
[dg-2dW1; [(k-1)e, (P.)].
e T A Rt [[AC] \ (6.2)
[2dr-3dg]. (k-1) (k+1)e, (P.)], kJ

Transforming the left4hand side to the spectral domain condition equations
per degree (= k) are ¢btained:

1
RT (492, - (ETyrkery (2dTy-3dgy) = 0 for k # 1
(6.3a-b)

dgk-2dwk =0 & 2d1“k-3dgk =0 for k =1

In integral form eqs. (6.3) become:
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5 107 T Pileos vpq))(da(@)-204(0) o, -
k#1 (6.4)
- & SO TITRFTY Pi(c0s vpq) (2dr(Q)-3dg(Q) )dog
k#1
2 1 Y n(Q)(dg(Q)-20M(Q))dog = 0, m = ~1,0,+1 (6.5)
and
! Y1m(@)(2dr(Q)-3dg(Q))doy = 0, m = -1,0,1 (6.6)

One should not confuse the elimination of the translational rank defect in
the parametric model with condition eqs. (6.5) and (6.6). Egs. (6.5) and
(6.6) merely state that the observable combinations (dg-2dW) and (2dr-3dg)
must not contain first degree terms.

Multiplying both sides of eq. (6.3a) by k-1 gives

(dg,-2dW, ) - 3y (2dr,-3dg,) = 0 , for k # 1 (6.7)

which results in an integral formula alternative to eq. (6.4)

dg(P)-2dW(P) = g kz &l p (cos bpg) (2dr(Q)-3dg(Q))dog . (6.8)
k

‘"sll

gs. (6.5) and (6.6) remain valid.

6.2 Condition Equations for dW, dg, and dz.

The same reasoning leads in the case of dW, dg, and dz to the condition
equations per degree

o (dg,-2dW,) - oy (dg,#2dz,) = 0 ,  for k # 1

(6.8a-b)

dg 2w, = 0 Cfor k = 1

k

or in terms of integral formulas to



1 w 2k+1
7§ (T FET Pleos vpq)) (d9(0)-24H(Q) )dog -
o k=0
kf-l (6.9)
1 o 2k+1
= q;f (kz Tl k(COS \PPQ))(dg(Q)+2dZ(Q))d0 >
o‘ =
k#1
1
77 J ¥ n(Q)(dg(Q)-2dW(Q))doy = O, m=-1,0,+1 (6.10)
(o]
Alternatively one could derive from the parametric form
! .
(dwk+dzk) " o1 (dgk+2dzk) =0 . ’ (6.11)
In this case the integral formula connecting the observables becomes
dW(P) + dz(P) J @ 2kt1 p (Cos wpg)(dg(Q)+242(Q))do (6.12)
r Py pg/ %9 Q '
This equation has been derived by Baarda (1979; p. 63).
Still another condition in the spectral domain would be
o7 (dg,-2dM,) - (dzedi) =0, for k #1
(6.13)

dg,-2dW, = 0, fork=1 |,

with the integral conditions

dz(P) + dW(P) 11;{, (kz”?k"_“ll P(coS ¥pq))(dg(Q)-2eH(Q))doy  (6.14)
k1
and
1 ' .-
.o £ Y, n(Q)(dg(Q)-2dW(Q))dog = 0 » M= 1,0,+1 , (6.15)

compare again (Baarda, ibid; p. 63). With eq. (6.14) altimetric information
can for example be merged with gravimetric information to one system of
condition equations. Note however, that at the same t1me condition (6.15)
is to be taken into account.
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LConclusion.

In this chapter a series of possible condition equations has been
derived, dual to the parametric forms of chapter 5. With these equations,
various kinds of observables are linked to self-controlled systems, similar
to the condition equations in geometric adjustment problems.

7. Observation and Discretization Errors.

In the previous three chapters the deterministic models related to the
geodetic b.v.p. have been discussed. Our initial intention was however, to
discuss the complete physical model, especially the error situation. We
divided the errors into .
- model errors, e.g. incomplete model, linearization errors, errors due to
spherical approximation, where the latter two classes can be taken care
of in an iterative approach,

- discretization errors, due to the fact that a field quantity, the gravi-
tational field, is to be reconstructed from the always discrete measure-
mehts, and

- measurement errors.

In this paper we give only a very short and preliminary discussion of the
analysis of discretization and measurement errors.

We assume at this stage the observables to be stochastic variates,
e.g. dE, dg, dr, and dZ, with the corresponding measurement errors being
normal distributed with zero expectation and variance 02, e.g. o; = ﬁL’
o2 =-3L, o = —lu and o2 -1 . Then the computed parameters of ch. 5wbecome
9 Pg T Pp 2B
statistical estimates and the matrices QX a posteriori variance-covariance
matrices.

We can now look into a number of questions of immediate practical

relevance:

1. The required relative precisions of the various observables become
immediately comparable. We see for example from eq. (5.8), that in case
dg is given with a relative precision o_ of 107° (z 1 mgal), the required
relative precision of the potential differences has to be o, = % - 107°
(2 3 m) and that of the vertical gradients on = % . 107° (z2. 107 8.U.)
We should be very cautious with this statement. It only suggests that
the stated relations should hold in order to obtain a comparable input, .

precisibn for the observables dC, dg, and dr. It certainly does not
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imply, that for example topographic heights are only required with a
precision of 3 m, it also does not imply that these relative precisions
would result in the same contribution coming from these three obser-.
vables, as will be discussed below.

. From the elements of the various Qx matrices giveh in chapter 4 and 5,

we see that our approach gives a complete error picture of the estimated
parameters, variances and covariances. Of course, things remain simple
only, if all a priori variances are assumed to be constant all over the
earth.

Hence from the Q, matrix a rather complete insight can be deduced
about e.g. the variances in geoid heights (or height anomalies) and in
the disturbing potential under various assumptions on the attainable
measurement precisions of the observables, prior to any experiment.

. From the element 022 of the various gx in chapter 6 it is seen that it

gives the a posteriori variance per degree of the estimated Ac, (spheri-
cal harmonic coefficients). It is the a posteriori error spectrum
propagated from the white noise on a sphere of the input observables.
Again it can be discussed under various assumptions about the
variance of the observables. It also makes the error spectrum behaviour
of the observables comparable. We see, for example, from Q22 of eq.
(5.6c) observing Ek,that the error contribution of the vertical gradient
dr converges much faster for increasing degree, than e.g. that of dW.
Even mare, with these formulas a complete signal-noise spectrum

analysis can be set up for the various geodetic b.v.p.'s, very much

alike those described for satellite-to-satellite tracking and/or
satellite gradiometry in (Jekeli & Rapp, 1980) and (Rummel, 1980). It
permits a prior to experiment analysis of the resolution (maximum
resolvable frequency), commission error and omission error, to be anti-
cipated.

. The error behaviour among the observables differs also as a function of

the spherical distance from the computation point, e.g. gradiometry has
a more local behaviour, than gravity. This can be studied by including

into the spectral error analysis Q -type truncation coefficients, well

known from geoid computations, compare (Heiskanen & Moritz, 1967;

ch. 7.4).

. In practise we work in physical geodesy with point observations or with

mean values of a certain block size. The solutions of the geodetic
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b.v.p.'s are derived under the assumption of a global continuous coverage
with observable functions. Therefore all practical methods, whether
collocation type or based upon numerical integration result in what may
be called discretization error, although from method to method very
different in character.

In our approach discretization errors can be studied either by
introducing B, moving average functions (Meissl, 1971) into the deriva-
tions, or by comparing the error spectra for K + = with the finite spec-
trum up to degree K or by introducing into the propagation of the error
spectrum collocation type filters, the way described in (Gerstl & Rummel,
1981).

Finally it is hoped to come along this line to a complete theory that pro-
vides a complete insight into the physical model related to the geodetic
boundary value problem and that permits a judgement of its quality.
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