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ABSTRACT 
 

The Chinese COMPASS/BeiDou-2 full constellation is expected by year 
2020 with more than 30 satellites, and will provide global coverage. 
Australia is already a beneficiary of the regional Beidou system as enough 
satellites are available for Positioning, Navigation and Timing (PNT). A 
combined Beidou+GPS system increases the redundancy, which allows for 
higher accuracy and improved integrity. In this contribution we will compare 
a combined system performance with the Beidou- and GPS-only systems. 
The comparisons will involve integer ambiguity success rates and measures 
of precision of the estimated GNSS parameters and their reliability. 
Comparisons will involve single-frequency vs. multiple-frequencies and 
various satellite elevation cut-off angles. The results will show that the 
combined system allows for improved integer ambiguity success rates, 
satellite visibility and reliability as compared to the systems separately. 
 
KEYWORDS: COMPASS/BeiDou-2, GPS, RTK, precision, variance matrix, 
reliability, Minimal Detectable Bias (MDB), integer ambiguity success rates 

 
 
1. INTRODUCTION 
 
The COMPASS satellite system, commonly known as BeiDou-2, attained initial regional 
operational status in the end of December 2011. Australia is a beneficiary of the current 
Beidou configuration located in the Asia-Pacific region, as enough satellites are available for 
Positioning, Navigation and Timing (PNT). Information about the navigation message was 
released to the public domain in December 2012 (CSNO, 2012). The full Beidou constellation 
is expected in 2020, and will consist of five Geostationary Earth Orbit (GEO), three Inclined 
Geo-Synchronous Orbit (IGSO) and 27 Medium Earth Orbit (MEO) satellites (CSNO, 2012). 
Beidou simulation results can be found in e.g. Grelier et al. (2007); Chen et al. (2009); Yang 
et al. (2011); Qu et al. (2012). Real data results were presented in Shi et al. (2012a) and Shi et 
al. (2012b) that evaluated Beidou-only Single Point Positioning (SPP), relative code 



 

 

 

positioning, Real-Time-Kinematic (RTK), orbit determination and combined Beidou+GPS 
Precise Point Positioning (PPP). First real data Beidou results outside of China are reported in 
Montenbruck et al. (2012a, b) and Steigenberger et al. (2012, 2013). These later studies 
considered orbit determination, PPP, and single-baseline RTK positioning.  
 
In this contribution we compare a combined system single-baseline RTK performance with 
the Beidou- and GPS-only systems. The comparisons will be made on measures of integer 
ambiguity success rates and on precision of the estimated GNSS parameters and their 
reliability. Reliability is a measure of robustness of the underlying model, and can be 
categorized into internal and external reliability. Internal reliability concerns the ability of the 
system to test the observations for modelling errors, and external reliability is referred to as 
the consequences on the estimated parameters when such model misspecifications are left 
undetected. For ambiguity resolution use is made of the LAMBDA method. The goal is to 
give Australian GNSS users indications of what Beidou can bring, both as a stand-alone 
system and when combined with GPS.  
 
We start with a Beidou and GPS system overview, and describe the models and methods used 
for positioning and integer ambiguity resolution. Then we describe the reliability measures, 
and results are given. We conclude with a summary and discussion.  
 
2. BEIDOU AND GPS FREQUENCIES AND WAVELENGTHS 
 
The Beidou satellites currently transmit at three frequencies, B1, B2 and B3 in Quadrature 
phase-shift keying (QPSK) modulation as shown in Table 1, given together with the L1, L2 
and L5 GPS frequencies. The Beidou signals are based on Code Division Multiple Access 
(CDMA) similar to GPS, Galileo and QZSS. We see that no Beidou frequencies overlap the 
GPS frequencies, and thus no Inter-system-bias parameterizations are needed (Odijk and 
Teunissen, 2013).  

Table 1: COMPASS/BeiDou-2 and GPS signals. 

Sat. system Band (component) Frequency [ MHz ]  Wavelength [ cm ] 

BEIDOU B1 (I/Q) 1561.098 19.20 
 B2 (I/Q) 1207.140 24.83 
 B3 (I/Q) 1268.520 23.63 
GPS L1 1575.42 19.03 
 L2 1227.60 24.42 
 L5 1176.45 25.48 

 
3. METHODOLOGY 
 
This section briefly describes the float and fixed baseline least-squares solution and integer 
ambiguity resolution. Then we describe the internal and external reliability measures that will 
be analyzed in the results section. 
 
3.1 Float and fixed baseline least-squares solution 
In the following we describe how we solve our unknown parameters and the integer 
ambiguities.  Consider a single-baseline RTK model and GNSS observations collected in the 
m-vector y , where we divide the unknowns into baseline components in vector b  including 
receiver position increments, receiver clock, etc., of say size 1p  with partial design matrix 
B , and (double-differenced) ambiguities in vector a  of size 1q  with design matrix A . We 



 

 

 

will solve the following Integer Least-Squares (ILS) problem (Teunissen, 1995),  
 qp
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 where     12 =|||| yy
T

yyQ Q , yyQ  is the GNSS observations’ variance-covariance (VCV) matrix, 

pR  the p -dimensional space of real numbers and qZ  the q -dimensional space of integers. 
The parameter estimation is divided into three steps, 1) float solution, 2) integer ambiguity 
estimation, and 3) fixed solution.  
 
3.1.1 Float solution 

In the float solution we replace the integer constraint qZ  in (1) with qR , i.e. both the 
ambiguities and baseline components will be estimated as real-valued parameters. The 
unknown parameters can be solved by least-squares as follows (Teunissen et al., 2006),  
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where â , b̂  are the least-squares solution of the ambiguities and baseline components 
respectively, and aaQ ˆˆ , 

bb
Q ˆˆ , 

ba
Q ˆˆ

 and 
ab

Q
ˆˆ  are the corresponding (co-)variance matrices. 

  
3.1.2 Integer ambiguity estimation 
It can be shown that the integer solution of (1) is given by the integer minimizer,  
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which can efficiently be computed with the LAMBDA method (Teunissen, 1995). The ILS 
estimator in the LAMBDA method results in the highest possible success rates of all integer 
estimators (Teunissen et al., 1996, Teunissen 1999, 2002). 
 
3.1.3 Fixed baseline solution 

The fixed baseline solution b


 of the (integer) constrained linear model (Teunissen et al., 
2006) then reads,  

  aaQQbb aaab


  ˆˆ= 1

ˆˆˆˆ  (5) 

If we neglect the uncertainty in a


, the corresponding VCV-matrix is given as,  
 

baaaabbbbb
QQQQQ ˆˆ

1
ˆˆˆˆˆˆ=    (6) 

The uncertainty in a


 can be neglected if the probability of correct integer estimation is 
sufficiently high. Ensuring that the used integer ambiguity solution has a sufficiently high 
probability of being correct is the task of integer validation, see e.g. the Fixed Failure rate 
Ratio Test (FFRT) in (Teunissen and Verhagen, 2009), and (Verhagen and Teunissen, 2012).  
 
3.2 Reliability, detection and identification of outliers 
Reliability is a measure of robustness of the underlying model. We consider the following two 
composite hypotheses (Teunissen et al., 2006), 

 ,)(:0 AxyEH   (7) 

and, 
  ya CAxyEH )(:  (8) 

In the null hypothesis 0H  in (7) we have (.)E  as the expectation operator, y as the m-vector 



 

 

 

of observations, A the nm  (full-rank) design matrix and x  the n-vector of unknowns. 
Further in the alternative hypothesis aH  in (8) we have yC  as an qm  (full-rank) matrix 

relating the outliers in the q-vector  ( 0 ) to the observations y , where nmq 1 . In 
the absence of outliers (7) should be taken to estimate the unknown parameters x , otherwise 
(8). We emphasize that A should not be confused with the one in equation (1), i.e. the design 
matrix now also contains columns for the baseline components in addition to the ambiguities. 
 
In order to describe the relevance of internal and external reliability, we need to introduce the 
Detection, Identification and Adaptation (DIA) procedure that can be used to identify and 
eliminate outliers (Teunissen, 1990). We focus on the Detection and Identification steps. 
 
3.2.1 Detection 
The Detection step in the DIA procedure concerns testing the model in (7) for all kinds of 
errors on all observations without any specific error signature in mind, i.e. it considers a full 

yC  in (8) of size q=m-n. The test statistic used is referred to as the Local Overall Model 

(LOM) test, see (Teunissen et al., 2006), and follows a central F-distribution with  ,nm  
degrees of freedom (Figure 1). If the LOM test is exceeding a critical value as defined by a 
lookup table of the F-distribution for a certain level of significance, the Identification step 
should be taken since our assumed model in (7) then might be affected by outliers or 
anomalies.  
 
3.2.2 Identification 

Identification concerns constructing the yC  matrix in (8) to identify, if any, outliers  . Since 

many different alternative hypotheses can be taken, we usually restrict us to the case of one 
outlier per observation 1=q  for practical applications. Hence we formulate m  number of 

alternative hypotheses by m  number of 
iyc  canonical vectors in (8), i.e. a vector of size 1m  

with a 1 at the :i th position, with mi ,1,2,=  , and the remaining zeros. This way of 
screening the observations is referred to as data snooping (Baarda, 1968), and can be tested by 
the so called w-test statistic, see (Teunissen et al., 2006). The w-test is standard normally 
distributed under 0H  (Figure 1). 

 
3.2.3 Minimal Detectable Bias and internal reliability 
Reliability of the LOM and w-test can be controlled by the power of test , i.e. the probability 

of rejecting 0H  in (7) when the alternative hypothesis aH  (8) is indeed true. The power of the 

test is a function of   the level of significance, i.e. the probability of rejecting 0H  when it is 

true (false alarm), the number of degrees of freedom q, and the non-centrality parameter  . 
By fixing the power of the tests we can make sure that both tests detect a certain size of a bias 
with the same probability. Recall this probability as 0 , and the non-centrality parameter 0  

can then be fixed according to the following inverse power-function (Baarda, 1968),       
    0000 ,1,=,,=  nm   (9) 

This implies that if we fix the power of the test for both the LOM and w-test, and as well fix 

0  for the w-test, we achieve the same size of the non-centrality parameter and thus same 

reliability for both tests. This quantity can for the F-distributed LOM-test and the normally 
distributed w-test be considered as an offset between the two modes of the corresponding 
distributions, see Figure 1.  



 

 

 

 
Figure 1: Linking the power of the LOM and w-test as well as the non-centrality parameter. 

 
From this non-centrality parameter one can already in the design stage, before taking actual 
measurements, compute the Minimum Detectable Bias (MDB). We have 
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as the MDB (Teunissen, 1998a). One can also besides the MDB consider the following scalar 
squared Bias-to-Noise Ratio (BNR), with a specific outlier in  ycy in case of data 

snooping, 
 yQy yy

T
y  1  (11) 

A small value of y indicates that the bias is small as compared to the observation noise, 

whereas a large value indicates that the bias is significantly large. 
 
3.2.4 External reliability 
We can then compute the impact the bias y  has on the estimated unknown parameters x̂  as 
obtained by taking (7), when (8) is actually true. The probability that the bias is not detected 
is also referred to as the probability of missed detection 1- 0 . With the bias propagation law 

and the difference of the hypotheses in (7) and (8) given as  ya CyHyEHyE )|()|( 0 , 

we get, 
 yQAAQAx yy

T
yy

T   111 )(ˆ  (12) 

This vector x̂  represents the impact a bias in y  will have on the least-squares estimates 
under the null hypothesis (7) in case of a missed detection. We can also compute the squared 
BNR for the unknown parameters, similar to (11), as, 

 xQx xx
T

x ˆˆ 1
ˆˆˆ    (13) 

where 11
ˆˆ )(  AQAQ yy

T
xx  is the VCV-matrix of the unknown parameters. It can be shown 

(Teunissen, 2006) that the relation between y , 0  and x̂  is, 

 0ˆ   yx  (14) 

In other words, once the internal BNR (11) has been computed, the external BNR follows by 
subtracting the non-centrality parameter (9) from equation (11). 
 
 



 

 

 

4 RESULTS 
 
Data from one static receiver CUTA in Curtin’s Continuously Operating Reference Stations 
and one experimental receiver CUTT are evaluated. The stations are equipped with Trimble 
NetR9 multi-frequency multi-GNSS receivers. One day of data was processed, namely April 
21, 2013, with 30 sec interval between consecutive measurements. The distance between the 
stations is approximately 964 m. The Beidou (CSNO 2012) and GPS satellite orbits and 
clocks are given by the broadcast ephemerides. The estimated receiver positions are compared 
to very precise station benchmarks, and we make use of the DIA procedure to detect, identify 
and adapt for outliers. The CUTA antenna is shown to the left of Figure 2, whereas CUTT is 
given to the right. Typical skyplot, number of satellites and Positional Dilution Of Precision 
(PDOP) for a combined Beidou+GPS system is given in Figure 3 for April 21, UTC +0 hours.  
We see in Figure 3 that the current Beidou constellation overall provides us with a larger 
number of satellites over the day as compared to GPS. 
 

 
Figure 2: CUTA (Left) and CUTT (Right) GNSS antennas, baseline distance 964 m. 

 

 
Figure 3: Satellite visibility and PDOP for a combined system (Bottom) with skyplot of Beidou (Top left) and 
GPS (Top right), with 10 degrees elevation cut-off angle for CUTT in Perth and April 21, 2013. 
 



 

 

 

4.1 Single-baseline RTK stochastic settings 
The stochastic model settings in yyQ  for single-baseline RTK positioning are given in Table 

2. We used data from other days than presented in this contribution to find these settings. We 
then applied these settings to the daily data to be analyzed to independently check the validity 
of the stochastic model used. The stochastic model is the exponential elevation weighting 
function as defined in (Euler and Goad, 1991). We restrict our analyses to Beidou B1 and B2 
frequencies (not B3) to fairly compare the results to dual-frequency GPS L1 and L2. 

 
Table 2: Stochastic model settings for single-baseline RTK, with a priori standard deviations for code and phase. 

Sat. system Frequency Code [ cm ]  Phase [ mm ]
BEIDOU B1 31 2.5 
 B2 30 3.3 
GPS L1 37 2.5 
 L2 27 2.6 

 
4.2 Single-baseline RTK positioning results 
Single-frequency RTK positioning results are shown in Figure 4 with epoch-by-epoch 
(instantaneous) integer ambiguity resolution for 10 degrees elevation cut-off angle and a 
combined B1+L1 Beidou+GPS system. Only the correctly fixed solutions are shown at 
bottom as determined by comparing the ambiguities to a set of reference ambiguities, see the 
description in relation to equation (15). Horizontal and vertical scatter plots are given with 
95% confidence ellipses/levels derived from the empirical and formal VCV-matrix of the 
positions. The empirical VCV-matrix is given by the positioning errors as obtained from 
comparing the estimated positions to precise benchmark coordinates. The benchmark 
coordinates for our experimental receiver CUTT was obtained by using a combined 
Beidou+GPS RTK-system with multiple frequencies. The formal VCV-matrix is given from 
the mean of all single-epoch formal VCV-matrices of the entire observation span. All results 
are given in local North, East and Up and local Perth time, UTC +8 hours. A good match 
between the two ellipses implies realistic assumptions on the stochastic model and that we as 
a result have a minimum variance estimator (Teunissen et al., 2006). 
 

 
Figure 4: B1+L1 combined Beidou+GPS single-epoch and single-baseline RTK positioning scatter for CUTA-
CUTT and April 21, 2013 and 10 degrees cut-off angle. Float solutions (Top) and fixed solutions (Bottom), 
where empirical positioning mean errors and standard deviations are given in local North, East and Up. 



 

 

 

We see in Figure 4 a good match between the formal and empirical ellipses/confidence levels, 
which implies that we have realistic stochastic settings in Table 2. We also see that the 
precision of the float solutions go from dm-meter level, down to a few mm standard 
deviations for the fixed solutions.  
 
4.3 Integer ambiguity success rates and time-to-fix 
The success rate, i.e. the probability of correct integer estimation, cannot be computed exactly 
for ILS. Fortunately however, the so called bootstrapped success rate can be used as an 
accurate lower bound to the ILS success rate (e.g. Teunissen, 1997, 1998b). We will denote 
this probability as BsP , . This success rate can be computed without actual measurements i.e. 

only the (decorrelated) VCV-matrix (Teunissen, 1995) of the float ambiguities is needed.  
 
We can also compute the so called ILS empirical success rates by comparing the estimated 
ambiguities to reference ambiguities. These reference ambiguities are estimated by using a 
combined Beidou+GPS system over the whole time-span with multiple-frequencies and a 
Kalman filter, assuming the ambiguities time-constant. The empirical success rate is given as,  

 
amb.integer  of# total

amb.integer correct #
=

EsP  (15) 

 The empirical failure rate is given as the complement,  
 

EsEf PP 1=  (16) 

 
4.3.1 Single-epoch success rates for various elevation cut-off angles 
Empirical ILS success, failure and bootstrapped success rates for elevation cut-off angles 
ranging between 10-35 degrees are given in Table 3 for single- and multiple-frequency RTK. 
The higher elevation cut-off angles are taken as to mimick conditions with obstructed satellite 
availability such as in urban canyons or open pit mines. The bootstrapped success rates are 
computed as the mean of all single-epochs over the day. We denote all success rates of 100% 
with bold and in green color, whereas non-zero failure rates are denoted with red color. 
 
The bootstrapped success rates in Table 3 are indeed good lower bounds to the ILS solutions, 
except for the combined system B1+L1 (98.1% vs. 100%) that is related to some epochs with 
poor quality signals from low elevation satellites (see e.g. a 15 degree cut-off angle, where the 
empirical success rate instead reach 100%). As expected the single-frequency single-system 
with the largest code noise (Table 2), smallest wavelength (Table 1) and number of satellites 
(Figure 3), also give the highest fractions of empirical failure rates (GPS L1). All epochs were 
however successfully fixed for all elevation angles for the combined-system when using 
multiple-frequencies. The GPS single-frequency system performs considerably worse than 
Beidou due to the smaller number of visible satellites at high elevations (see e.g. Figure 5). 
Very promisingly though is that the single-frequency combined system gives close to 100% 
success rates for elevation cut-off angles up to 30 degrees, and even 97%-98% at an elevation 
cut-off angle of 35 degrees. Compare these numbers to Beidou- and GPS-only success rates, 
with values down to 9% for GPS L1 and 52% for Beidou B1, and 35 degrees.  
 
4.3.2 The wrongly fixed solutions single-epoch positioning results 
For a surveyor collecting measurements in real-time, reference ambiguities are usually not 
available beforehand. This is where integer validation plays an important role (Teunissen and 
Verhagen, 2009). In Figure 5, B1 Beidou, L1 GPS and B1+L1 combined positioning results, 
with an elevation cut-off angle of 35 degrees, are given. The float solution is given in gray, 
correctly fixed solution in green, and the wrongly fixed solutions in red. We also give at 
bottom the number of satellites equal/above and below 8 for a single-system, and 9 for a 



 

 

 

combined system, and the corresponding bootstrapped success rates (SR). The number of 
satellites lower bound for the combined system is set to 9 due to parameterization of different 
receiver clocks between the systems (one additional unknown). The GPS clock is given with 
respect to GPS time and the Beidou clock to BeiDou navigation satellite system time (CSNO, 
2012). Gaps are seen in the GPS results since less than 4 satellites are visible for these epochs 
and thus the receiver coordinates are not (unbiased) estimable. 
 
Table  3:  Empirical ILS success, failure and bootstrapped success rates for single- and multiple-frequency RTK, 
CUTA-CUTT and elevation cut-off angles of 10, 15, 20, 25, 30 and 35 degrees (from left to right respectively). 
Number of epochs 2880 (30 sec interval).  
System/  Empirical  Bootstrapped 

frequency Success rate Failure rate  Success rate 
 

EsP  [ % ] , cut-off [deg] 
Ef

P  [ % ] , cut-off [deg]  
BSsP ,  [ % ] , cut-off [deg] 

 10 15 20 25 30 35 10 15 20 25 30 35 10 15 20 25 30 35 
BEIDOU    
B1 96.4 96.1 86.9 83.4 66.8 51.5 3.6 3.9 13.1 16.6 33.2 48.5 93.1 92.8 80.7 77.1 60.0 42.4
B2 97.6 97.5 87.5 84.6 72.6 59.4 2.4 2.5 12.5 15.4 27.4 40.6 96.0 95.8 86.9 83.7 67.1 52.1
GPS    
L1 79.4 68.9 52.6 33.4 19.3 9.0 20.6 31.1 47.4 66.6 80.7 91.0 67.9 54.8 37.8 21.4 11.0 4.4
L2 93.3 87.3 73.5 50.6 32.5 16.9 6.7 12.7 26.5 49.4 67.5 83.1 90.0 82.3 67.3 45.6 28.3 14.5
COMBINED    
B1+L1 98.1 100 100 100 99.4 97.0 1.9 0.0 0.0 0.0 0.6 3.0 100 100 100 99.9 98.7 94.4
B2+L2 100 100 100 100 99.7 97.6 0.0 0.0 0.0 0.0 0.3 2.4 100 100 100 100 99.6 97.5
BEIDOU    
B1,B2 100 100 100 100 99.9 99.7 0.0 0.0 0.0 0.0 0.1 0.3 100 100 100 100 99.8 98.9
GPS    
L1,L2 100 100 100 99.1 97.6 96.0 0.0 0.0 0.0 0.9 2.4 4.0 100 100 99.9 98.2 94.8 90.4
COMBINED    
B1,B2+L1,L2 100 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0 0.0 100 100 100 100 100 100

 
In Figure 5 we see that the correctly fixed positioning errors are very small (mm-level), and 
the Figure illustrates well the need of integer validation since the wrongly fixed solutions 
standard deviations become even larger than the corresponding values for the float solutions 
(meter-level). The number of satellites above/equal 8 (single-system) and 9 (combined-
system) is shown to be a good indication whether single-frequency integer ambiguity 
resolution can be successful. This number of satellites (for 35 degree cut-off angle) is, 
however, only available approximately 18% of the time for Beidou and never for GPS, 
whereas 9 satellites (or more) are available approximately 92% of all epochs for the combined 
system. The insufficient number of satellites is also reflected in the float and wrongly fixed 
positioning results, particularly for GPS with errors of several tens of meters in the Up 
component. We see more specifically six large peaks of the Up errors that are related to poor 
satellite geometry, thus we depict the number of satellites and PDOP for GPS in Figure 6. By 
inspecting Figure 6 we have indeed PDOP peaks at the same time as for the float and wrongly 
fixed solutions in Figure 5. This implies that the combined system does not only dramatically 
improve the success rates (from 9% L1 GPS and 52% B1 Beidou, to 97% empirical success 
rate for a combined system), but also the satellite geometry and positioning availability. 
 
 



 

 

 

(a) B1 Beidou positioning and bootstrapped SR (35 deg).  (b) L1 GPS positioning and bootstrapped SR (35 deg). 

 

 
(c) B1+L1 Combined positioning and bootstrapped SR (35 deg). 

Figure 5: Float (gray), correctly fixed (green) and wrongly fixed (red) solutions for single-epoch single-baseline 
RTK B1 Beidou (a), L1 GPS (b), and combined B1+L1 (c) positioning scatter for CUTA-CUTT and an 
elevation cut-off angle of 35 degrees. Mean positioning errors ± standard deviations given in local North, East 
and Up. At the bottom of each positioning scatter plot light green represents number of satellites above or equal 
8 (9 for combined) satellites, red corresponding color is for below 8 (9 for combined) satellites. Bootstrapped 
success rates are taken as a mean of all epochs above/equal and below these satellite limits. 
 

 
Figure 6: PDOP and number of satellites for GPS and an elevation cut-off angle of 35 degrees. 

 
4.3.3 Time-to-fix for single-frequency solutions 
We conclude this section by giving the most demanding RTK scenario with single-frequency 
data and elevation cut-off angle of 35 degrees, but now instead of epoch-by-epoch solutions 



 

 

 

we accumulate epochs by a Kalman filter assuming the ambiguities time-constant. This 
procedure goes as follows; The filter is initialized (at the first epoch) and based on the 
(filtered) set of float ambiguities, integer ambiguity resolution is attempted. The fixed 
ambiguities are then compared to the true reference ambiguities, and if they are not correct 
another epoch is included in the filter, and so on, until the estimated integer ambiguities are 
correct. When this is true, the filter is re-initialized at the second epoch, and the whole process 
is repeated again. In this way it is decided how many epochs that are needed for successful 
ambiguity resolution (time-to-fix). The time-to-fix results with mean ± standard deviation 
over the day are depicted in Figure 7 for B1 Beidou, L1 GPS and a B1+L1 combined system. 
Gaps are again seen in the GPS results since less than 4 satellites are visible for these epochs 
(Figure 6).  
 

(a) B1 Beidou time-to-fix.     (b) L1 GPS time-to-fix. 

 
(c) B1+L1 combined time-to-fix. 

Figure 7: Time-to-fix (1 epoch =  30 sec) with mean ± standard deviation over the day for an elevation cut-off 
angle of 35 degrees and single-baseline RTK B1 Beidou (a), L1 GPS (b) and B1+L1 combined (c) for CUTA-
CUTT.    
 
The combined system needs (estimated as a mean value) 1.1 epochs for successful ambiguity 
resolution, with a standard deviation of 0.4 epochs. Corresponding value for the single-
systems are approximately 6 epochs (3 min) for Beidou B1 (standard deviation 6 min), and 15 
epochs (7.5 min) for GPS L1 (standard deviation 11 min). When comparing Figure 7 to 
Figure 5, we see overall that the number of required epochs is one (instantaneous ambiguity 
resolution) when the number of satellites is sufficient (equal/above 8/9 satellites). This holds 
true for most of the epochs from approximately 9/10 p.m. to slightly before 2 a.m. local Perth 
Time for Beidou, and at all times for the combined system, except for some epochs before 12 
a.m. For GPS however the number of satellites never reaches the sufficient number of 
satellites and thus we need (for 91% of the time, see Table 3) more than one epoch to 
successfully fix the ambiguities.  
 
4.4 Internal and external reliability 
The robustness of the GPS, Beidou and combined models against model errors is analyzed for 
single-frequency RTK. Two types of model errors have been assumed: i) outliers in the code 
data, and ii) cycle-slips in the phase data. Outliers affect the code observations of one single 
epoch, while cycle-slips shift the phase observations from a certain epoch by an integer 
amount of cycles. For both types of model errors we compute code outlier and phase slip 
MDBs and BNRs in a systematic way (by data snooping) for all observations during the day. 
While the code outlier MDBs/BNRs can be computed based on one single epoch, the phase 



 

 

 

slip MDBs/BNRs are based on two consecutive epochs, for which the ambiguities are treated 
as time constant between them. The BNRs are taken as the square root of equation (13).  We 
computed MDBs and BNRs as daily mean values for each satellite. In Table 4 and 5 we 
present the ranges (minimum to maximum) of these daily means for all satellites. In order to 
make a comparison between the 10-degree (Table 4) and 35-degree (Table 5) cases possible, 
the MDB time series time-span, from which the per-satellite mean MDB was computed, was 
in both cases confined to the 35-degree cut-off angle. The redundancy will however still be 
different between scenarios, since (other) visible satellites below 35 degrees are also 
contributing in the 10-degree case. In other words, we expect larger values of MDBs/BNRs in 
the 35-degree case, due to the less redundancy as compared to the 10-degree case. The MDBs 
are computed based on a significance level of 0.001 and a power of 0.80, such that the non-
centrality parameter is 17.07. Large deviating values of MDBs/BNRs are given within 
brackets. 
 
Table 4: Range of daily mean of code outlier (single-epoch) and phase slips (two-epochs) MDBs/BNRs for 
single-frequency B1 Beidou, L1 GPS, and B1+L1 combined, for an elevation cut-off angle of 10 degrees.  

Model System/ Code outlier (1 epoch)   Phase slip (2 epochs) 
 frequency MDB [m] BNR MDB [cyc] BNR 

SINGLE-SYSTEM BEIDOU B1 2-5 6-8 0.07-0.2 0.2-0.8 
 GPS L1 3-4 6-8 0.08-0.1 0.3-1.1 
      

COMBINED BEIDOU B1 2-3 5-8 0.07-0.08 0.2-0.4 
 GPS L1 2-3 5-6 0.07-0.09 0.2-0.8 

 
Table 5: Range of daily mean of code outlier (single-epoch) and phase slips (two-epochs) MDBs/BNRs for 
single-frequency B1 Beidou, L1 GPS, and B1+L1 combined, for an elevation cut-off angle of 35 degrees. 
Model System/   Code outlier (1 epoch) Phase slip (2 epochs)

 frequency MDB [m] BNR MDB [cyc] BNR 
SINGLE-SYSTEM BEIDOU B1 2-24 5-76 0.08-1.1 

(some MDBs > 9) 
0.3-0.8 

(some BNRs > 100) 
 GPS L1 4-38 10-160 0.2-9.0 

(some MDBs > 15)
0.9-110 

(some BNRs > 1000)
      

COMBINED BEIDOU B1 2-4 6-8 0.07-0.1 0.2-0.5 
(some BNRs > 10)

 GPS L1 3-4 6-8 0.08-0.1 0.3-0.9 
(some BNRs > 6) 

 
It can be seen from Table 4 that with a cut-off of 10 degrees the code outliers MDBs lie in the 
range of 2-5 m for Beidou-only and 3-4 m for GPS-only. The Beidou MDBs are generally 
smaller than those of GPS, because of the lower noise of the Beidou B1 code data (see Table 
2) and (on average) the larger number of Beidou satellites tracked (see Figure 3). The 
corresponding BNRs are in the range of 6-8 for both Beidou and GPS. When the 
constellations are combined the values for the code outlier MDBs/BNRs are decreased as 
compared to the single-system MDBs/BNRs, this since the combined model is stronger and 
has higher redundancy. The phase slip MDBs lie in the range of 0.07-0.2 cycles for Beidou-
only and 0.08-0.1 cycles for GPS-only. These are slightly improved in the combined solution 
to values ranging between 0.07-0.09 cycles. The corresponding BNRs, which are up to 0.8 for 
Beidou-only and up to 1.1 for GPS-only, are also slightly improved when the two are 
combined.  
 
The results using the much higher cut-off elevation of 35 degrees are as follows. From Table 
5 it can be seen that the mean code outlier MDBs are in the range of 2-24 m for Beidou, and 
those for GPS in the range of 4-38 m. These much larger ranges as compared to the 10-degree 



 

 

 

cut-off scenario are due to the low redundancy when using a 35 degree cut-off angle (see 
Figure 5). The corresponding single-system BNRs can take on very large values as well: up to 
160 for GPS. In other words, the reliability becomes poorer when we decrease the number of 
satellites. A significant improvement in code outlier robustness can however be observed for a 
combined Beidou+GPS system: the MDBs reduce to low values below 4 m and the BNRs are 
not larger than 8 for both systems. With an elevation cut-off angle of 35 degrees, the phase 
slip MDBs can also be very large: MDBs larger than 9 cycles are observed for Beidou-only 
and even larger values (more than 15 cycles) for GPS-only. This implies that cycle slips 
smaller than these values may not be detected, which can inhibit (non-instantaneous) integer 
ambiguity resolution. This is also visible from the corresponding BNR values, which can be 
more than 100 for Beidou-only and even more than 1000 for GPS-only. However, the results 
improve significantly when the two constellations are combined: all phase slip MDBs become 
at most 0.1 cycles, while the corresponding BNR has some sporadic outliers of 10 at most. By 
comparing the 35-degree MDBs/BNRs for the combined system with the corresponding 10-
degree, we see a much less degradation of the reliability as compared to the single-system 
cases. This is promising, since a combined system does then not only allow for high success 
rates for large elevation angles (Table 3), but also preserves the reliability of the model. 
 
5. CONCLUSIONS 
 
In this contribution we have studied the third satellite system Beidou that in addition to GPS 
and GLONASS provides continuous PNT in the Asia-Pacific region. We focused our 
attention on positioning in Perth, Western Australia and a combined Beidou+GPS single-
baseline RTK model, the integer ambiguity success rates and the internal/external reliability 
of the model. The comparisons were made to the systems separately. We can summarize our 
findings and conclusions as follows. 
 
5.1 Integer ambiguity success rates for various satellite elevation cut-off angles 
In Table 3 we summarized (single-epoch) ILS empirical success rates results for single- and 
multiple-frequency Beidou, GPS and combined Beidou+GPS RTK. This was given for 
several different satellite cut-off elevation angles (10-35 degrees), where higher cut-off angles 
are suitable in e.g. urban canyons or open pit mines. Our main conclusion is that with an 
elevation cut-off angle of up to 35 degrees, a combined single-frequency Beidou+GPS system 
can provide us with empirical success rates of 97%-98%. The corresponding number for 30 
degrees was 100%. If we compare the 35 degree results to the single-systems, with success 
rates ranging between 9% (for L1 GPS) to at most 59% (for B2 Beidou), it is indeed a 
dramatic and promising improvement. We also concluded that the Beidou-only system 
currently has, during a 24 hour period, more satellites at higher elevation angles as compared 
to GPS and with respect to our receivers, which allows for larger Beidou success rates for 
different cut-off angles.  
 
5.2 Time-to-fix 
When looking into the most demanding scenario with an elevation cut-off angle of 35 degrees 
and single-frequency (B1 and L1) data, we found by using a Kalman filter that the time-to-fix  
was (almost) only one epoch for the combined system, taken as mean over the day. The 
corresponding numbers for Beidou and GPS were 6 epochs (3 min) and 15 epochs (7.5 min) 
respectively (Figure 7). The time-to-fix results were also found to be correlated to the number 
of satellites as depicted in Figure 5, and the corresponding (single-epoch) bootstrapped 
success rates. 
 



 

 

 

5.3 Internal and external reliability 
When the constellations were combined, the values of the code outlier MDBs/BNRs were 
slightly decreased for a 10 degree of elevation cut-off angle (Table 4), with a significant 
improvement for the 35 degree angle (Table 5). More specifically, in the latter case the code 
MDBs were decreased from several tens of meters down to a few meters. With an elevation 
cut-off angle of 35 degrees, the single-system phase slip MDBs also become very large. We 
obtained MDBs larger than 9 cycles for Beidou, and more than 15 cycles for GPS. This 
implies that cycle slips smaller than these values might not be detected for a single-system, 
which can seriously inhibit (non-instantaneous) integer ambiguity resolution. However, the 
results improve significantly when the two constellations are combined, where all phase slip 
MDBs become at most 0.1 cycles, while the corresponding BNR has some sporadic outliers 
of 10. Comparing 35-degree MDBs/BNRs (Table 5) with the corresponding 10-degree results 
(Table 4), we can also conclude that a combined system preserves the reliability of the model. 
 
Beidou has already been shown to be suitable as a complementary or standalone GNSS 
system for Australia. More satellites are upcoming and will improve the Beidou and 
combined Beidou+GPS system even further. 
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