
EXAMPLE AMBIGUITY RESOLUTION

Dennis Odijk and Peter J.G. Teunissen

Department of Mathematical Geodesy and Positioning
Delft University of Technology

Thijsseweg 11, 2629 JA Delft, The Netherlands

In the following a simple two-dimensional example of GPS ambiguity res-
olution is given. Based on a float ambiguity solution, the integer solution is
computed using the three admissible estimators, i.e. integer rounding, integer
bootstrapping and integer least-squares. This is done for the original (DD)
ambiguities, as well as the decorrelated ambiguities. The correctness of these
solutions is inferred by evaluating their ambiguity success-rates.

1 Integer estimation: original ambiguities

Consider the following two-dimensional float ambiguity solution:

â =
[

2.51
2.23

]
; Qâ =

[
0.2767 0.2152
0.2152 0.1680

]
(1)

Note that this ambiguity variance-covariance (vc-) matrix corresponds to the
dual-frequency ionosphere-fixed geometry-free model for two receivers, two satel-
lites, and two epochs, in which an undifferenced phase standard deviation of 3
mm and an undifferenced code standard deviation of 10 cm is assumed. In the
following subsections for this 2D float solution the integer rounding, bootstrap-
ping and least-squares solutions are computed.

1.1 Integer rounding

The integer rounding solution reads simply:

ǎR =
[

nint(2.51)
nint(2.23)

]
=

[
3
2

]
(2)

where nint(·) denotes the rounding-to-the-nearest-integer operator. Note that
the squared distance of this integer solution to the real solution, in the metric
of Qâ, is ‖â− ǎR‖2Qâ

= 592.81.

1.2 Integer bootstrapping

There are two ways to compute the integer bootstrapping solution: either by
starting with the first ambiguity, or by starting with the second ambiguity.

1

When the algorithm is started with the first ambiguity, the solution reads:

ǎ
(1)
B =

[
nint(2.51)
nint(2.23− 0.2152

0.2767 (2.51− 3))

]
=

[
3
3

]
(3)

The squared distance of this solution to the float solution (again in the metric of
Qâ) is ‖â− ǎ

(1)
B ‖2Qâ

= 240.62. When the second ambiguity is used as starting
point, the bootstrapped solution reads:

ǎ
(2)
B =

[
nint(2.51− 0.2152

0.1680 (2.23− 2))
nint(2.23)

]
=

[
2
2

]
(4)

with the following squared distance to the float solution, ‖â− ǎ
(1)
B ‖2Qâ

= 44.96.
Note that both solutions are not equivalent, and they are also not equal to the
integer rounding solution.

1.3 Integer least-squares (search)

The integer least-squares minimization problem boils in 2D down to a search
over grid-points within an ellipse as described by:

(â− a)T Q−1
â (â− a) = χ2 (5)

In Figure 1 this ambiguity search space is visualized. The factor χ2 has been
set to 296.80 to have about 10 candidates lying inside the search space.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

11

12

a
1
 [cyc]

a 2 [c
yc

]

Figure 1: 2D ambiguity search space, centered around float solution (marked
by a cross) and integer solution (marked by a circle).

Candidate integer solutions are found by evaluating the bounds of the two
ambiguities. The first ambiguity is bounded as follows:

a1 ≥ â1 − σâ1χ ≈ − 6.55 (lower bound)
a1 ≤ â1 + σâ1χ ≈ 11.57 (upper bound) (6)

The bounding of the second ambiguity depends on the value of the conditional
ambiguity â2|1, and this latter value depends on the value of the candidate

2

integer for a1. The standard deviation of the conditional ambiguity is σâ2|1 =
0.0251. The bounds of the second ambiguity read:

a2 ≥ â2|1 − σâ2|1

√
χ2 − (â1 − a1)

2
/σ2

â1
(lower bound)

a2 ≤ â2|1 + σâ2|1

√
χ2 − (â1 − a1)

2
/σ2

â1
(upper bound)

(7)

In Table 1 the candidate integer vectors are given. For all candidate integers
for a1 the lower- and upper-bounds according to Eq. (7) are given in the table
as well. If one or more integer values for a2 are within these bounds they are
given. If there are no integers within the bounds, this is denoted with a ’-’. In
this way the complete ambiguity search space is searched for candidate integer
vectors.

Table 1: Results LAMBDA search procedure: original ambiguities

a1 â2|1 lower a2 upper a2 a2 (â− a)T Q−1
â (â− a)

-6 -4.39 -4.54 -4.24 - -
-5 -3.61 -3.85 -3.37 - -
-4 -2.83 -3.13 -2.53 -3 197.33
-3 -2.06 -2.40 -1.71 -2 114.58
-2 -1.28 -1.65 -0.90 -1 195.66
-1 -0.50 -0.90 -0.10 - -
0 0.28 -0.14 0.69 0 145.17
1 1.06 0.63 1.48 1 13.14
2 1.83 1.40 2.27 2 44.96
3 2.61 2.18 3.04 3 240.62
4 3.39 2.96 3.82 3 247.68
5 4.17 3.75 4.58 4 66.39
6 4.94 4.55 5.34 5 48.94
7 5.72 5.35 6.10 6 195.33
8 6.50 6.16 6.84 - -
9 7.28 6.98 7.58 7 274.30

10 8.06 7.81 8.30 8 207.59
11 8.83 8.68 8.98 - -

Table 1 shows that within the search space 13 candidate integer vectors are
found. For 5 candidate integers of a1 however no candidate integers for a2 could
be found. These are called ’dead ends’. From all found candidate vectors the
vector (1, 1)T is at shortest squared distance (in the metric of Qâ) from the float
solution and is therefore assigned as the integer least-squares solution:

ǎLSQ =
[

1
1

]
(8)

Note that this solution is not equal to both integer bootstrapped solutions, nor
the integer rounding solution. The squared distance of this integer solution
to the float solution is ‖â − ǎLSQ‖2Qâ

= 13.14, which is also the shortest
squared distance when compared to the integer rounding and bootstrapping

3

solutions. Note that when the size of the ambiguity search space was set using
the bootstrapped solution (starting with the most precise ambiguity), it would be
set at χ2 = 44.96, and a much smaller search space could have been searched,
but which would still contain the integer least-squares solution.

2 Integer estimation: decorrelated ambiguities

Integer solutions can also be obtained using decorrelated ambiguities. In 2D
the procedure for constructing the decorrelating ZT -matrix consists of an al-
ternating application of two basic transformation matrices, ZT

a and ZT
b , to the

vc-matrix Qâ. These basic transformation matrices read:

ZT
a =

[
1 −nint(σâ1â2σ

−2
â2

)
0 1

]
; ZT

b =
[

1 0
−nint(σâ2â1σ

−2
â1

) 1

]
(9)

The procedure ends when the matrices ZT
a and ZT

b simplify into identity ma-
trices. In Table 2 the results of the procedure of constructing the ZT -matrix
can be found. According to the table, the last two matrices ZT

3 and ZT
4 are

Table 2: Stepwise construction of the Z-matrix.

i ZT
i Qẑi = ZT

i Qẑi−1Zi

0 -

[
0.2767 0.2152
0.2152 0.1680

]

1

[
1 −nint(0.2152

0.2767
)

0 1

]
=

[
1 −1
0 1

] [
0.0143 0.0472
0.0472 0.1680

]

2

[
1 0

−nint(0.0472
0.0143

) 1

]
=

[
1 0

−3 1

] [
0.0143 0.0043
0.0043 0.0135

]

3

[
1 −nint(0.0043

0.0135
)

0 1

]
=

[
1 0
0 1

] [
0.0143 0.0043
0.0043 0.0135

]

4

[
1 0

−nint(0.0043
0.0143

) 1

]
=

[
1 0
0 1

] [
0.0143 0.0043
0.0043 0.0135

]

equivalent to the identity matrix, such that the ZT -matrix is only based on the
matrices ZT

1 and ZT
2 . The matrix ZT plus its inverse read:

ZT = ZT
2 ZT

1 =
[

1 −1
−3 4

]
, Z−T = Z−T

1 Z−T
2 =

[
4 1
3 1

]
(10)

Application of the constructed ZT -matrix to the original ambiguities results in
the following decorrelated ambiguities:

ẑ = ZT â =
[

0.28
1.39

]
; Qẑ = ZT QâZ =

[
0.0143 0.0043
0.0043 0.0135

]
(11)

Although the decorrelating transformation was originally designed to be used in
combination with the integer least-squares estimator in the LAMBDA-method,

4

it can also be applied to decorrelate the ambiguities to improve integer esti-
mation based on rounding or bootstrapping. This is illustrated in the following
subsections, in which the decorrelated float solution of Eq. (11) serves as input
for the integer rounding, bootstrapping and least-squares estimators.

2.1 Integer rounding

The integer rounding solution in the decorrelated domain is simply obtained as:

žR =
[

nint(0.28)
nint(1.39)

]
=

[
0
1

]
(12)

The squared distance of this rounding solution to the decorrelated float solution
in the metric of Qẑ reads ‖ẑ − žR‖2Qẑ

= 13.14, which is a much shorter squared
distance than the squared distance of the integer rounding solution in the orig-
inal domain. Back-transforming the integer rounding solution to the original
ambiguity domain, results in the following integer solution ǎ′R:

ǎ′R =
[

1
1

]
(13)

Note that this transformed solution does not correspond to the integer rounding
solution obtained using the original ambiguities in Eq. (2): ǎ′R 6= ǎR.

2.2 Integer bootstrapping

Like in the original ambiguity domain, using the integer bootstrapping estimator
two solutions can be obtained, depending on with which ambiguity the process
is started. They both read:

ž
(1)
B =

[
nint(0.28)
nint(1.39− 0.0043

0.0143 (0.28− 0))

]
=

[
0
1

]

ž
(2)
B =

[
nint(0.28− 0.0043

0.0135 (1.39− 1))
nint(1.39)

]
=

[
0
1

] (14)

with the following squared distances to the float solution: ‖ẑ − ž
(1)
B ‖2Qẑ

= ‖ẑ −
ž
(2)
B ‖2Qẑ

= 13.14. So using decorrelated ambiguities both bootstrapped solutions
turn out to be equivalent, in contrast to the solutions in the original domain,
see Eq. (3) and (4). Transformation of both decorrelated solutions back to the
original domain, results in the following integer solutions, denoted as ǎ

(1)′

B and
ǎ
(2)′

B :

ǎ
(1)′

B = ǎ
(2)′

B =
[

1
1

]
(15)

These back-transformed bootstrapped solutions are equivalent since they are
obtained from equivalent decorrelated solutions. However they are not equal to
the bootstrapped solutions obtained in the original domain, see Eq. (3) and (4):
ǎ
(1)′

B 6= ǎ
(1)
B and ǎ

(2)′

B 6= ǎ
(2)
B .

5

2.3 Integer least-squares (search)

Figure 2 shows the transformed ambiguity search space (using χ2 = 296.80; the
same as in the case with the original ambiguities), which is much less elongated
than the original search space in Figure 1.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

11

12

z
1
 [cyc]

z 2 [c
yc

]

Figure 2: LAMBDA-transformed 2D ambiguity search space, centered around
float solution (marked by a cross) and integer solution (marked by a circle).

As result of the LAMBDA-search on the transformed ambiguities, in Table
3 the candidate integer vectors are given. From the table one can see that
for each z1 integer candidate there are more than one integer candidates for
z2. Using the original ambiguities however, at most just one candidate for a2

could be found for a certain candidate integer a1 (see Table 1). Moreover, using
the decorrelated ambiguities no dead ends are found. From this example we
may therefore conclude that the search for the integer least-squares solution in
the transformed domain is performed in a much more efficient way than in the
original domain. The integer least-squares solution in the transformed domain
reads:

žLSQ =
[

0
1

]
(16)

Note that this solution is equal to the bootstrapped and rounding solutions
in the same domain, and thus it also holds that ‖ẑ − žLSQ‖2Qẑ

= 13.14. Back-
transforming the solution in the transformed domain to the original DD-domain,
results in the following solution:

ǎ′LSQ = Z−T žLSQ =
[

1
1

]
(17)

This back-transformed solution is exactly the solution as was found using the
search in the original domain: ǎ′LSQ = ǎLSQ.

6

Table 3: Results LAMBDA search procedure: decorrelated ambiguities

z1 ẑ2|1 lower z2 upper z2 z2 (ẑ− z)T Q−1
ẑ (ẑ− z)

-1 1.01 -0.49 2.50 0 197.33
1 114.58
2 195.66

0 1.31 -0.58 3.19 0 145.17
1 13.14
2 44.96
3 240.62

1 1.61 -0.18 3.39 0 247.68
1 66.39
2 48.94
3 195.33

2 1.91 0.86 2.95 1 274.30
2 207.59

In contrast to the integer rounding and bootstrapping estimators, the inte-
ger least-squares estimator is the only estimator for which its solution in the
transformed domain is equal to the solution as obtained using the ambiguities in
the original domain. This is not surprising, since both minimization problems,
in the original as well as the Z-transformed domain, are exactly equivalent.
This equivalence does however not hold for the integer rounding and integer
bootstrapping estimators. The cause for this phenomenon is explained in the
following section, by considering the pull-in regions of the different integer so-
lutions.

3 Pull-in regions

Before showing the pull-in regions, assume that the correct integer solution
for our 2D example corresponds to the estimated integer least-squares solu-
tion, denoted as a in the original domain, and denoted as z in the LAMBDA-
transformed domain:

a = ǎLSQ =
[

1
1

]
, z = žLSQ =

[
0
1

]
(18)

In Figures 3 and 4 the pull-in regions of the integer rounding estimator are
plotted, in the original as well as in the transformed domain. The figures show
that in both domains the pull-in regions are simple squares, where each square is
centered around a grid-point. The pull-in regions corresponding to the assumed
correct integer solution are grey-shaded. Also in the figures the float solution
is depicted (marked by a dot), and it can be seen that in the original domain
the float vector is lying outside the pull-in region of the correct solution. In the
Z-domain, it is however inside the pull-in region. So in this case it is better to
decorrelate the ambiguities first, in order to obtain the correct integer solution.

A similar phenomenon is visible for the integer bootstrapping estimator. In
Figures 5 and 6 for this estimator the pull-in regions are shown (starting with

7

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

a
1
 [cyc]

a 2 [c
yc

]

Figure 3: Integer rounding in the orig-
inal domain.

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

z
1
 [cyc]

z 2 [c
yc

]
Figure 4: Integer rounding in the decor-
related domain.

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

a
1
 [cyc]

a 2 [c
yc

]

Figure 5: Integer bootstrapping in the
original domain.

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

z
1
 [cyc]

z 2 [c
yc

]

Figure 6: Integer bootstrapping in the
decorrelated domain.

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

a
1
 [cyc]

a 2 [c
yc

]

Figure 7: Integer least-squares in the
original domain.

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

z
1
 [cyc]

z 2 [c
yc

]

Figure 8: Integer least-squares in the
decorrelated domain.

8

the first ambiguity). In 2D these pull-in regions are parallelograms centered
around the grid points. Like for integer rounding, in the original domain the
float ambiguity vector is not mapped to the correct integer solution, however in
the Z-domain it is.

Finally, Figures 7 and 8 show the pull-in regions of the integer least-squares
estimator. In 2D these turn out to be hexagons centered around the grid points.
As can be seen from the figures, for this integer estimator it makes no difference
whether the ambiguities are first decorrelated or not, since its integer solution
was assumed as the correct one.

So in this example the float ambiguity solution lies in the pull-in region of
the (assumed) correct solution for all the three integer estimators, provided that
the ambiguities are first decorrelated. This beneficial effect of decorrelation is
also visible in the ambiguity success-rate, which is discussed in the next section.

4 Ambiguity success-rates

Table 4 shows for our 2D example the computed ambiguity success-rates plus
some lower- and upper-bounds. This has been done for the ambiguities in the
original domain, as well as for the decorrelated ambiguities.

Table 4: Example ambiguity success-rates.

success-rate original amb. decorrelated amb.

lower-bound rounding 0.51171 0.99995

bootstrapping (1st ambiguity) 0.65816 0.99996

bootstrapping (2nd ambiguity) 0.77749 0.99997

ADOP upper-bound bootstrapping 0.99997 0.99997

simulated least-squares not computed 0.99998

ADOP upper-bound least-squares 0.99999 0.99999

The tables shows that the probability of integer least-squares is largest: the
simulated success-rate using the decorrelated ambiguities is 0.99998. Note that
the value of 0.99999 is only an ADOP-based upper-bound for the least-squares
success-rate, and cannot be used when inferring the correctness of the integer
solution. Although the simulated success-rate is largest, it is sharply lower-
bounded by the bootstrapping success-rates and the lower-bound for rounding,
provided that the ambiguities are decorrelated. In Figures 3-6 this beneficial
effect of decorrelation was already visible.

Note that for the success-rate of integer bootstrapping, which can be com-
puted exactly, it makes sense to start the bootstrapping with the most precise
ambiguity (denoted with (2) in the table) as this yields a higher success-rate,
though there is only a marginal difference in the decorrelated case.

9

5 Conclusion

From the considered example the following conclusion can be drawn. Although
for the integer least-squares solution it makes no difference whether the ambigui-
ties are decorrelated or not, the estimation based on the decorrelated ambiguities
turns out to be more efficient (faster) than using the ambiguities in the original
domain. Besides, with decorrelated ambiguities it is for the considered exam-
ple also possible to obtain the correct integer solution using the more simpler
integer rounding and bootstrapping estimators.

10

