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ABSTRACT: Global Navigation Satellite Systems (GNSS)-based attitude determination is a valuable technique
for the estimation of platform orientation. Precise attitude determination using multiple GNSS receivers/antennas
mounted on a remote sensing platform relies on successful resolution of the carrier phase integer ambiguities. The
LAMBDA method has proven to be an efficient method to solve integer least squares problems. This method
is, however, only applicable to unconstrained and/or linearly constrained models, but not to quadratically con-
strained models such as the GNSS attitude model. For a set of GNSS antennas rigidly mounted on a platform,
a number of nonlinear geometrical constraints can be exploited for the purpose of strengthening the underlying
observation model and subsequently improving the capacity of fixing the correct set of integer ambiguities. In
this contribution, we describe and test the Multivariate Constrained (MC-) LAMBDA method, which effectively
makes use of the known antenna geometry. Reliable and instantaneous integer estimation is particularly a chal-
lenge for single-frequency applications with low cost GNSS receivers. With our field tests, we show the potential
of stand-alone, unaided, single-frequency, single epoch attitude determination.

1 INTRODUCTION

Precise attitude determination is a prerequisite for remote sensing applications. For instance, estimating pointing
directions for remote sensors such as radars and laser scanners requires the knowledge of platform orientation.
Multiple GNSS receivers/antennas mounted rigidly on the platform can be used to determine platform orientation,
see e.g., (Cohen, 1992; Crassidis and Markley, 1997; Psiaki, 2006). GNSS-based attitude determination system
offers several advantages including that it is driftless and requires less maintenance.

GNSS-based attitude determination requires a precise relative positioning solution, that can be provided in
principle by the very precise GNSS carrier phase observables. The phase observables are however biased by
unknown integer ambiguities, that must be resolved in order to fully exploit their higher precision. Carrier
phase integer ambiguity resolution is therefore the key to high-precision GNSS positioning. The Least squares
AMBiguity Decorrelation Adjustment (LAMBDA) method (Teunissen, 1995) is currently the standard method for
solving unconstrained GNSS ambiguity resolution problems, see, e.g., (Boon and Ambrosius, 1997; Huang et al.,
2009). For unconstrained and linearly constrained GNSS models, the method is known to be optimal in the sense
that it provides integer ambiguity solutions with the highest possible success-rate and in a numerically efficient
way (Teunissen, 1999; Verhagen and Teunissen, 2006).

In this contribution we focus on the problem of fixing the correct integer ambiguities for data collected on a
frame of antennas firmly mounted on a rigid platform: the relative positions between the antennas are assumed
to be known and constant. In such configurations, the baselines lengths and the angles between them are known,
resulting in a set of nonlinear constraints posed on the baseline vectors which can be exploited to strengthen the
underlying observation model (attitude model). To exploit these constraints, we make use of the Multivariate
Constrained (MC-) LAMBDA method (Teunissen, 2007; Giorgi et al., 2010).

In this contribution, we illustrate the principles of the MC-LAMBDA method and we show its performance
by means of a static test with low-cost (U-Blox) receivers and with a kinematic test using data from an air-
craft experiment. The most challenging application, being single-frequency, single epoch GPS-only ambiguity
resolution and attitude determination, is considered. The single-frequency case is of interest for many aerospace
applications, where limits on weight and power consumption must often be respected (e.g., UAVs).

2 The GNSS-BASED ATTITUDE DETERMINATION

Let us consider a set of r + 1 antennas simultaneously tracking the same s + 1 GNSS satellites on a single
frequency. The set of linearized Double Difference (DD) GNSS phase and code observations obtained on the r



baselines can be cast into a multivariate Gauss-Markov model as follows:

E(Y ) = AZ +GB Z ∈ Z
s×r, B ∈ R

3×r (1)

D(vec(Y )) = QY Y = P ⊗Qyy (2)

where E(·) and D(·) denote the expectation and dispersion operator, ⊗ denotes the Kronecker product, Z =
[z1, . . . , zr] is the s × r matrix of r unknown DD integer ambiguity vectors zi, B = [b1, . . . , br] the 3 × r matrix
of r unknown baseline vectors bi, G is the 2s× 3 geometry matrix that contains the unit line-of-sight vectors, A
is the 2s × s matrix that links the DD data to the integer ambiguities, and P and Qyy are known matrices of
order r × r and 2s × 2s, respectively. Here, vec(·) denotes the vec-operator, which transforms a matrix into a
vector by stacking the columns of the matrix one underneath the other. Matrix P takes care of the correlation
that follows from the fact that the r baselines have one antenna in common and matrix Qyy takes care of the
precision of the phase and code data.

Model (1) can be strengthened by making use of the a priori known body-frame antenna geometry. This
allows us to reparametrize B as

B = RB0 (3)

with the unknown 3× q orthogonal matrix R (RTR = Iq) and the known q × r matrix B0 describing the known
geometry of the antenna configuration in the body frame (q is the dimension of the span of the r baselines).
Introducing this relation into model (1), gives the GNSS attitude model

E(Y ) = AZ +GRB0 Z ∈ Z
m×n, R ∈ O

3×q (4)

D(vec(Y )) = QY Y = P ⊗Qyy (5)

Our goal is to solve the above system in a least-squares sense, while taking the integer constraints on Z and the
orthonormaility constraints on R into account. Hence, the minimization problem that will be solved reads

min
Z∈Zs×r,R∈O3×q

‖vec (Y −AZ −GRB0)‖
2

QY Y
(6)

with || · ||2Q = (·)TQ−1(·). The above problem does not admit a closed-form solution. In the following, we describe
a three-step procedure for solving (6).

2.1 An Orthogonal Decomposition

Using an orthogonal decomposition of the objective function, problem (6) can be written as:

min
Z∈Zs×r,R∈O3×q

‖vec (Y −AZ −GRB0)‖
2

QY Y

=
∥
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Q
R̂(Z)R̂(Z)
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(7)

with Ê the matrix of least-squares residuals. For this decomposition we need Ẑ, R̂(Z) and their inverse-variance
matrices. The so-called float solutions Ẑ and R̂, and their variance-covariance matrices, follow from

N ·

[

vec(Ẑ)

vec(R̂)

]

=

[

Is ⊗AT

B0 ⊗GT

]

Q−1

Y Y
vec(Y ) (8)

N =

[

Is ⊗AT

B0 ⊗GT

]

Q−1

Y Y

[

Is ⊗A B0 ⊗G
]

(9)

and
[

QẐẐ QẐR̂

QR̂Ẑ QR̂R̂

]

= N−1 (10)

while the Z-constrained solution of R and its variance-covariance matrix are given as

vec
(

R̂(Z)
)

= vec(R̂)−QR̂ẐQ
−1

ẐẐ
vec

(

Ẑ − Z
)

(11)

QR̂(Z)R̂(Z) = QR̂R̂ −QR̂ẐQ
−1

ẐẐ
QẐR̂ (12)

2.2 The Multivariate Constrained LAMBDA method

Multivariate constrained minimization problem in (7) is equivalent to minimizing the cost function C(Z):

Ž = arg min
Z∈Zm×n

C(Z) (13)
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Figure 1: Satellite visibility for 10◦ elevation cut-off
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with Ř(Z) = arg min
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The cost function C(Z) is the sum of two coupled terms: the first weighs the distance from the float ambi-
guity matrix Ẑ to the nearest integer matrix Z in the metric of QẐẐ , while the second weighs the distance
from the conditional float solution R̂(Z) to the nearest rotation matrix R in the metric of QR̂(Z)R̂(Z). This
rigorous application of the orthonormal constraint results in non-ellipsoidal search space and requires the com-
putation of a nonlinear constrained least-squares problem (15) for every integer matrix in the search space. In
the MC-LAMBDA method, this problem is mitigated through the use of easy-to-evaluate bounding functions
(Giorgi and Teunissen, 2010). Using these bounding functions, two efficient strategies, namely the Search and
Expansion and the Search and Shrink strategies, were developed, see e.g. (Buist, 2007; Park and Teunissen, 2009;
Giorgi et al., 2008; Giorgi and Buist, 2008). These techniques avoid the computation of (15) for every integer
matrix in the search space, and compute the integer minimizer Ž efficiently.

To obtain the final attitude solution, Ž is substituted into (11), thus giving R̂(Ž). This solution has a much
better accuracy than R̂ (cf. 12), but it is, in general, still non-orthogonal. The sought-for orthogonal attitude
solution is then finally obtained by solving (15) for Z = Ž.

3 RESULTS

In this section the results of our experiments for testing the MC-LAMBDA method are presented. They are based
on a static experiment using U-Blox receivers and a kinematic flight experiment using Septentrio receivers. The
data of both experiments were processed in single-epoch, single-frequency mode with the standard LAMBDA
method and with the MC-LAMBDA method.

3.1 A Static Test: U-Blox Experiment

In the static experiment, three U-Blox AEK-4T receivers were connected to three ANN-MS-0005 type antennas
mounted on a symmetric frame. The experiment was conducted at Curtin University on 23 May 2011, for about
two hours with sampling rate of 10 Hz (60000 epochs). Figure 1 shows satellite visibility (the sky-plot, the
number of satellites, the PDOP values) during the experiment. We considered the following elevation dependent
model (Euler and Goad, 1991) for the standard deviation of undifferenced observables

σǫ = σ0

(

1 + a0 exp

(

−ǫ

ǫ0

))

(16)

where ǫ is the elevation angle of the satellite. The model parameters are a0 = 2.5, ǫ0 = 10◦, and σ0 = 1.3 m (for
code conservation) and 0.01 m (for phase observation).

The planar antenna array geometry in the body-frame is given as

B0 =

[

l 0
0 l

]

(17)

The following two cases have been considered: l = 0.5m and l = 1m. The antennas were rigidly fixed on a metal
frame such that the both cases considered define the same body-frame. Table 1 reports the average computation
time and the single-frequency, single-epoch success rates obtained by processing the U-Blox dataset with both
the LAMBDA method and the MC-LAMBDA method. Even though the MC-LAMBDA method requires more
computational effort than the LAMBDA method, it achieves higher success rates even for low-cost receiver data.



l LAMBDA MC-LAMBDA

0.5m
1m

Time [s]
0.021
0.016

Success rate [%]
0.36
0.77

Time [s]
0.132
0.112

Success rate [%]
99.24
99.05

Table 1: Average computation time [s] and integer resolution success rate [%]
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Figure 2: The scatter plot of estimated attitude angles for the U-Blox experiment

Figure 2 shows the scatter plot of the estimated attitude angles for both baseline lengths. Table 2 summarizes
the angular estimates (average values) and their precision (standard deviations) as function of baseline length.
As the scatter plots and the table show, there are still some small systematic effects present in the solution. The
dependence of angular accuracy on the baseline length can be seen clearly: the longer baseline results in higher
precision. Both cases show a higher precision of the estimated heading angles, as horizontal positioning is more
precise than vertical positioning using the GNSS satellites observed only from one side of the sky.

3.2 A Dynamic Test: Aircraft Attitude Estimation

In this kinematic experiment, we used data collected on the Cessna Citation II aircraft of Delft University of
Technology, The Netherlands. The aircraft equipped with three GNSS antennas: one on the body (reference
antenna), approximately in the middle of the fuselage (S67-1575-96 type L1/L2 sensor system), one on the wing,
and one on the nose (both L1 sensor system) forming the following antenna geometry,

B0 =

[

4.90 −0.39
0 7.60

]

(m) (18)

All three antennas were connected to a Septentrio PolaRx2@ receiver, logging data for the entire duration of the
flight, from 10:06 to 14:18 (UTC time). Figure 3 shows satellite visibility (the sky-plot, the number of satellites,
the PDOP values) during the experiment. It also shows the ground track and the altitude profile of the flight
calculated with the single-frequency observations collected on the reference antenna.

l [m] Heading, ψ [deg] Elevation, θ [deg] Bank, φ [deg]

ψ̂ σ(ψ) θ̂ σ(θ) φ̂ σ(φ)

0.5 56.83 0.54 -0.04 1.81 1.20 1.19
1 57.30 0.21 0.22 0.84 -0.21 0.82

Table 2: The three estimated attitude angles as function of baseline length l



0

30

60

90

120

150
180

210

24
0

27
0

30
0

330
15

30

45

60

75

90

1

2

4

5

67 9

10

12

14

16

21

23

24

30

31

(a) The skyplot

385000 390000 395000 385000 390000 395000 385000 390000 395000
0

1

2

3

4

5

6

7

8

9

10

N
um

be
r 

of
 s

at
el

lit
es

GPS Time [s]
385000 390000 395000 385000 390000 395000 385000 390000 395000

0

1

2

3

4

5

6

P
D

O
P

(b) The number of satellites
and PDOP

4.5   5 5.5   6 6.5   7
50

50.5

51

51.5

52

52.5

Longitude [deg]

La
tit

ud
e 

[d
eg

]

(c) The ground track

380000 385000 390000 395000 400000 380000 385000 390000 395000
0

500

1000

1500

A
lti

tu
de

 [m
]

Seconds in GPS week [s]

(d) The altitude profile

Figure 3: Satellite visibility and flight trajectory
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Figure 4: Time series of the three attitude angles [deg] estimated by MC-LAMBDA and provided by the INS

We considered the elevation dependent model (16) with a0 = 10, ǫ0 = 10◦, and σ0 = 0.3 m for code
conservation and 0.003 m for phase observation. The single-epoch, single-frequency success rate is given in Table
3 showing significant improvement over the unconstrained LAMBDA method. MC-LAMBDA (GPS) estimates
for attitude angles are compared with output of an Inertial Navigation System (INS), the Honey-well Laseref
II IRS (YG1782B), on board. Figure 4 shows the time series of the three attitude angles from both GPS and
IRS. Figures in the second row correspond to difference between the both systems. The standard deviations
of these angular differences are provided in Table 3. Except for a few biases, due to aircraft wing deformation
during turns, the heading angle can be determined with high precision. Due to the longer baseline along the
wing direction, the bank angle is determined more precisely than the elevation angle.

4 CONCLUSIONS

The Multivariate Constrained (MC-)LAMBDA method exploits a priori knowledge of the antenna geometry. This
strengthens the observation model and hence improves capacity of fixing the correct set of integer ambiguities.
This rigorous inclusion of geometrical constraints enables instantaneous attitude determination using GNSS. In
this contribution we demonstrated the effectiveness of the MC-LAMBDA using real data. First we described
the GNSS attitude model and the principles of the MC-LAMBDA method. Then, we tested the method using
static data from an experiment with low-cost receivers and kinematic data collected during an airborne remote

Single-epoch, single-frequency LAMBDA [%] MC-LAMBDA [%]
success rate 28.05 96.42
σ(ψ) [deg] 0.06
σ(θ) [deg] 0.15
σ(φ) [deg] 0.10

Table 3: The single-frequency, single-epoch success rate for the LAMBDA and the MC-LAMBDA methods(%)
and the standard deviations of the differences between GPS and INS attitude angles (heading ψ, elevation θ and
bank φ)



sensing campaign. We considered the most challenging namely single-epoch, single frequency unaided ambiguity
resolution and attitude determination. The superior success rate performance compared with the unconstrained
LAMBDAmethod even with cheap receivers and high dynamic environment clearly demonstrated the effectiveness
of rigorous inclusion of geometric constraints.
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