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Abstract

Code pseudorange measurement noise is one of the majosetnaes in Precise Point Po-
sitioning. A recursive least-squares solution with prdp@ctional and stochastic modelling
would help to exploit in addition the ultra high precisiontbe carrier phase measurement.
Analyses of different methods, including phase smoothédse connected and phase ad-
justed pseudorange algorithm, will show that the phasessefjupseudorange algorithm is
statistically optimal. Static and kinematic experimerstulés also support the conclusion with
more than 30% of improvement by going from the phase smodihelde phase adjusted
algorithm.

1 Introduction

In standalone positioning such as standard GPS positipiifide Area Differential GPS
(WADGPS) positioning or Precise Point Positioning (PPRg, prime observation type is the
code pseudorange. The main sources of error in this posigonode include satellite orbits
and clocks, the ionosphere, the troposphere, and the psawggoerrors (noise and multipath).
While the first three error sources can be mitigated by auggien corrections or products
from a network of reference stations (as done in WADGPS ari®) RRe pseudorange errors
cannot since they aréocal effects. In this case, the extremely precise carrier phassesare-
ment can come to rescue.

The noise can be reduced with carrier phase by using the aogakch smoothing algo-
rithm. However, this is not an optimal solution as it is basada channel-by-channel basis.
Instead, a recursive least-squares filter which can be priovbe statistically optimal will be
deployed, namely the phase-adjusted pseudorange algorith

The algorithm takes both pseudorange and carrier phaseune@asnts in one integral
least-squares solution where carrier phase ambiguigesomsidered as constant but unknown
parameters. The positioning parameters together withecgrinase ambiguities are estimated
recursively. This processing scheme minimises computakioad and all information is pre-
served. The algorithm can be applied to any kind of GPS weitg where both pseudorange
and carrier phase are involved.

In this paper, Precise Point Positioning will be implementgth the phase-adjusted
pseudorange algorithm and a comparison to other smootipipigpaches will be made. Al-
though the results are post-processed due to the curreifdlalty of global data products,

1



the processing engine is purely kinematic (no dynamic aptiomneeded) and suitable for
real-time applications. In fact real-time operation hasrbemulated in this paper.

Results to be presented in the paper are of long-term statec flom several stations
around the world with different GPS receivers, as well asnfldnematic experiments. In
general, the obtained accuracy is at sub-metre level wadklWJnder favourable conditions,
it can reach 40 centimetres horizontally and 60 centimeteescally (at the 95% level). The
results also show a large improvement going from the clakslatch smoothing algorithm
to the phase-adjusted pseudorange algorithm. It will bevalbat the 95% positioning error
can be improved by about 30-50%.

2 Filtering methods using carrier phase measurements
2.1 Classical phase smoothing algorithm

The classical phase smoothing algorithmas introduced by Hatch (1982) and is still widely
used nowadays due to the simplicity and flexibility of theoaitihm. The recursive formula of
the algorithm reads:
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with Py the phase-smoothed pseudorange at eppctP;. the pseudorange observation at
epocht;; P;_; the phase-smoothed pseudorange at eppch @ ,—1 = P, — P;_; the
time-differenced carrier phase observati®dp;the carrier phase observation at epoghb,

the carrier phase observation at epoch. Note that all the carrier phase observations are in
units of range.

The same smoothed pseudorange equation can be expressdiffénest form as a lin-
ear combination of the previous epochs’observationsyding both pseudorange and carrier
phase:

k k

~ 1 1

Pk:EZH—EZ®¢+@k (2)
i=1 i=1

If the denoter; and A; are the vector of unknown parameters and its design matrix at
epochi, andV is the vector of ambiguities (unchanged over time), the olagi®n equations
at epoch can be written:
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IStrictly, smoothing implies the computation of estimates for unknowns pararageg. position coor-
dinates) pertaining to epocti, using observations from the whole data collection periagl, [t1,t;] with
1 < k < I; the data period extends beyond epagh Filtering refers to estimates for parameters at epoch
t, using solely data up to and including epaghi.e. [t1, tx]. Filtering allows real-time operation and smooth-
ing does not. In this paper, we continue to refer to ‘phasenthiing’, as commonly done, but strictly filtering is
meant instead.




with E{.} the mathematical expectation operator.

As shown in (4), through the linear combination, the desigatrix for the smoothed
pseudorange is preserved when no cycle slips occur. Howthesvariance matrix is no
longer (block) diagonal and hence, recursive computatiorot possible for this model.

It can be seen clearly when taking the fikstpochs into account. The smoothed pseudor-
anges on the left form the system:
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Assuming no (cross and time) correlation between the alginde and phase observa-
tions and that code and phase variances(gseand Qs at every epoch, application of the
propagation law gives the variance of the smoothed psendesa
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Based on the smoothed pseudoranges, subsequent recuogiegegng is usually carried
out to obtain estimates for the receiver position, epotérafpoch. However, there is clearly
(extremely) high time-correlation between the smootheslderanges, which prevents the
model to work recursively. The correlation is obviouslyaged in the smoothing algorithm.

2.2 Phase-connected pseudorange algorithm

Another newly developed algorithm using the carrier phasemooth the pseudorange was
from Bisnath et al (2002), in which differenced carrier phaseasurements between epochs
are used as additional observation next to the pseudora@gmng as no cycle slips occur,
ambiguity parameters are absent. For a single epoch, tleevalt®n equations are given:
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where P, the linearised pseudorange observatioh,, , = ¢, — @, , the linearised time-

=9,5—1 =1

differenced carrier phase observation. By linearised wamiebserved minus computed’
following from the linearisation of the original non-linefunctional relation.

(7)
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Again, takingk epochs together, the full model of observation equatians is
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Vector z;, primarily contains the receiver position coordinates hhto parameters could
be included as well, as for instance the receiver clock ekbth the same assumption of no
correlation between (undifferenced) pseudorange andecgiase measurements as above,
the variance matrix can be derived for the observation vegt(8):
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with Q@i’i_l = Q@i + Q‘:Di—l'

Similar to that of the Hatch smoothing algorithm, this matis not (block) diagonal
though the correlation is not as heavy as that of the firstralgo. Strictly speaking, the sys-
tem (8) and (9) cannot be recursively solved to obtain esémfor the position coordinates.
One assumption has been made that all the resulting timelaton (due to the differenced
carrier phase observations) is neglected. In this casesytftem can be solved recursively
(see Le (2004)).

2.3 Phase-adjusted pseudorange algorithm

The optimal solution would be a model where all the obseovati(including carrier phase
measurements) are put into a unique model of observaticatieqs. This is the model where
all the information should be preserved and the unknownseh epoch can be computed
by a recursive least-squares solution. Based on thisionteihe phase-adjusted pseudorange
algorithm was developed by Teunissen (1991). In this maalelpriginal (undifferenced)
pseudorange and carrier phase measurements are the bsesieadions; the unknowns in-
cluding ambiguities and positioning parameters are réglysestimated.
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with P, the vector of linearised pseudoranges at epgctk; the vector of linearised carrier
phases at epodh; x; the vector of unknown parameters at epogh; the linearised design
matrix at epoch;; andV the vector of unknown ambiguities (assumed to be time-ianar
for simplicity in this explanation).
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with @ p, variance matrix of code measurements at egpahd(@)4, variance matrix of carrier
phase measurements.

The recursive equations for the position parameters (asdilply others as well) can be
given as (12):

Iy = Qa,AL(Qp Py +[Qa, +Q, 172 — Vio1])

(12)
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The update for the ambiguities is also needed to fulfill tleairsive solution:
jk = jk:—l + ij_l[QPk + ij_l]il[@k - zk_1 - Akik;]
(13)
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The initial epoch’s parametetis andV, with @Q;, and Qy, follow from a least-squares
solution based o, and®;.

This algorithm is optimal from a statistical point of viewse it properly treats the model
as a whole (with all observations of all epochs). No furth&sumption is made beside the
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assumption of no time correlation between epochs. The ighgois purely kinematic as no
dynamic model is needed for the receiver. On the other h&rdch information is available,
it can be easily incorporated.

3 Experimental resultswith Precise Point Positioning

In standalone positioning, the main error sources ardatibits and clocks, the ionosphere,
the troposphere and the pseudorange noise. The first thugeesocan be compensated
for in Precise Point Positioning (PPP) by using publiclyilde products, such as precise
ephemerides, Global lonosphere Maps (GIM) and a precipespiheric model. Not as such,
the code noise cannot be eliminated in a similar way and isfssgntly large in this mode
of positioning. Hence, PPP benefits a lot from filtering usiagier phase measurements to
mitigate the noise of pseudorange measurements as ouitirtleel previous section. Various
experiments were carried out with the phase-adjusted psangde algorithm, both static and
kinematic.

In all experiments of this paper, tisangle-frequency PPP approach using publicly avail-
able products was implemented. The corrections/modelséninclude precise orbits and
clocks from International GPS Services (IGS), GIMs from teerior Orbit Determination
in Europe (CODE) and the Saastamoinen tropospheric modeéldvation angle dependent
weighting scheme is used for both code and phase measusenman({2004) describes the
approach in more detail.

3.1 With staticreceivers

An extensive static test of one week was performed with 4astat namely DELF, EIJS,

DUBO and HOBZ2. The first two stations are part of the AGRS.Ntwoek in the Netherlands

while the other two belong to the IGS network, one (DUBO) im@da and one (HOB2)

in Australia. Data were collected with 30-second intervahble 1 shows the results for
the phase-adjusted pseudorange algorithm. In generahdt@acy is about half a metre
horizontally and one metre vertically. Better results dramed in Europe and (possibly) in
North America thanks to better quality of the GIMs.

DELF | EIJS | DUBO | HOB2
North | 0.45 | 0.41| 0.78 | 0.53
East | 0.44 | 0.42| 059 | 0.72
Up 0.88 | 0.82| 1.01 | 1.39

Table 1: Extensive static test results [m]. 95%-val@&'( percentile) of position errors in
local North, East and Up coordinates (with respect to knosoardinates of the markers) with
one week of data at 30-second interval for 4 different lacetiaround the world.

A comparison between the three algorithms was made from @estttata collected at the
DELF station. Again, a 30-second interval was used. Tabled®vs about 30% improve-
ment by going from the Phase smoothing to the Phase adjulgtedtlam in the North and
vertical direction. The accuracies of all algorithms in &&st component are comparable.



The horizontal scatters and time-series of the three coemgenNorth, East and Up are plot-
ted in figure 1 and 2. The ‘no smooth’ solution is also inclufi@dreference (using solely
pseudorange observations).

Note that the phase smoothed algorithm was implementeddiffdrent window lengths.
It can be seen that for large sampling intervals (e.g. 30rs#)othe phase smoothed algorithm
is sensitive to the window length choice. As shown in tabli 2yould be about 5 epochs (at
30-sec interval) or equivalent to 2-3 minutes.

No Phase Phase Phase
smooth smoothed connected | adjusted

3 \ 5 \ 8
North| 0.71 | 0.59| 0.59]| 0.67 0.49 0.43
East 0.49 | 0.37|0.36| 0.39 0.32 0.42
Up 1.10 [0.95/0.95|1.13 0.76 0.74

Table 2: Static test results at DELF [m]. 95%-value of positestimates in local North,
East and Up coordinates with one day of data at 30-seconwvahfer 4 different approaches
(Phase smoothed algorithm with different window lengths5,38 epochs)

East

(a) No smooth (b) Phase-smoothed

-2 -1 0 1 2 -2 -1 0 1 2
East East

(c) Phase-connected (d) Phase-adjusted

Figure 1: Horizontal scattered error. DELF station, 24+h80-sec interval data with 4 dif-
ferent approaches (phase smoothed algorithm with 5-epaatow length).

3.2 With kinematic receivers

A maritime kinematic experiment was carried out with a srbakt on Schie river (between
Delft and Rotterdam, the Netherlands). Nearly 3 hours (1 #iRinematic data from 2 re-
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Figure 2: North, East and Up errors. DELF station, 24-ho0rs&c interval data with 4
different approaches (phase smoothed algorithm with Btepondow length).

ceivers, namely Ashtech Z-Xl113 and Leica SR530 were cadigct he cm-accuracy reference
trajectories were computed in a (dual-frequency carriasphdifferential GPS solution with
a reference station nearby (only few kilometres away). Agéie three algorithms’ results are
included in table 3. The window length used in the phase sheabalgorithm is 100-second.

Phase Phase Phase

Receiver smoothed | connected | adjusted
North 1.12 0.54 0.45
Ashtech | East 0.39 0.31 0.29
Up 1.20 0.88 0.84
North 0.79 0.48 0.39
Leica East 0.36 0.28 0.34
Up 0.83 0.76 0.56

Table 3: Kinematic results [m]. 95%-value of position esttes in local North, East and Up
coordinates with 2 receivers for 3 different approachey@$of data at one-second interval
(Phase smoothed algorithm with 100-epoch window length)

In the kinematic results, the accuracy is improved by moas th0% in the North com-
ponent. Significant differences also can be seen in othepooents of about 30-50% (see
figure 3 to 6), especially with the Ashtech receiver.
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Figure 3: Horizontal scattered error. Ashtech ZXII13 kingimeeceiver, 3-hour, 1-sec interval
data with 3 different approaches (phase smoothed algoxithim100-epoch window length).
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Figure 4: North, East and Up errors. Ashtech ZXI113 kinemedizeiver, 3-hour, 1-sec interval
data with 3 different approaches (phase smoothed algoxitiim100-epoch window length).
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Figure 5: Horizontal scattered error. Leica SR530 kineonaceiver, 3-hour, 1-sec interval
data with 4 different approaches (phase smoothed algoxithim100-epoch window length).
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Figure 6: North, East and Up errors. Leica SR530 kinemateiver, 3-hour, 1-sec interval
data with 4 different approaches (phase smoothed algoxitiim100-epoch window length).

4 Conclusions

The Phase-adjusted pseudorange algorithm, statistimatignal, is a fully kinematic filter. It
has been demonstrated to work robustly in various circumests from static to kinematic,
over short time spans and long time spans. The accuracyagpigcation in single-frequency
PPP, in general, can be confirmed at half a metre horizordaatlyone metre vertically (at the
95% level). It proves to have a better accuracy than thateptiase smoothed approach, by
about 30% to 50%. In favourable conditions, the accuracy gese to 4 decimetres horizon-
tally and 6 decimetres vertically (95%), and does not deente receiver’'s dynamics.

At this level of accuracy, other sources of errors shoulddz®anted for. They are solid
earth tides, ocean loading, phase wind-up and others. Theofuection of satellite antenna
phase centre also should be applied. All those correctimod2lling might bring the accuracy
close to sub-decimetre level since the errors are at a feunéees level in total.

Moreover, the GIMs cannot completely eliminate the ion@spherrors. Due to residual
ionospheric delays, ionospheric divergence occurs irhallthree algorithms. Note that the
ionospheric delay was not included in the vector of unknoarameters.

In the stochastic model, the code noise is assumed to be whise, i.e. no time-
correlation between epochs. However, in practice, notekivers provide white noise
pseudoranges as discussed in Bona (2000) (the Trimble 4&20inthe static test was found
to have white noise pseudoranges [ibid]). For a receivenaut white noise characteristic,
I.e. there is time correlation between epochs, current thodes still sub-optimal.

Multipath is also a significant error source that needs to dossidered since it is not
included in the model. In certain aspects and dependingeotirtie scale, it could be regarded
as both a functional and stochastic error as it contains &bias and random component.
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