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Abstract
The European second-generation satellite navigation system GNSS-2 (or ‘‘Galileo’’) is intended

to transmit signals on three navigational frequencies. It is expected that this will enhance
possibilities in the area of high precision, real time navigation and positioning. This requires the use
of phase observations, as well as a method to resolve the ambiguities which are inherent to these
phase measurements. Although already a considerable amount of effort has been devoted to the
development of methods to solve this ambiguity resolution problem in case of three frequencies, the
well-known LAMBDA-method could be used without any modification, since this method does not
have an inherent restriction on the number of frequencies. In this contribution, it will be shown that
the LAMBDA-method can be used to resolve carrier phase ambiguities in the case of three
frequency satellite navigation systems, in exactly the same way as it is currently being used in case
of GPS.

Introduction
Precise navigation and fast surveying require the use of carrier phase measurements.

Unfortunately GNSS carrier phase measurements are ambiguous, which implies that, in order to be
able to utilize the phase measurements, these ambiguities need to be resolved successfully. One of
the advantages of being able to use a third frequency would be that ambiguity resolution becomes
feasible for longer baselines and/or shorter time-spans.

With the announced development of positioning systems using three frequencies  (modernized
GPS, Galileo), already some work has been carried out concentrating on the ambiguity resolution
problem. Some of this work seems to indicate, that one would need to develop new methods of
integer estimation and new algorithms to be able to deal with the availability of the additional third
frequency. This is not true however. It is the purpose of this contribution to accentuate that the
LAMBDA-method, being widely used for single- and dual-frequency GPS processing, is applicable
and suitable for a three carrier system as well, without any modification to the method at all.

GNSS ambiguity estimation
Ambiguity resolution is the key to fast and high-precision relative positioning, both in the case of

current GPS and future GNSS. The reason for this is that once the ambiguities have been resolved
as integers, the phase measurements start to act as if they were high-precision range measurements,
thereby allowing the parameters of interest (e.g. baseline-coordinates) to be estimated with a
comparable high precision. Ambiguity resolution applies to a great variety of GPS models currently
in use. They range from single-baseline models for kinematic positioning to multi-baseline models
used as a tool for studying geodynamical phenomena. Models may have the relative satellite-
receiver geometry included or excluded. Receivers may be stationary or in motion. Atmospheric
delays may be included in the model as unknowns, making the model suitable for long baselines, or
they may be excluded from the model, making the model suitable for relatively short baselines.

Ambiguity resolution is important for all these models, and it will be equally important for future
GNSS models. Like the current GPS models, GNSS models can all be cast in the following
conceptual frame of linear(ized) observation equations:
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where E{.} and D{.} denote the mathematical expectation and dispersion respectively and where y
is the vector of observables, a and b are unknown parameter vectors, A and B are the corresponding
design matrices, functionally relating the observations to the unknowns and Qy is the variance-
covariance (vc-)matrix of the observations. In this contribution we will assume that the entries in
vector a are double differenced (DD) carrier phase ambiguities, expressed in units of cycles. They
are known to be integers. The entries of vector b are the remaining unknown parameters, which can
be baseline components (‘‘coordinates’’) and possibly atmospheric delay parameters (tropospheric
and/or ionospheric delays).

As far as estimation of the above mentioned model is concerned, a three-step procedure may be
followed. In a first step, the integer character of the ambiguities is discarded, and a standard least-
squares adjustment is carried out. This provides us with real-valued estimates, referred to as the
‘float solution’, for a and b, together with their vc-matrix, denoted as:


















bab

baa

QQ

QQ

b

a

ˆˆˆ

ˆˆˆ
;ˆ

ˆ

In a second step, the float ambiguity estimate â is used to compute the corresponding integer
ambiguity estimate, here referred to as a

(
. In the third step this integer estimate is used to correct the

float solution estimate b̂ . As a result one obtains the final baseline estimate:
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The integer estimation part of this three-step procedure essentially boils down to applying a
mapping function from the n-dimensional space of real values to the n-dimensional space of integer
values. Several possibilities are available here, such as a simple rounding of the ambiguities, a
conditional rounding of the ambiguities (bootstrapping), or an integer least-squares mapping of the
ambiguities. These different methods of integer estimation will also have different probabilities for
successful ambiguity resolution. These success-rates were derived in [7] and [8] while it was
proven for the first time in [9] that the largest success-rate is obtained when using the integer least-
squares estimator. The integer least-squares estimator is thus optimal in the sense that it maximizes
the probability of correct integer ambiguity estimation. It is this optimal estimator which is
efficiently mechanized in the LAMBDA-method.

The LAMBDA-method
The LAMBDA-method was introduced in [6] in 1993. The method can be characterized in brief

as an application-independent method that produces an optimal integer ambiguity solution by means
of efficiently solving the integer least-squares problem through the use of a decorrelation process.
The integer least-squares problem which is solved by the LAMBDA-method reads as
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The LAMBDA-method needs as input the ambiguity float vector â and its ambiguity vc-matrix
aQ ˆ . As output it produces the integer least-squares ambiguity vector a

(
. This shows why the

LAMBDA-method is independent of the application. One only needs the float solution together
with its vc-matrix. At this stage of the computational process the underlying model is not relevant
anymore. That is, it could be a single-, dual- or triple- frequency model, and it could be a GPS-, a
Galileo-, or any other GNSS-model with all its varieties.

The ambiguity solution a
(

 is the integer vector nearest to the float solution â , where nearness is
measured in the metric of the vc-matrix of the float solution. The solution is computed by means of
a discrete search in the so-called ambiguity search space. The search space is centered at the
ambiguity float solution and its ellipsoidal shape is governed by the ambiguity vc-matrix. The
computational efficiency of the LAMBDA-method stems from the fact that the search is not
performed in the original DD ambiguity search space, but instead in a transformed search space. By
means of the ambiguity decorrelation process the LAMBDA-method is capable of constructing a



transformed search space with a more sphere-like shape. The transformed ambiguities are far less
correlated and far more precise than the original DD ambiguities (see also figure 1). As a result a
very fast search for the integer least-squares solution can be performed. This would not have been
possible with the original DD ambiguity search space. This space is usually extremely elongated
due to the high correlation and poor precision of the DD ambiguities. For more details on the
method the reader is referred to [4].

In order to illustrate the decorrelation-step of the LAMBDA-method, we consider two examples
of the three-frequency geometry-free GNSS model. The DD phase and pseudorange observation
equations of this model are given as:
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The ionospheric delay is denoted as I, the integer ambiguities as ia  and the corresponding
wavelengths as iλ . For both examples the standard deviations of the undifferenced phase and
pseudorange observations are taken as resp. 3 mm and 30 cm.

In the first example we assume the ionospheric delay to be absent (referred to as the ionosphere-
fixed model). This case applies therefore to short baselines only. When applying the LAMBDA-
method to this model while using the above settings for the phase and pseudorange standard
deviations, the following decorrelating ambiguity transformation is found:
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The fact that this ambiguity transformation indeed achieves a significant decorrelation together
with an improvement in precision can be seen when comparing the original ambiguity vc-matrix
with its transformed counterpart. The entries of the two vc-matrices are given in the unit of cycles2

and correspond to the use of a single epoch of data.
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In our second example we assume the ionospheric delay to be present and unknown (referred to
as the ionosphere-float model).  This case applies therefore to long baselines as well. When
applying the LAMBDA-method to this model while again using the above settings for the phase
and pseudorange standard deviations, we obtain as ambiguity transformation:
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Again, by comparing the original ambiguity vc-matrix with its transformed counterpart, we can
see that also in this case this ambiguity transformation achieves a significant decorrelation and
improvement in precision.
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The above two examples illustrate the ease with which decorrelated ambiguities can be obtained
with the LAMBDA-method. The process is automatic and it makes use of all available information,
like type and structure of the observation equations and the level of observational precision.
Changes in any of these will generally result in a different set of transformed ambiguities, just like



the above two sets differ because of the two different models used, one with the ionospheric delay
excluded and one with the delay included.
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Figure 1: Shape of the 3-dimensional search space before (left) and after (right) performing decorrelation
using the Z-transformation. Note the alignment of the principal axes of the ellipses. In the decorrelated case
they are (almost) aligned with the three coordinate axes, indicating decorrelation to a large extent. The top
row is based on the ionosphere-fixed model, the bottom row is based on the ionosphere-float model.

At this point it can also be made clear in what way the LAMBDA-method differs from the
classical ‘wide-laning’ techniques. In this comparison one has to discriminate between two aspects,
namely in the way transformed ambiguities are constructed and in the choice of integer estimation
principle used. The classical ‘wide-laning’ techniques aim to resolve the ambiguities as integers by
rounding the ambiguities of between-frequency phase differences to their nearest integer values.
These, or similar techniques are also described and utilized for the three-frequency GNSS-models,
see e.g. [1], [2] [3] and [10]. One difference between the classical ‘wide-laning’ techniques and the
LAMBDA-method lies thus in the choice of integer estimator.  The LAMBDA-method uses the
optimal integer least-squares estimator, whereas the ‘wide-laning’ techniques do not. A second
difference lies in the way transformed ambiguities are constructed. In the LAMBDA-method the
ambiguity transformation is multivariate and it is constructed on the basis of all the relevant
information as captured in the ambiguity vc-matrix. This is not the case with the ‘wide-laning’
techniques. They only consider one linear combination at a time, whereby their first aim is to
achieve long wavelengths. These techniques do therefore not make use of all the relevant
information. They are, for instance, not capable of making use of the relative receiver-satellite
geometry. In the LAMBDA-method this information is automatically incorporated.

When the relative receiver-satellite geometry is absent, such as is the case with the simple
geometry-free model of above, it may happen that some of the LAMBDA-transformed ambiguities
can be recognized as ‘wide-lane’ ambiguities. This is the case for instance with both ambiguity
transformations of above. They both contain the ‘super-widelane’, being the difference between the



two closest frequencies 1589.742MHz and 1561.098MHz. No other obvious ‘wide-lane’
combinations are present however. Instead, the two other ambiguities are combinations made up of
all three original DD ambiguities, and these combinations differ for the two models.

LAMBDA success-rates
As proven in [9] the integer least squares estimator has a superior performance in the sense that it

maximizes the probability )( aaP =(
 of estimating the ambiguities at their correct integer values.

This probability, being the ambiguity success-rate of the LAMBDA-method, is given as the
integral:
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with )(ˆ xpa  the probability density function of the float ambiguities and aS  the ambiguity pull-in
region. It is stressed that the success-rate should be used as measure for predicting the success of
ambiguity resolution and not the standard deviations of the ambiguities. When using standard
deviations as measure of success very misleading results can be obtained. First, the correlations are
neglected when only the standard deviations are considered. Second, the standard deviations can be
manipulated at will by means of ambiguity transformations. The above success-rate on the other
hand is invariant for any ambiguity transformation and it gives by means of a single number a
complete picture of how successful one can expect the ambiguity resolution to be.

As an illustration of the LAMBDA success-rates, they are computed for a number of cases,
namely for the proposed European GNSS-2 system, using the frequencies 1589.742MHz,
1561.098MHz and 1256.244MHz, and for the current and future American GPS system, with the
frequencies 1575.420MHz, 1227.600MHz and 1176.450MHz. All computations are based on the
single-epoch, geometry-free model using a 3 mm standard deviation of the undifferenced phases.

 The results shown in figure 2 are based on the geometry-free, ionosphere-fixed model, whereas
the results of figure 3 are based on the geometry-free, ionosphere-float model.
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Figure 2: LAMBDA success-rates, on the left as a function of the standard deviation of the code
measurements (2 satellites), on the right as a function of the number of satellites (σcode=30[cm]).

From these graphs we learn that using a third frequency gives an improvement in all cases. We
also see that 3-frequency GPS outperforms 3-frequency GNSS-2. This is due to the larger frequency
spacing used with GPS. Note that this is in contrast with popular belief that two frequencies should
be chosen close to each other, thus allowing for ‘wide-lane’ ambiguities to be resolved. Although
this often works if one is interested in resolving only a single ambiguity or a subset of all
ambiguities, it will not work if one aims at resolving the complete set of ambiguities. This has been
shown in [5] where the success-rates were studied in their dependence on the third frequency.

From the left graph of figure 3 we learn that in case of long baselines, when no a-priori
information on the ionospheric delays is available, instantaneous ambiguity resolution becomes



impossible. Although the addition of a third frequency helps, it is by far not enough to make
instantaneous ambiguity resolution possible. The graph on the right of figure 3 shows for example
that, with a pseudorange standard deviation of 30 cm, the necessary number of epochs to achieve a
success-rate of 99% decreases from 6500 for 2-freq. GPS, via around 4000 for GNSS-2 to around
750 for 3-freq. GPS.
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Figure 3: LAMBDA success-rates for the ionosphere-float model, left as a function of the standard deviation
of the code observations (instantaneous), right as function of the number of epochs (σcode=30[cm]).

Conclusions
In this contribution it has been stressed that the LAMBDA-method is applicable for any model in

which unknown integer parameters appear. The method produces an optimal integer ambiguity
solution by means of efficiently solving the integer least-squares problem through the use of a
decorrelation process. At present the method is widely used for various single- and dual-frequency
GPS processing applications. The method is however also applicable and suitable for a three carrier
system (modernized GPS, Galileo), without any modification to the method at all. This has been
exemplified by showing to what extent the ambiguity success-rates improve when use is made of an
additional third frequency.
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