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Abstract

Integer ambiguity resolution is the key to obtain very accurate positioning
solutions out of the GNSS observations. The Integer Least Squares (ILS) principle,
a derivation of the least-squares principle applied to a linear system of equations in
which some of the unknowns are subject to an integer constraint, was demonstrated
to be optimal among the class of admissible integer estimators. In this contribution
it is shown how to embed into the functional model a set of nonlinear geometrical
constraints, which arise when considering a set of antennae mounted on a rigid
platform. A method to solve for the new model is presented and tested: it is shown
that the strengthened underlying model leads to an improved capacity of fixing the
correct integer ambiguities.
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1 Introduction

The GNSS (Global Navigation Satellite System)
observations are obtained tracking a number of
satellites: both the code and carrier phase data are
used to estimate the antennae positions. Because only
the fractional part of the phase carrier observations
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can be measured, an ambiguity must be resolved for
each incoming signal in order to fully exploit the
capabilities of the GNSS positioning: by resolving the
ambiguities one is able to achieve higher accuracies
than using only the code data. The set of GNSS
observations is usually cast into a (overdetermined)
system of linearized equations, and the theory of Inte-
ger Least-Squares (ILS) (Teunissen 1993) is applied to
solve for the linearized model in a least-squares sense,
with a subset of the unknowns being integer-valued,
namely the phase carrier ambiguities. An efficient
implementation of the ILS was proposed in Teunissen
(1994): the LAMBDA (Least-squares AMBiguity
Decorrelation Adjustment) method is currently widely
used for its high efficiency. For those applications
where a subset of the real-valued unknowns is subject
to geometrical constraints, one faces a substantial
complication for the solution of the constrained ILS
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problem. A modification of the LAMBDA method
was recently proposed in Teunissen (2006), Teunissen
(2008), Teunissen (2010), Park and Teunissen (2003),
Buist (2007), Park and Teunissen (2008), Giorgi et al.
(2008) and Giorgi and Buist (2008) to solve for single-
baseline constrained problems. We investigate in this
contribution how to resolve for the integer ambiguities
when a set of two or more antennae are mounted on
the same rigid platform, with their relative positions
known and constant. The problem was originally
addressed in Teunissen (2007): the peculiar set of
geometrical constraints posed on the baselines vectors
is tackled by introducing a suitable parameterization of
the baseline coordinates, and a modified cost function
to be minimized in an ILS sense is introduced. It is
shown here how to efficiently proceed for the search
of the integer minimizer of the modified objective
function, and a numerical evaluation of the capabilities
of the constrained ILS is given: the single-frequency,
single-epoch success rate is investigated.

2 Modeling of the GNSS Observables

Assuming two antennae tracking the same nC1 GNSS
satellites, the set of single frequency, linearized double
difference (DD) GNSS observations for the baseline at
a given epoch is described via a Gauss-Markov model
(Teunissen and Kleusberg 1998)

E.y/ D Az C Gb z 2 Z
nI b 2 R

p

D.y/ D Qy (6.1)

where E.�/ is the expectation operator, y is the vector
of code and carrier phase observables (order 2n),
z contains the n integer-valued ambiguities and b is
the vector of remaining p real-valued unknowns. Here,
we restrict ourselves to short baseline applications,
assuming the three baseline coordinates as the only
real-valued unknowns (p D 3). A and G are the design
matrices which link the observables with the vectors of
unknowns: A contains the carrier wavelengths, while
G is the matrix of line-of-sight vectors.

D.�/ is the dispersion operator: a Gaussian-
distributed error is assumed on the vectors of
observables, characterized by the variance-covariance
(v-c) matrix Qy .

We consider in this work a set of m C 1 antennae
tracking the same nC1 GNSS satellites: we cast the set
of GNSS DD observations collected at the different m

independent baselines into a unique frame, thus formu-
lating a multivariate model (Teunissen 2007) as

E.Y / D AZ C GB Z 2 Z
n�mI B 2 R

3�m

D.vec.Y // D QY (6.2)

where Y is the 2n by m matrix whose columns are
the code and phase observations from each baseline,
Z is the matrix containing the nm integer-valued
ambiguities and B is the matrix of remaining 3m real-
valued unknowns, i.e. the matrix whose columns are
the coordinates of each baseline. The relative distances
between the antennae are assumed to be short, so
that the deviations between the different line-of-sight
vectors as seen from each antenna can be disregarded
and the same matrix of line-of-sight vectors G is used.
The vec operator is here introduced in order to define
the v-c matrix of the observables: it stacks the columns
of the 2n by m matrix Y into a vector of order 2nm.
The dispersion of the vector vec.Y / is characterized
by the v-c matrix QY .

We study in this contribution how to embed a set
of nonlinear geometrical constraints posed on the 3m

real-valued entries of B . We assume that the antennae
are firmly mounted on the same rigid platform, and
their relative distances are completely known. This
results in two types of constraints to be considered:
the baseline lengths and their relative orientation are
known and constant. The hypothesis of constant length
constrains the extremity of each baseline vector to
lie on the surface of a sphere of radius equal to the
baseline length; this reduces the number of indepen-
dent baseline coordinates from 3m to 2m. Due to the
invariance of the antennae relative positions, the set
of admissible baseline coordinates is described by a
rigid rotation, and the real-valued unknowns to be
determined are drastically reduced to three (two in the
case of single-baseline) by virtue of the Euler’s rotation
theorem (Goldstein 1980). A suitable parameterization
for the baseline coordinates is necessary to efficiently
describe the characteristics of the baseline-constrained
problem. To this purpose we introduce a frame of body
axis (u1u2u3) defined by the antennae placement. The
first body axis is aligned with the first baseline, the
second body axis is perpendicular to the first, lying
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in the plane formed by the first two baselines, and
the third body axis is directed so that u1u2u3 form a
right-handed orthogonal frame. The relation between
the baseline coordinates expressed in the body frame
u1u2u3 (F ) and a reference frame x1x2x3 (B) under
the hypothesis of rigid rotations is

B D R � F (6.3)

where the rotation matrix R, which describes the
relative orientation of the two systems, defines a linear
transformation R

3�m ! R
3�m. Due to the invari-

ance of both the baselines lengths and their relative
positions, the relation BT B D F T F holds true; mul-
tiplying both the terms of (6.3) for BT , we obtain
BT B D F T RT RF : hence the matrix R has to be
orthogonal (RT R D I ). In order to avoid loss of gen-
erality when only two or three antennae are available,
we define the rotation matrix as (Teunissen 2007)

m � 3 W RF D �
r1; r2; r3

�
2

4
f11 f21 f31 � � � fm1

0 f22 f32 � � � fm2

0 0 f33 � � � fm3

3

5

m D 2 W RF D �
r1; r2

� �f11 f21

0 f22

�

m D 1 W RF D �
r1

� �
f11

�
(6.4)

with ri the i -th column of R and fij (scalar) the entries
of F . We introduce for notational convenience the
parameter q, to indicate the second dimension of R:
q D m for m < 3 and q D 3 for m � 3.

By the use of the rotation matrix, the problem
of estimating the 3m baseline coordinates turns into
the problem of estimating the 3q � 3m entries of an
orthogonal matrix R, of which only three (two for
a single baseline) are independent. The multivariate
constrained model is then formulated as (Teunissen
2007):

E.Y / D AZ C GRF Z 2 Z
n�mI R 2 O

3�q

D.vec.Y // D QY D Pm ˝ Qy (6.5)

where R describes the orientation of the body frame
with respect to the frame wherein the GNSS measure-
ments are obtained. The unknowns to be resolved are
the nm integer-valued ambiguities and the three (or
two in case of single-baseline) real-valued independent

entries of R, which must belong to the class of 3

by q orthogonal matrices O
3�q . We assume that the

different baseline observations are described by the
same v-c matrix Qy , and the dispersion of the matrix
of observables Y is obtained via a Kronecker product
between Qy and the m by m matrix Pm, which defines
the correlation between the baselines.

3 Constrained Integer Least-Squares

The Integer Least-Squares estimator for the solution
of the system (6.1) was demonstrated to be opti-
mal among the class of admissible integer estimators
(Teunissen 1999). A closed-form solution of the ILS
is not known: hence, a least-squares minimization
implies an exhaustive search over a set of integer
candidates. The LAMBDA method is a well-known
and efficient implementation of the ILS, introduced in
Teunissen (1993) and Teunissen (1995). The nonlinear
constraints posed on the baseline coordinates strongly
affects the resolution technique to be adopted, and a
new formulation of the LAMBDA method is presented
here. To express the model (6.5) in a vectorial form, we
again make use of the vec operator:

E .vec.Y // D �
.Im ˝ A/ .F T ˝ G/

��vec.Z/

vec.R/

�

Z 2 Z
n�mI R 2 O

3�q

D.vec.Y // D Pm ˝ Qy (6.6)

We want to solve the system (6.6) in a least-squares
sense, therefore minimizing the squared norm of the
residuals with respect to the integer-valued matrix Z.
The squared norm and its sum-of-squares decomposi-
tion reads (Teunissen 2007):

��vec.Y / � .Im ˝ A/vec.Z/ � .F T ˝ G/vec.R/
��2

P ˝Qy

D ��vec. OE/
��2

Pm˝Qy
C
�
��vec

	
Z � OZ


���
2

Q
OZ

C
�
��vec

	 OR.Z/ � R

���

2

Q
OR.Z/

(6.7)

where
�
����2

Q
D .�/T Q�1.�/ is the weighted squared

norm and OZ and OR are the float solutions of the
unknowns, i.e. the least-squares solution of (6.6)
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obtained without imposing any constraint on Z or
R. OE is the matrix of least-squares residuals, while
OR.Z/ is the float estimator of R given the ambiguity

matrix Z known. Q OZ is the v-c matrix of the float
solution vec. OZ/, while the v-c matrix Q OR.Z/ defines

the dispersion of vec. OR.Z//. Due to the constraints
posed on Z and B , the last two terms of (6.7) cannot
in general be made zero for any value of Z; thus the
minimization problem must be taken with respect to
both the integer matrix Z and the orthogonal matrix R:

LZ D arg min
Z2Zn�m

C.Z/

C.Z/ D �
�vec.Z � OZ/

�
�2

Q
OZ

C �
�vec. OR.Z/ � LR.Z//

�
�2

Q
OR.Z/

(6.8)

with

vec. LR.Z// D arg min
R2O3�q

�
�vec. OR.Z/ � R/

�
�2

Q
OR.Z/

(6.9)

The evaluation of the cost function C.Z/ involves
the computation of two correlated terms: the first
is the distance between Z and the float solution OZ,
weighted by the v-c matrix Q OZ , and the second is
the distance between the conditional solution OR.Z/

and the minimizer of the constrained nonlinear least-
squares problem (6.9).

The solution of the minimization problem (6.8)
provides the fixed matrix of integer ambiguities LZ
by taking advantage of the geometrical constraints
expressed by the orthogonality of LR.Z/. Solving the
problem (6.9) for Z D LZ then gives the least squares
estimation of the attitude of the body axis LR. LZ/, i.e.
the orientation of the set of m baselines with respect
the frame of axes wherein the GNSS observation are
taken. Since no analytical solution for the integer
minimizer of (6.8) is known, a direct search method
must be employed. The integer matrix which provides
the smallest value for C.Z/ is exhaustively searched
inside the set of integer candidates defined as

�
�
�2
� D fZ 2 Z

n�m j C.Z/ � �2g (6.10)

where � is a scalar chosen as to limit the search
space �.�2/. The shape of set �.�2/ is driven by the
matrices Q OZ and Q OR.Z/ in (6.8): if Q OR.Z/ ! 0, the
set would be ellipsoidal, as follows from the relation

�
�vec.Z � OZ/

�
�2

Q
OZ

� �2. The tight relation between

the two terms of (6.8) complicates the evaluation of
the shape of the search space for Q OR.Z/ ¤ 0.

We now focus on the three steps involved in the
computation of the minimizer of (6.8): the derivation
of the float solution, the search for the integer mini-
mizer and the computation of the constrained nonlinear
least-squares problem (6.9).

3.1 The Float Estimators

The float estimators OZ and OR are the least-squares
solution of the system (6.6) when disregarding the
integerness of the ambiguities and the orthogonality
of R. These are obtained by solving the set of normal
equations

N

 
vec. OZ/

vec. OR/

!

D
"

P �1
m ˝ AT Q�1

y

FP �1
m ˝ GT Q�1

y

#

vec.Y /

N D
"

P �1
m ˝ AT Q�1

y A P �1
m F T ˝ AT Q�1

y G

FP �1
m ˝ GT Q�1

y A FP �1
m F T ˝ GT Q�1

y G

#

(6.11)

The inversion of the normal matrix N provides the v-c
matrices of the float solutions vec. OZ/ and vec. OR/:

�
Q

OZ Q
OZ OR

Q
OR OZ Q

OR

�
D N �1 (6.12)

If we assume the matrix of ambiguities known, OR.Z/

and the associated v-c matrix are obtained as

vec. OR.Z// D vec. OR/ � Q OR OZQ�1
OZ vec. OZ � Z/

Q OR.Z/ D Q OR � Q OR OZQ�1
OZ Q OZ OR (6.13)

Thus, the knowledge of the fixed matrix of ambiguities
improves the precision of OR.Z/: the dispersion is
reduced according to (6.13).

3.2 The Search for the Integer
Ambiguities

As stated above, the minimization problem (6.8) can
in principle be solved with an extensive search in the
search space �

�
�2
�
: this is a non-trivial task if one
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aims to have an efficient and fast search. The choice for
the scalar � in (6.10) is critical: it must be large enough
to guarantee the non-emptiness of �.�2/, but not too
large to avoid onerous computational burdens due to
the large number of integer candidates for which the
solution of (6.9) must be evaluated. Setting the value
of � by picking up an integer matrix Z

0

and computing

�2 D C.Z
0

/ (6.14)

generally leads to unacceptable large values for �, for
which the computational burden is too heavy. This
is due to the fact that the matrix Q OR.Z/ is driven be
the more precise phase measurements, and the second
term of (6.8) largely amplifies the values of � for
any non-correct value of Z. An alternative approach
to the extensive search in �.�2/ is to make use of
approximating functions that are easier to evaluate than
C.Z/, and a modification of the LAMBDA method is
here proposed. In analogy with the bounding functions
introduced for the single-baseline (m D 1) case in
Teunissen (2006), we note that the expression (6.9)
can be bounded via the smallest (�m) and largest (�M )
eigenvalues of the matrix Q�1

OR.Z/
:

C1.Z/ � C.Z/ � C2.Z/

C1.Z/ D ��vec.Z � OZ/
��2

Q
OZ

C �m

qX

iD1

���Ori .Z/
�� � 1

�2

C2.Z/ D �
�vec.Z � OZ/

�
�2

Q
OZ

C �M

qX

iD1

���Ori .Z/
�
�C1

�2

(6.15)

where Ori .Z/ is the i -th column of OR.Z/ and the
inequalities are derived from the rules of the scalar
product between vectors. A clever strategy to quicken
the search is to make use of these two bounds, and
two efficient search strategies for the constrained
ILS minimization have been developed (Buist 2007;
Giorgi et al. 2008; Giorgi and Buist 2008): the
methods were coined the Expansion approach and
the Search and Shrink approach, respectively. The
Expansion approach works by initially enumerating
all the integer matrices contained in a small set of
admissible candidates

�exp

�
�2

0

� D fZ 2 Z
n�m j C1.Z/ � �2

0g � �
�
�2

0

�

(6.16)

where the scalar �0 is initially chosen small enough
and iteratively increased until, at step s, the set
�exp

�
�2

s

�
turns out to be non-empty: as the evaluation

of C1.Z/ only involves the computation of two
squared norms, the enumeration proceeds rather
quickly. For each of the enumerated integer matrices
in �exp

�
�2

s

�
, the problem (6.9) is solved and the

set �
�
�2

s

�
is evaluated: if it is empty, the scalar

�s is increased to �sC1 > �s and the enumeration
in �exp

�
�2

sC1

�
repeated, otherwise the minimizer of

C.Z/ is picked up.
A second strategy developed is a Search and Shrink

approach: a second set is defined as

�SaS

�
�2

0

� D fZ 2 Z
n�m j C2.Z/ � �2

0g � �
�
�2

0

�

(6.17)

where �0 is chosen large enough to guarantee the
non-emptiness of �SaS .�2

0/. The search proceeds by
iteratively shrinking the set, by means of searching for
an integer matrix ZsC1 in �SaS

�
�2

s

�
which provides a

smaller value for �2
sC1 D C2.ZsC1/ < C2.Zs/ D �2

s ,
until the minimizer of C2.Z/ is found. The minimizer
of C.Z/, which may differ from the one of C2.Z/, is
then extensively searched inside the shrunken set

�
�
�2
� D fZ 2 Z

n�m j C.Z/ � �2g � �SaS

�
�2
�

(6.18)

where �2 D C2.Z/, being Z the minimizer of C2.Z/.
The two search strategies provide an efficient alternate
way of performing the search for the integer minimizer
of (6.8), overtaking both the issues of fixing the initial
size of the search space and speeding up the search
avoiding the computation of (6.9) a large number of
times.

3.3 Solving the Nonlinear Least-Squares
Problem

The evaluation of the function C.Z/ at a given point
Z implies the solution of the nonlinear constrained
least squares problem (6.9). Geometrically, it consists
to find the closest point between a given data vector
vec. OR.Z// and a curved manifold of dimension q C 1

embedded in the 3q-dimensional space, where the
metric is defined by the v-c matrix Q OR.Z/. The man-
ifold, which reflects the nonlinearity of the problem, is
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defined by the constraints equations RT R D I . Making
use of one of the representations that can be employed
for the three-dimensional rotations needed to coalesce
two orthogonal frames, such as the Gibbs vector, the
Direct Cosine Matrix, the Quaternions or the Euler
angles (Battin 1987), the vector vec. OR.Z/�R/ can be
rewritten as a set of 3q-nonlinear functions of a vector
of independent unknowns � , for which the orthogonal
constraint on R.�/ is implicitly fulfilled. The non-
linear least-squares problem can then be solved by an
iterative technique such as the Gauss-Newton method.

4 Simulation Results

The proposed constrained ILS method was tested
with simulated data: the simulation inputs are
summarized in Table 6.1. Each of the 24 scenarios
was processed with the unconstrained LAMBDA,
disregarding the geometrical constraints, and the
Constrained LAMBDA method, taking into account
the orthogonality on R. The latter was applied on both
a single baseline case and a two-baselines case: this
to demonstrate the improvement when the number of
geometrical constraints increases. Table 6.2 reports
for the different methods the single-frequency, single-
epoch success rate, which is defined as the ratio of
correctly fixed matrix of ambiguities over the set of
105 samples simulated. The improvement in success
rate was dramatic: especially for the weaker scenarios
(lower number of satellite / higher noise levels) the
difference between the methods was rather large,
e.g. the weakest simulated dataset, with five available
satellites and high noise values, showed an increment
from a low 3% to 72% for the single baseline case,
up to 99.6% for the two-baselines case. As expected,
the strengthening of the underlying model due to the

Table 6.1 Simulation set up

Frequency L1

Number of Satellite (PRNs) Corresponding PDOP
5 / 6 / 7 / 8 4.19 / 2.14 / 1.92 / 1.81
Undifferenced code noise 30 - 15 - 5
�p Œcm�

Undifferenced phase noise 3 - 1
�� Œmm�

Baselines fi .x1; x2; x3/ f1 D Œ1; 0; 0� m
f2 D Œ�0:35; 1:97; 0� m

Samples simulated 105

Table 6.2 Simulation results: single-frequency, single-epoch
success rates for the unconstrained and constrained LAMBDA
methods. Success rates higher than 99.9% are stressed

�� Œmm� 3 1
�p Œcm� 30 15 5 30 15 5
N Single-baseline success rate, unconstrained

LAMBDA
Single-baseline success rate, Constrained LAMBDA
Two-baselines success rate, Constrained LAMBDA

5 3.30 19.05 86.67 5.99 26.89 95.37
72.43 88.86 99.63 96.54 99.94 100
99.60 99.94 100 100 100 100

6 24.83 66.71 96.89 49.13 86.67 99.99
95.75 99.18 99.90 99.99 100 100
99.99 100 100 100 100 100

7 50.24 79.69 99.53 74.17 93.27 100
99.34 99.97 100 100 100 100
100 100 100 100 100 100

8 86.17 94.48 99.99 99.97 99.99 100
99.80 99.99 100 100 100 100
100 100 100 100 100 100

embedded geometrical constraints substantially affects
the capacity of fixing the correct integer ambiguity
matrix: only two baselines were indeed sufficient to
obtain single-frequency, single-epoch success rates
higher than 99% on all the data sets processed,
obtaining a 100% success rate on 20 out of 24 data
sets simulated.

Conclusion

The problem of resolving the integer ambiguities
which affect the GNSS carrier phase observations
is the key to precise relative positioning. The
LAMBDA method, which mechanizes the ILS
principle, is used to efficiently and reliably fix the
ambiguities. When the geometry of the antennae
placement is known and constant, nonlinear
constraints can be included in the theory, for
the purpose of strengthening the model and
improving the capacity of fixing the correct integer
ambiguities. We proposed in this contribution a
model for the GNSS observations which embeds
the whole set of nonlinear geometrical constraints
arising when considering frame of antennae of
invariant relative positions. The cost function to
be minimized in a ILS sense has been modified: in
order to solve the minimization problem respecting
both the integer and orthogonality constraints, a
modification of the LAMBDA method is proposed
and the integer matrix of ambiguities is searched
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via one of the two iterative search approaches
depicted. Both the Expansion and the Search and
Shrink algorithms can be applied to perform the
search, resulting in a faster and more efficient
approach than the extensive search. We tested
the proposed method on different simulated data
sets, investigating the influence of the number of
available satellite and the noise levels on the code
and phase observations: the difference when using
the unconstrained LAMBDA and the Constrained
LAMBDA is dramatic, with a large improvement in
the capacity of resolving the correct integer matrix,
especially for the scenarios characterized by lower
number of available satellites/higher noise levels.
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